JPS61119636A - Electrode wire for electric spark machining and its manufacture - Google Patents

Electrode wire for electric spark machining and its manufacture

Info

Publication number
JPS61119636A
JPS61119636A JP24032084A JP24032084A JPS61119636A JP S61119636 A JPS61119636 A JP S61119636A JP 24032084 A JP24032084 A JP 24032084A JP 24032084 A JP24032084 A JP 24032084A JP S61119636 A JPS61119636 A JP S61119636A
Authority
JP
Japan
Prior art keywords
wire
srb6
powder
electrode wire
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24032084A
Other languages
Japanese (ja)
Other versions
JPH0524213B2 (en
Inventor
Takaharu Yonemoto
米本 隆治
Mitsuaki Onuki
大貫 光明
Yasuhiko Miyake
三宅 保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP24032084A priority Critical patent/JPS61119636A/en
Publication of JPS61119636A publication Critical patent/JPS61119636A/en
Publication of JPH0524213B2 publication Critical patent/JPH0524213B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electrode wire for electric spark machining having a high rate of electric spark machining by using a Cu-SrB6 alloy contg. a specified amount of SrB6 of a specified particle size or below. CONSTITUTION:SrB6 is added to Cu powder by 0.1-5wt%, and they are mechanically mixed to form particles of Cu contg. uniformly dispersed SrB6 of <=1mum particle size. The particles are reduced and compacted, and the green compact is hot extruded and cold drawn to obtain an electrode wire for electric spark machining. Electrolytic Cu powder of 100 mesh is generally used as the Cu powder.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、放電加工用電極線、特にワイヤカット放電加
工用電極線に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to an electrode wire for electric discharge machining, particularly to an electrode wire for wire-cut electric discharge machining.

〈従来の技術〉 放電加工とは、′を極間に断続的な高電圧(パルス電圧
)をかけ、過渡的放電(火花放電)を次々と発生させ、
それにより工作物となる電極を消耗させ加工するもので
ある。
<Conventional technology> Electrical discharge machining involves applying an intermittent high voltage (pulse voltage) between the electrodes to generate transient electrical discharges (spark discharges) one after another.
As a result, the electrode, which becomes the workpiece, is consumed and processed.

放電加工の1つに、ワイヤカット放電加工があり、これ
は電極として金属線を使用し、これを糸鋸のように操作
して必要な形状を切り出す加工法である。近年、工作機
械の制御手段として数値制御(N C)技術が発達する
に伴ない、ワイヤカット放電加工法が、例えばプレス抜
き型の加工や、細いスリットの加工等の分野で急速に発
達してきた。
One type of electrical discharge machining is wire-cut electrical discharge machining, which is a processing method that uses a metal wire as an electrode and operates it like a jig saw to cut out a required shape. In recent years, with the development of numerical control (NC) technology as a means of controlling machine tools, wire-cut electric discharge machining has rapidly developed in fields such as press cutting dies and narrow slit machining. .

ワイヤカット放電加工は、特に複雑で精密な形状を有す
るプレス金型のような被加工体の連続加工に適している
Wire-cut electrical discharge machining is particularly suitable for continuous machining of workpieces such as press molds that have complex and precise shapes.

この放電加工においては、被加工体の仕上り表面状況お
よび寸法精度が良好で、電極線が被加工体に付着しない
こと、さらに加工速度が速いことが要求されている。
In this electrical discharge machining, the finished surface condition and dimensional accuracy of the workpiece are required to be good, the electrode wire does not adhere to the workpiece, and the machining speed is high.

特に、糸鋸のように操作する電極線と被加工体との間で
起こる放電効率を向上させれば、加工速度を速め、仕上
り表面状況のよい精度の高い加工ができる。
In particular, if the efficiency of electrical discharge that occurs between the electrode wire operated like a jig saw and the workpiece is improved, the machining speed can be increased and highly accurate machining with a good finished surface condition can be achieved.

このため、電極線の材質がいろいろ検討され、従来電極
線には、硬銅線、65/35黄銅線、タングステン線な
どが用いられている。
For this reason, various materials for the electrode wire have been studied, and hard copper wire, 65/35 brass wire, tungsten wire, etc. have been used for conventional electrode wires.

