JPH09237521A - Electrode wire for discharge machining - Google Patents
Electrode wire for discharge machiningInfo
- Publication number
- JPH09237521A JPH09237521A JP4152496A JP4152496A JPH09237521A JP H09237521 A JPH09237521 A JP H09237521A JP 4152496 A JP4152496 A JP 4152496A JP 4152496 A JP4152496 A JP 4152496A JP H09237521 A JPH09237521 A JP H09237521A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- alloy
- concentration
- added
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はワイヤ放電加工に用
いられる放電加工用電極線に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining electrode wire used for wire electric discharge machining.
【0002】[0002]
【従来の技術】ワイヤ放電加工は、電極線となる細い金
属ワイヤ(放電加工用電極線)を巻き取りつつ被加工物
に対して三次元の送りをかけ、金属ワイヤを電極にして
被加工物に放電を行いながら被加工物を溶断して糸鋸式
の加工を行うもので、特定形状の電極を使用しないで高
精度に三次元形状の製品を作成することができる。特
に、加工の困難な超硬合金等の加工も高精度に行えるた
め、近年、実用範囲が広がりつつあり、例えば、機械的
な切削や切断加工が困難な金型等の加工にも用いられて
いる。2. Description of the Related Art In wire electric discharge machining, a thin metal wire (electrode wire for electric discharge machining), which becomes an electrode wire, is wound up and three-dimensionally fed to the work piece, and the metal wire is used as an electrode for the work piece. Since the workpiece is melted and fused to perform the sawtooth-type machining, the three-dimensional product can be produced with high accuracy without using the electrode of the specific shape. In particular, since it is possible to process hard-to-process cemented carbide and the like with high precision, its practical range has been expanding in recent years, and for example, it is also used to process dies that are difficult to mechanically cut or cut. There is.
【0003】従来より用いられている放電加工用電極線
には、例えば、Cu−35wt%Zn黄銅電極線があ
る。一般にZn濃度が高いほど加工速度が向上すると考
えられている。しかし、Zn(亜鉛)の量が40wt%
を越えるとβ相が形成されるため、冷間圧延では伸線加
工が行えない。この詳細は、例えば、「伸銅技術研究会
誌」26(1987)181(折茂尚夫他3名)に記載
されている。An example of an electric discharge machining electrode wire that has been conventionally used is a Cu-35 wt% Zn brass electrode wire. It is generally considered that the higher the Zn concentration, the higher the processing speed. However, the amount of Zn (zinc) is 40 wt%
If it exceeds, the β phase is formed, so that wire drawing cannot be performed in cold rolling. Details of this are described in, for example, "Bronze Copper Technology Research Group" 26 (1987) 181 (Nao Orimoge and 3 others).
【0004】また、高力黄銅鋳物として、Cu−40w
t%Zn黄銅にAl(アルミニウム)、Fe(鉄)、M
n(マンガン)、Sn(錫)、Ni(ニッケル)等を添
加し、α相とβ相への固液強化とβ相の生成量を増し、
硬さと強さを向上させた黄銅も提案されている(「銅及
び銅合金の基礎と工業技術」日本伸銅協会編、平成6年
10月、625頁に記載)。As a high strength brass casting, Cu-40w
t% Zn brass with Al (aluminum), Fe (iron), M
n (manganese), Sn (tin), Ni (nickel), etc. are added to increase solid-liquid strengthening of the α phase and β phase and the amount of β phase produced,
Brass having improved hardness and strength has also been proposed (described in "Basics and Industrial Technology of Copper and Copper Alloys" edited by Japan Copper and Brass Association, October 1994, p. 625).
【0005】更に、Cu−35wt%Zn黄銅線の加工
速度を向上させるため、Cu−35wt%Zn黄銅にC
r(クロム)、Mg(マグネシウム)、Zr(ジルコニ
ウム)、Ti(チタン)、Si(シリコン)、Mn、A
l等の元素を添加することが検討されている。Further, in order to improve the processing speed of the Cu-35 wt% Zn brass wire, Cu-35 wt% Zn brass has a C content.
r (chromium), Mg (magnesium), Zr (zirconium), Ti (titanium), Si (silicon), Mn, A
The addition of elements such as 1 has been studied.
【0006】[0006]
【発明が解決しようとする課題】しかし、従来の放電加
工用電極線によれば、加工速度を向上させる為にはZn
濃度を40wt%を越えるようにしたいが、加工性の問
題から現実には35wt%が上限であり、他の元素を混
入しないで加工速度を向上させることはできない。However, according to the conventional electric discharge machining electrode wire, in order to improve the machining speed, Zn is used.