しかし、これらはいずれも加工速度が劣り、特に硬銅線
、65/35黄銅線は、被加工体への付着量が大きい欠
点があり、タングステン線は価格が高い欠点があった。
However, all of these wires have poor processing speeds, and in particular, hard copper wire and 65/35 brass wire have the disadvantage of a large amount of adhesion to the workpiece, and tungsten wire has the disadvantage of being expensive.

65/35黄銅線の加工速度を改善するために、種々の
添加元素を添加する試みがなされているが、現在までの
ところ、十分な効果が示されている例はない。
Attempts have been made to add various additive elements to improve the processing speed of 65/35 brass wire, but to date, no examples have shown sufficient effects.

SrB6は仕事関数が小さく、放電特性を向上されると
考えられていたが、SrBB自体をワイヤカット用の線
材にする方法はなかった。
SrB6 has a small work function and was thought to improve discharge characteristics, but there was no way to use SrBB itself as a wire material for wire cutting.

すなわち、複合剤としての従来の製法がCu粉末とSr
B6粉末を混合し、そのまま焼結する製法をとっている
ためであり、この製法によれば、CuとSrB6の分散
が均一とならず、またSrB6粒子が大きいために細線
に伸線加工した場合の断線の原因となり、Cu−SrB
6合金製のワイヤカット電極用線材として実用性がなか
った。
In other words, the conventional manufacturing method for a composite agent is Cu powder and Sr.
This is because the manufacturing method involves mixing B6 powder and sintering it as is. According to this manufacturing method, the dispersion of Cu and SrB6 is not uniform, and the SrB6 particles are large, so when wire is drawn into a thin wire. This may cause disconnection of Cu-SrB.
It was not practical as a wire material for wire-cut electrodes made of 6 alloy.

〈発明が解決しようとする問題点〉 本発明の目的は、このような欠点を解消し、放電加工速
度の速い放電加工用電極線およびその製造方法を提供す
ることにある。
<Problems to be Solved by the Invention> An object of the present invention is to eliminate such drawbacks and provide an electrode wire for electrical discharge machining with a high electrical discharge machining speed and a method for manufacturing the same.

〈発明の簡単な説明〉 このような目的は、以下の本発明によって達成される。<Brief explanation of the invention> Such objects are achieved by the following invention.

すなわち第1の発明は、粒径が1終鳳以下のSrB6を
0.1〜5.Owt%含むCu−SrB6合金で構成さ
れたことを特徴とする放電加工用電極線である。
That is, in the first invention, SrB6 having a particle size of 1 to 5. This is an electrode wire for electric discharge machining, characterized in that it is made of a Cu-SrB6 alloy containing Owt%.

第2の発明は、0.1〜5.Owt%のSrB6粉末と
Cu粉末(残部)を機械的に混合(メカニカルアロイイ
ング)してCu中に粒径1#Lm以下の      。
The second invention is 0.1 to 5. Owt% of SrB6 powder and Cu powder (remainder) are mechanically mixed (mechanical alloying) to form Cu powder with a particle size of 1 #Lm or less.

SrB6が均質に分散した粒子を作製し、この粒子を還
元、圧粉、熱間押出し後、冷間にて伸線加工することを
特徴とする放電加工用電極線の製造方法である。
This method of manufacturing an electrode wire for electric discharge machining is characterized in that particles in which SrB6 is homogeneously dispersed are prepared, and the particles are reduced, compacted, hot extruded, and then cold drawn.

く問題を解決するための手段〉 本発明は、粒径がIILm以下のSrB6を0.1〜5
0 wt%含むSrB6−Cu合金で構成された放電加
工用電極線を提供しようとするもので、その製造方法と
ともに以下に詳細に説明する。
Means for Solving the Problem> The present invention provides SrB6 with a particle size of IILm or less in a form of 0.1 to 5
The present invention aims to provide an electrode wire for electric discharge machining made of a SrB6-Cu alloy containing 0 wt%, and will be described in detail below along with a manufacturing method thereof.

本発明で用いるCu粉は、任意の方法で製造されたもの
を用いてもよく、一般的には100メツシユの電解Cu
粉末を用いる。
The Cu powder used in the present invention may be produced by any method, and generally 100 mesh electrolytic Cu powder is used.
Use powder.

このCu粉末に混合するSrB6粉末は、仕事関数を小
さくし、放電効率をあげるためのものであり、Cu粉末
に対して0.1〜5.Owt%添加される。
The SrB6 powder mixed with this Cu powder is for reducing the work function and increasing the discharge efficiency, and is 0.1 to 5. Owt% is added.

SrB6が0.1 wt%未満では、SrBa(7)添
加量が少なく、放電特性の改善が行われず、本発明の効
果である加工速度の上昇が認められない。
When SrB6 is less than 0.1 wt%, the amount of SrBa(7) added is small, the discharge characteristics are not improved, and the increase in machining speed, which is an effect of the present invention, is not observed.

SrB6が5.Owt%をこえると、添加量が多すぎて
SrB6の凝集体が形成されやすく、線径0.2■■φ
程度の細線にまで伸線が不可能となる。
SrB6 is 5. If it exceeds Owt%, the addition amount is too large and SrB6 aggregates are likely to be formed, and the wire diameter is 0.2■■φ.
It becomes impossible to draw even a thin wire.

上述のような割合のCuおよびSrB6粉末混合物は、
特にSrB6の微粒化およびCuとSrB6の均質混合
のための機械的混合が行われる。
The Cu and SrB6 powder mixture in proportions as mentioned above is
In particular, mechanical mixing is carried out for atomization of SrB6 and homogeneous mixing of Cu and SrB6.

この混合操作には、第1図に示すアトライターと称され
る機械的乾式混合機を用いるのがよい。
For this mixing operation, it is preferable to use a mechanical dry mixer called an attriter shown in FIG.

第1図において、lはポット、2はArガス入口、3は
Arガス出口、4はアジテータアーム、5はシャフト、
6はボール、7および8はそれぞれウォータジャケット
9の冷却水入口および出口である。
In Fig. 1, l is a pot, 2 is an Ar gas inlet, 3 is an Ar gas outlet, 4 is an agitator arm, 5 is a shaft,
6 is a ball, and 7 and 8 are the cooling water inlet and outlet of the water jacket 9, respectively.

上記アトライターに限られず、振動ボールミル、遠心ボ
ールミル等の通常の機械式混合機を用いてもよいのはも
ちろんのことである。
It goes without saying that the attritor is not limited to the above-mentioned attritor, and a conventional mechanical mixer such as a vibrating ball mill or a centrifugal ball mill may be used.

重要なことは、この混合操作において、Cu中にSrB
6が粒径14m以下の微粒子となって均質に混合され、
一種の合金に似た状態となることである。
What is important is that in this mixing operation, SrB in Cu
6 becomes fine particles with a particle size of 14 m or less and is mixed homogeneously,
It becomes a state similar to a kind of alloy.

SrB6の粒径を1IL11以下と限定した理由は、粒
径が径lIL鳳をこえると、SrB6粒径が大きすぎる
ために、均一な放電が起きず、加工速度の上昇が不可能
となるためである。また微細なSrBaが均質に分散し
ていることによって、伸線加工によって導入される転位
の移動を困難にするために線材の強度も上昇する。
The reason why the grain size of SrB6 is limited to 1IL11 or less is that if the grain size exceeds the diameter lIL11, the SrB6 grain size will be too large and uniform discharge will not occur, making it impossible to increase the machining speed. be. Furthermore, the uniform dispersion of fine SrBa makes it difficult for dislocations introduced by wire drawing to move, thereby increasing the strength of the wire.

次に、以上のようにしてCu中に1体層以下の粒径のS
rBHが均質に分散した分散混合物を、後の伸線加工が
しやすい粒径の粒子に造粒する。
Next, as described above, S with a particle size of one body layer or less is added to Cu.
The dispersion mixture in which rBH is homogeneously dispersed is granulated into particles having a particle size that can be easily processed later by wire drawing.

この分散混合物の粒径は特に限定されることはないが、
一般的には16〜60メツシュ程度に造粒される。
The particle size of this dispersed mixture is not particularly limited, but
Generally, it is granulated to about 16 to 60 meshes.

このようにして得られた粒子は、以下に一例を述べる通
常の方法で、あるいは他の適当な伸線加工され、放電加
工用電極線とされる。
The particles thus obtained are subjected to a conventional wire drawing process, an example of which will be described below, or by other suitable wire drawing processes to obtain an electrode wire for electrical discharge machining.

(1)還元 水素気流中で350〜800℃、2時間還元される。(1) Reduction Reduction is carried out at 350-800°C for 2 hours in a hydrogen stream.