Although it is desired to make the concentration exceed 40 wt%, the upper limit is actually 35 wt% due to the problem of workability, and the processing speed cannot be improved without mixing other elements.
【0007】そこで本発明は、40wt%を越えるZn
濃度にしながら黄銅線の加工性を向上させることのでき
る放電加工用電極線を提供することを目的としている。Therefore, the present invention provides a Zn content exceeding 40 wt%.
It is an object of the present invention to provide an electrode wire for electric discharge machining which can improve the workability of a brass wire while keeping the concentration.
【0008】[0008]
【課題を解決するための手段】40wt%を越えるとこ
ろから50wt%までのZnと、0.03〜0.3wt
%のBと、残部としてのCuとを含む構成にしている。
この構成によれば、添加したB(ホウ素)は合金の結晶
を微細化し、伸線性の改善に寄与し、加工性を向上させ
る。そして、Znは40wt%を越える高濃度にできる
ことから、Znに起因する加工性の悪さを改善すること
ができる。したがって、伸線を行っても断線や傷の発生
を低減でき、加工性及び加工速度を共に向上させること
ができる。[Means for Solving the Problems] Zn from 40 wt% to 50 wt% and 0.03 to 0.3 wt
% B and the balance Cu.
According to this configuration, the added B (boron) refines the alloy crystal, contributes to the improvement of the wire drawability, and improves the workability. Since Zn can be made to have a high concentration exceeding 40 wt%, poor workability due to Zn can be improved. Therefore, even if wire drawing is performed, the occurrence of wire breakage and scratches can be reduced, and both workability and processing speed can be improved.
【0009】[0009]
【発明の実施の形態】以下、本発明の実施の形態につい
て図面を基に説明する。本発明者らは、Zn濃度を40
wt%を越える濃度にしながら加工性を維持するため
に、Cu−Zn黄銅線にB(ホウ素)の添加を試みた。
この結果、B添加濃度を増加するにつれて鋳造材の結晶
サイズが小さくなっていることが見出された。これは、
Bの添加により、結晶微細化が進んで後工程の伸線性を
改善したものと考えられる。Embodiments of the present invention will be described below with reference to the drawings. The present inventors have set the Zn concentration to 40
An attempt was made to add B (boron) to the Cu—Zn brass wire in order to maintain the workability while increasing the concentration to exceed wt%.
As a result, it was found that the crystal size of the cast material decreased as the B addition concentration increased. this is,
It is considered that the addition of B promoted the refinement of crystals and improved the wire drawability in the subsequent step.
【0010】[0010]
【実施例】次に、本発明によるCu−Zn−B電極線の
製作例について説明する。本発明者らは、表1に示す組
成にしたがって、従来構成のCu−Zn合金、本発明に
よるCu−Zn−B合金を製作した。また、比較例とし
て、Cu−Zn−B合金ではあるが、Bを極めて少なく
した(ここでは0.02wt%)比較用合金も製作し
た。EXAMPLE Next, an example of manufacturing a Cu—Zn—B electrode wire according to the present invention will be described. The present inventors manufactured a Cu—Zn alloy having a conventional structure and a Cu—Zn—B alloy according to the present invention according to the composition shown in Table 1. As a comparative example, a Cu-Zn-B alloy, but a comparative alloy in which B was extremely small (0.02 wt% in this case) was also manufactured.
【0011】[0011]
【表1】 [Table 1]
【0012】まず、高周波加熱による加熱源を持つ縦型
鋳造機を用い、表1に示す組成でCu−Zn−B系合金
を木炭被覆溶解し、外径1mmの線材を連続的に製作し
た。ついで、製作した線材を15%の加工度でダイス伸
線後、Ar雰囲気中で800℃のまま30分の加熱を行
い、その後、15%の加工度で伸線を行った。以後、同
様に800℃の加熱と15%以下の加工を繰り返し、外
径0.2mmのCu−Zn−B系合金電極線を製作し
た。従来構成の合金、及び比較用合金も同様にして製作
した。First, using a vertical casting machine having a heating source by high frequency heating, Cu-Zn-B alloy having the composition shown in Table 1 was melted by coating with charcoal to continuously produce a wire having an outer diameter of 1 mm. Next, the produced wire rod was subjected to die wire drawing at a workability of 15%, heated at 800 ° C. for 30 minutes in an Ar atmosphere, and then drawn at a workability of 15%. Thereafter, similarly, heating at 800 ° C. and processing of 15% or less were repeated to manufacture a Cu—Zn—B alloy electrode wire having an outer diameter of 0.2 mm. An alloy having a conventional structure and a comparative alloy were similarly manufactured.