(2)圧粉 還元後、温度350〜Boo℃、圧力5〜100Kg/
園量2のAr雰囲気中で所要大きさのビレットに圧粉成
型される。
(2) After powder reduction, temperature 350~Booo℃, pressure 5~100Kg/
The powder is compacted into a billet of the required size in an Ar atmosphere with a volume of 2.

(3)熱間押出し 得られたビレットをAr雰囲気中で1,500〜900
℃に加熱後、コンテナ温度300〜600℃で丸棒のよ
うな所望の形状に押出す。
(3) The billet obtained by hot extrusion is heated to 1,500 to 900 in an Ar atmosphere.
After heating to a temperature of 300-600°C, the container is extruded into a desired shape such as a round bar.

押出し加工については、通常の熱間押出し以外に、コン
フォームと呼ばれる回転ホイールとシューを組合わせた
連続押出し機に、混合によって得られた粒子をそのまま
投入し、押出し、その後伸線加工してもよい。
Regarding extrusion processing, in addition to normal hot extrusion, the particles obtained by mixing are fed into a continuous extruder called a conform, which combines a rotating wheel and a shoe, and extruded, followed by wire drawing. good.

(4)伸線 得られた丸棒のような押出し線を冷間伸線加工により、
例えば1.8■φのような細線に伸線し、次にN2雰囲
気中で200〜SOO℃、2時間の中間焼鈍を行い、さ
らに伸線加工を行い、例えば0.2 mtaφの線とす
る。
(4) Wire drawing The obtained round bar-like extruded wire is subjected to cold wire drawing.
For example, the wire is drawn into a thin wire of 1.8 mm diameter, then intermediate annealing is performed at 200 to SOO℃ for 2 hours in a N2 atmosphere, and the wire is further drawn to a wire of, for example, 0.2 mta diameter. .

く実 施 例〉 一150メツシュの電解Cu粉と、−350メツシユの
SrB6粉末を前述した7トライターと呼ばれる乾式混
合機中に入れ、回転数30Orpmで5時間混合した。
EXAMPLE 1150 mesh electrolytic Cu powder and -350 mesh SrB6 powder were placed in the dry mixer called 7 Tritor mentioned above and mixed at a rotational speed of 30 rpm for 5 hours.

ここで、アトライターのポットの内容積は5文、ポール
径は3/8インチ、ポール材質はSUJ 2、ポール重
量は17.5 Kgであり、ポットは水冷を行い、混合
中の雰囲気はAr気流とした。
Here, the internal volume of the attritor pot is 5 cm, the pole diameter is 3/8 inch, the pole material is SUJ 2, and the pole weight is 17.5 kg.The pot is water-cooled, and the atmosphere during mixing is Ar. It was an air current.

混合機中の原料の組成は表2に示す種々のものとした。The compositions of the raw materials in the mixer were varied as shown in Table 2.

5時間混合後においては、Cu粉とSrB6粉は、完全
に機械的に混合され、400倍の光学顕微鏡で粒子の横
断面を検鏡した結果、SrB6粒子の粒径は1ル厘以下
であった。また、混合粒子の粒度は1007791以上
であった。
After 5 hours of mixing, the Cu powder and SrB6 powder were completely mechanically mixed, and as a result of examining the cross section of the particles with a 400x optical microscope, the particle size of the SrB6 particles was less than 1 l. Ta. Further, the particle size of the mixed particles was 1007791 or more.

この混合粒子を水素気流中で800℃、1時間の還元処
理後、温度500℃、圧力100Kg/+w+w2 、
 A r雰囲気中で直径30IImφ、長さ80厘■の
ビレットに圧粉成型した。このビレットをAr雰囲気中
で900℃に加熱後、コンテナ温度500℃で直径71
1Ilφの丸棒に押出した。この丸棒を冷間伸線加工に
よってり、S amφとし、N2中で400℃×1時間
の中間焼鈍を行い、さらに伸線加工を行い0−2m5+
φの線とした。
After reducing the mixed particles in a hydrogen stream at 800°C for 1 hour, the temperature was 500°C and the pressure was 100Kg/+w+w2.
It was compacted into a billet with a diameter of 30 mm and a length of 80 mm in an Ar atmosphere. After heating this billet to 900°C in an Ar atmosphere, the diameter of the billet was 71°C at a container temperature of 500°C.
It was extruded into a round bar of 1Ilφ. This round bar was cold-drawn to form S amφ, intermediately annealed in N2 at 400°C for 1 hour, and further wire-drawn to form a diameter of 0-2m5+.
It was made into a line of φ.