【0013】この結果、表1に示すように、Bを含まな
い従来構成の合金、及びBが少量の比較用合金は、共に
1パスの伸線によって断線が生じた。これに対し、本発
明によるCu−Zn−B系合金は、Bが0.03wt%
〜0.1wt%の範囲において、伸線を行っても断線を
生じることはなかった。なお、表1において、△印は1
パス以上の伸線は可能であったが線材の表面に傷が多か
った場合を示している。また、○印は外径0.2mmま
での伸線が可能であり、×印は断線が生じた場合を示し
ている。また、Znは40wt%を越えるところから5
0wt%までにしても加工性に問題はなかった。As a result, as shown in Table 1, both the conventional alloy containing no B and the comparative alloy containing a small amount of B were broken by one-pass drawing. On the other hand, in the Cu-Zn-B based alloy according to the present invention, B is 0.03 wt%.
In the range of 0.1 wt%, wire breaking did not occur even if wire drawing was performed. In addition, in Table 1, the mark Δ is 1
It shows that wire drawing beyond the pass was possible, but there were many scratches on the surface of the wire. In addition, a circle indicates that wire drawing is possible up to an outer diameter of 0.2 mm, and a cross indicates that a wire breakage has occurred. In addition, Zn is 5 from the point of exceeding 40 wt%.
There was no problem in workability even with 0 wt%.
【0014】以上の結果から明らかなように、Bの濃度
は0.03wt%以上が望ましく、0.02wt%以下
では伸線時に断線が生じるので好ましくない。また、B
が0.3wt%を越えると、伸線時に線材内部に空隙を
生じ易い。したがって、Bの添加範囲は、0.03〜
0.3wt%が最適値となる。一方、特開平4−573
5号公報は、30〜40wt%Zn−0.05〜2wt
%B−Cu合金の組成の電極線を示している。この電極
線は、Bを含ませることにより被加工物への電極付着を
低減し、加工速度の向上を図っているが、Znが加工可
能な30〜40wt%を対象とするものであり、本発明
とはBを含ませることの技術的意味が異なる。As is clear from the above results, the B concentration is preferably 0.03 wt% or more, and 0.02 wt% or less is not preferable because disconnection occurs during wire drawing. Also, B
When it exceeds 0.3 wt%, voids are likely to be formed inside the wire during wire drawing. Therefore, the addition range of B is 0.03 to
The optimum value is 0.3 wt%. On the other hand, JP-A-4-573
No. 5 discloses 30-40 wt% Zn-0.05-2 wt.
The electrode wire of the composition of% B-Cu alloy is shown. This electrode wire is intended to reduce the electrode adhesion to the work piece and to improve the processing speed by including B, but is intended for 30 to 40 wt% capable of processing Zn. The technical meaning of including B differs from the invention.
【0015】[0015]
【発明の効果】以上より明らかな如く、本発明によれ
ば、40wt%を越えるところから50wt%までのZ
nを含むCu−40〜50wt%Zn黄銅に対し、0.
03〜0.3wt%Bを添加したことにより、伸線を行
っても断線や傷の発生を低減でき、加工性(伸線性)な
らびに加工速度を向上させることができる。As is apparent from the above, according to the present invention, Z from 40 wt% to 50 wt% is exceeded.
Cu-40 to 50 wt% Zn brass containing n.
By adding 03 to 0.3 wt% B, it is possible to reduce the occurrence of wire breakage and scratches even if wire drawing is performed, and it is possible to improve workability (drawability) and processing speed.
フロントページの続き (72)発明者 渡部 雅人 茨城県日立市日高町5丁目1番1号 日立 電線株式会社パワーシステム研究所内 (72)発明者 根本 孝 茨城県日立市日高町5丁目1番1号 日立 電線株式会社パワーシステム研究所内Front page continuation (72) Inventor Masato Watanabe 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Hitachi Power Systems Co., Ltd. Power Systems Laboratory (72) Inventor Takashi Nemoto 5-1-1 Hidaka-cho, Ibaraki Prefecture No. 1 Power Systems Laboratory, Hitachi Cable, Ltd.