このようにして得られた種々の電極線を・使用して、表
1に示す放電加工条件によって放電加工実験を行った。
Using the various electrode wires thus obtained, electrical discharge machining experiments were conducted under the electrical discharge machining conditions shown in Table 1.

表2に押出し結果、伸線加工結果および放電加工結果を
まとめて示す。
Table 2 summarizes the extrusion results, wire drawing results, and electrical discharge machining results.

なお、放電加工結果は、Cu線を使用した場合との加工
速度の比較で示した。
Note that the electrical discharge machining results are shown by comparing the machining speed with that when Cu wire is used.

表2に示すところから明かなように、本発明例は、いず
れも良好な押出し性、伸線加工性を示し、加工速度もC
u線に比べて大きく増加している。
As is clear from Table 2, the examples of the present invention all exhibit good extrudability and wire drawability, and the processing speed is also C.
This is a large increase compared to the U-line.

それに対して、0.05 wt%SrB6を含むもの(
比較例8)では、押出し性、伸線加工性は良好であるが
、加工速度の向上が顕著でなく、また8.0wt%Sr
B6を含むもの(比較例9)では加工速度の向上はみら
れるが、押出し性が悪く、また伸線中に断線が多発し、
線材への加工ができない。
In contrast, those containing 0.05 wt% SrB6 (
In Comparative Example 8), the extrudability and wire drawability were good, but the improvement in processing speed was not remarkable, and 8.0 wt% Sr
In the case containing B6 (Comparative Example 9), the processing speed was improved, but the extrudability was poor, and wire breakage occurred frequently during wire drawing.
It cannot be processed into wire rods.

また、他の比較例として、従来の一般的な方法である鋳
造法によってCu−3wt%SrB6合金を製造した(
比較例1O)、これは、溶融したCu中に銅泊に包んだ
SrB6を添加し、撹拌し、M造した。この鋳造ビレッ
トを900℃に加熱後、コンテナ温度500℃で熱間押
出しした。押出された7冒■φの棒を先に示した実施例
と同じ工程で0.2腸■Φまで加工した。
In addition, as another comparative example, a Cu-3wt%SrB6 alloy was manufactured by the conventional casting method (
Comparative Example 1O), in which SrB6 wrapped in copper foil was added to molten Cu and stirred to produce M. This cast billet was heated to 900°C and then hot extruded at a container temperature of 500°C. The extruded rod with a diameter of 7 mm was processed to a diameter of 0.2 mm in the same process as in the example described above.

しかし、押出し材に部分的に割れがみちれ、伸線中にも
断線が頻発し、加工実験に供することができなかった。
However, the extruded material was partially cracked and broke frequently during wire drawing, so it could not be used for processing experiments.

断線部を光学顕微鏡で観察すると、直径約50〜100
ILs+の巨大なSrB6粒が観察された。
When the disconnected part is observed with an optical microscope, it has a diameter of about 50 to 100 mm.
Six giant SrB grains of ILs+ were observed.

〈発明の効果〉 未発用におけるように、Cu中に粒径が1ル馬以下のS
rB6を0.1〜5.Owt%均質に分散させたCu−
SrB6合金製の放電加工用電極線により次に述べる多
くの利点がもたらされる。
<Effect of the invention> As in the unreleased product, S with a particle size of 1 μm or less is contained in Cu.
rB6 from 0.1 to 5. Owt% homogeneously dispersed Cu-
Electrical discharge machining electrode wire made of SrB6 alloy provides many advantages as described below.

Cu中に添加されるSrB6の粒径が1用■以下と微細
なため、押出し、伸線などの伸線加工時の断線がなくな
り1歩留りが向上した。
Since the particle size of SrB6 added to Cu is as fine as 1 size or less, wire breakage during wire drawing processes such as extrusion and wire drawing was eliminated, and the 1 yield was improved.

同様に、電極線として用いた時の加工速度も著しく(銅
線との比較において約2倍)向上した。
Similarly, the processing speed when used as an electrode wire was significantly improved (approximately twice that of copper wire).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は機械的混合に供用するアトライターの構造を示
す断面図である。 符号の説明 1・・・ポット、2・・・Arガス入口、3・・・Ar
ガス出口、4・・・アジテータアーム、5・・・シャフ
ト、6・・・ポール、7・・・冷却水入口、8・・・冷
却水出口、9・・・ウォータージャケット FIG、1
FIG. 1 is a sectional view showing the structure of an attritor used for mechanical mixing. Explanation of symbols 1...Pot, 2...Ar gas inlet, 3...Ar
Gas outlet, 4... Agitator arm, 5... Shaft, 6... Pole, 7... Cooling water inlet, 8... Cooling water outlet, 9... Water jacket FIG, 1

Claims (2)

【特許請求の範囲】[Claims] (1)粒径が1μm以下のSrB_6を0.1〜5.0
wt%含むCu−SrB_6合金で構成されたことを特
徴とする放電加工用電極線。
(1) 0.1 to 5.0 SrB_6 with a particle size of 1 μm or less
An electrode wire for electrical discharge machining, characterized in that it is made of a Cu-SrB_6 alloy containing wt%.
(2)0.1〜5.0wt%のSrB_6粉末とCu粉
末(残部)を機械的に混合してCu中に粒径1μm以下
のSrB_6が均質に分散した粒子を作製し、この粒子
を還元、圧粉、熱間押出し後、冷間にて伸線加工するこ
とを特徴とする放電加工用電極線の製造方法。
(2) 0.1 to 5.0 wt% SrB_6 powder and Cu powder (remainder) are mechanically mixed to produce particles in which SrB_6 with a particle size of 1 μm or less is uniformly dispersed in Cu, and these particles are reduced. A method for manufacturing an electrode wire for electric discharge machining, which comprises cold wire drawing after powder compaction and hot extrusion.
JP24032084A 1984-11-14 1984-11-14 Electrode wire for electric spark machining and its manufacture Granted JPS61119636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24032084A JPS61119636A (en) 1984-11-14 1984-11-14 Electrode wire for electric spark machining and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24032084A JPS61119636A (en) 1984-11-14 1984-11-14 Electrode wire for electric spark machining and its manufacture

Publications (2)

Publication Number Publication Date
JPS61119636A true JPS61119636A (en) 1986-06-06
JPH0524213B2 JPH0524213B2 (en) 1993-04-07

Family

ID=17057711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24032084A Granted JPS61119636A (en) 1984-11-14 1984-11-14 Electrode wire for electric spark machining and its manufacture

Country Status (1)

Country Link
JP (1) JPS61119636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2419605A (en) * 2002-07-18 2006-05-03 Honda Motor Co Ltd Making copper composites by extrusion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2419605A (en) * 2002-07-18 2006-05-03 Honda Motor Co Ltd Making copper composites by extrusion
GB2419605B (en) * 2002-07-18 2006-10-18 Honda Motor Co Ltd Method of manufacturing composite copper material

Also Published As

Publication number Publication date
JPH0524213B2 (en) 1993-04-07

Similar Documents

Publication Publication Date Title
JPS61119638A (en) Electrode wire for electric discharge machining and its production
JPS61119636A (en) Electrode wire for electric spark machining and its manufacture
US5830257A (en) Manufacturing method for alumina-dispersed reinforced copper
JPS6143418B2 (en)
JPS61117024A (en) Electrode wire for electric discharge machining and manufacturing method thereof
JPH0573811B2 (en)
JPH0573810B2 (en)
JPS6247449A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
CN114192774A (en) Silver-tungsten electrical contact material with high dispersion degree and high compactness and preparation method thereof
JP3067402B2 (en) Manufacturing method of metal ring
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPH09237521A (en) Electrode wire for discharge machining
JPH042416A (en) Electrode wire for wire electric discharge machining
JPS6357495B2 (en)
JPH0251968B2 (en)
JP2763934B2 (en) Manufacturing method of electrical contact material
JP3054698B2 (en) Method for producing particle-dispersed alloy powder
JPH0154426B2 (en)
JPS6322222A (en) Electrode wire for wire cut electric spark machining
JPS59170230A (en) Electrode wire for wire electric spark machining
JPS6279916A (en) Electrode wire for wire electric discharge machining
JPH0375321A (en) Manufacture of oxide dispersion strengthened copper alloy
JPH01108325A (en) Manufacture of au-ge composite material
JPS6334022A (en) Electrode wire for electric discharge machining
JPH03246830A (en) Manufacture of compound superconducting wire