Claims (1)
までのZnと、 0.03〜0.3wt%のBと、 残部としてのCuより構成されることを特徴とする放電
加工用電極線。1. From 50 wt% to over 40 wt%
To Zn, 0.03 to 0.3 wt% B, and Cu as the balance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4152496A JPH09237521A (en) | 1996-02-28 | 1996-02-28 | Electrode wire for discharge machining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4152496A JPH09237521A (en) | 1996-02-28 | 1996-02-28 | Electrode wire for discharge machining |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09237521A true JPH09237521A (en) | 1997-09-09 |
Family
ID=12610788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4152496A Pending JPH09237521A (en) | 1996-02-28 | 1996-02-28 | Electrode wire for discharge machining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09237521A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002040209A1 (en) * | 2000-11-20 | 2002-05-23 | Mitsubishi Denki Kabushiki Kaisha | Method and apparatus for electrodischarge wire machining |
KR100345958B1 (en) * | 1999-11-09 | 2002-08-01 | 고려제강 주식회사 | Zr-contained electrode wire for electrical discharge machining and its method |
CN102758099A (en) * | 2012-05-31 | 2012-10-31 | 宁波博威合金材料股份有限公司 | High-temperature softening resistant boron-contained brass alloy and preparation method thereof |
JP2021038451A (en) * | 2019-09-05 | 2021-03-11 | Jx金属株式会社 | Easy-to-process corrosion-resistant electrode alloy |
CN115896588A (en) * | 2022-11-10 | 2023-04-04 | 浙江倍煌环保科技有限公司 | Descaling alloy, descaling chip, preparation method of descaling alloy and preparation method of descaling chip and descaling device |
-
1996
- 1996-02-28 JP JP4152496A patent/JPH09237521A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100345958B1 (en) * | 1999-11-09 | 2002-08-01 | 고려제강 주식회사 | Zr-contained electrode wire for electrical discharge machining and its method |
WO2002040209A1 (en) * | 2000-11-20 | 2002-05-23 | Mitsubishi Denki Kabushiki Kaisha | Method and apparatus for electrodischarge wire machining |
CN102758099A (en) * | 2012-05-31 | 2012-10-31 | 宁波博威合金材料股份有限公司 | High-temperature softening resistant boron-contained brass alloy and preparation method thereof |
JP2021038451A (en) * | 2019-09-05 | 2021-03-11 | Jx金属株式会社 | Easy-to-process corrosion-resistant electrode alloy |
CN115896588A (en) * | 2022-11-10 | 2023-04-04 | 浙江倍煌环保科技有限公司 | Descaling alloy, descaling chip, preparation method of descaling alloy and preparation method of descaling chip and descaling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5924170B2 (en) | Alloy for wire electrodes for electrical discharge machining | |
US4130421A (en) | Free machining Cu-Ni-Sn alloys | |
JPH09237521A (en) | Electrode wire for discharge machining | |
US4673790A (en) | Copper based wire electrode for wire electro-discharge machining | |
USRE30854E (en) | Free machining Cu--Ni--Sn alloys | |
JPS6143418B2 (en) | ||
JP2738869B2 (en) | Electrode wire for wire electric discharge machining | |
JPH0635632B2 (en) | Electrode material for wire cut electrical discharge machining | |
JPH0367813B2 (en) | ||
JPH06228686A (en) | Zinc base alloy wire and production of zinc alloy wire | |
JPS599298B2 (en) | Wire-cut electrode wire for electrical discharge machining | |
JP3409440B2 (en) | Electrode wire for wire electric discharge machining | |
JPH0941056A (en) | Motor commutator material | |
JPH1158139A (en) | High strength copper alloy wire rod and electrode wire for wire electric discharge machining using it | |
JPS58197242A (en) | Alloy wire for electrode wire for wire-cut electric spark machining | |
JPH0215625B2 (en) | ||
JPH05311281A (en) | Cu-fe alloy for adding to copper alloy and its manufacture | |
JPH0911048A (en) | Electrode wire for wire electric discharge machining | |
JPS634619B2 (en) | ||
JPH0327617B2 (en) | ||
JP3194771B2 (en) | Refining method for copper-containing steel | |
JPH10245647A (en) | Copper wire rod for insulation-coated electric wire and its production | |
JP3000373B2 (en) | Aluminum-based amorphous alloy | |
JPS6322222A (en) | Electrode wire for wire cut electric spark machining | |
JPH11320270A (en) | Electrode wire with high strength and high conductivity for wire electric discharge machining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050201 |
|
A131 | Notification of reasons for refusal |
Effective date: 20050726 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20050916 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20060307 Free format text: JAPANESE INTERMEDIATE CODE: A02 |