JPS6111936B2 - - Google Patents

Info

Publication number
JPS6111936B2
JPS6111936B2 JP55138739A JP13873980A JPS6111936B2 JP S6111936 B2 JPS6111936 B2 JP S6111936B2 JP 55138739 A JP55138739 A JP 55138739A JP 13873980 A JP13873980 A JP 13873980A JP S6111936 B2 JPS6111936 B2 JP S6111936B2
Authority
JP
Japan
Prior art keywords
dicyclopentadiene
fraction
cyclopentadiene
distillation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55138739A
Other languages
Japanese (ja)
Other versions
JPS5764622A (en
Inventor
Eiichi Sugyama
Kazuyoshi Isotani
Kazuo Kanetani
Kenji Yoshida
Kozo Uehama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP13873980A priority Critical patent/JPS5764622A/en
Publication of JPS5764622A publication Critical patent/JPS5764622A/en
Publication of JPS6111936B2 publication Critical patent/JPS6111936B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ナフサ、灯軽油等の液状炭化水素の
熱分解によりエチレン製造に伴い生成するC9
分よりジシクロペンタジエンを分解蒸留し、シク
ロペンタジエンとして留出させ引続き二量化反応
を行なつて高純度のジシクロペンタジエンを得る
方法に関するものである。 ジシクロペンタジエンは、シクロペンタジエン
の二量体であり、沸点は170℃で、容易にシクロ
ペンタジエンへ解重合する。 一方、シクロペンタジエン(沸点41.5℃)は常
温でも2.5mol%/hrの速度で二量化が進行し、発
熱(15〜20Kcal/mol)をともなうので更に二量
化速度が増大する。従つて、シクロペンタジエン
の状態で貯蔵するには、−20℃以下低温度が必要
であり実際的でない。一般には、ジシクロペンタ
ジエンとして貯蔵し、使用時に解重合させ単量体
に戻して使用している。 このようなジシクロペンタジエンは、古くは石
炭タールの軽質留分から分離回収されていたが、
ナフサ熱分解によるオレフイン製造が大規模に行
なわれるようになつてから副生のC5留分からの
分離回収が一般化している。 そのナフサ分解の副生C5留分は、例えば、次
表に示すような組成であつて、
The present invention involves decomposing and distilling dicyclopentadiene from a C9 fraction produced in ethylene production through thermal decomposition of liquid hydrocarbons such as naphtha and kerosene, distilling it out as cyclopentadiene, and then performing a dimerization reaction. The present invention relates to a method for obtaining highly pure dicyclopentadiene. Dicyclopentadiene is a dimer of cyclopentadiene, has a boiling point of 170°C, and is easily depolymerized to cyclopentadiene. On the other hand, dimerization of cyclopentadiene (boiling point 41.5°C) proceeds at a rate of 2.5 mol %/hr even at room temperature, and is accompanied by heat generation (15 to 20 Kcal/mol), which further increases the dimerization rate. Therefore, storing it in the form of cyclopentadiene requires a temperature as low as -20°C or lower, which is impractical. Generally, it is stored as dicyclopentadiene, and upon use, it is depolymerized and returned to the monomer. In the past, dicyclopentadiene was separated and recovered from the light fraction of coal tar.
Since olefin production by naphtha thermal decomposition has begun on a large scale, separation and recovery from the by-product C5 fraction has become commonplace. The by-product C5 fraction of the naphtha cracking has a composition as shown in the following table, for example,

【表】 〓〓〓〓
シクロペンタジエンおよびジシクロペンタジエン
の合計として、16.5wt%含まれる。 このように、ナフサ分解の副生C5留分中に
は、シクロペンタジエンおよびジシクロペンタジ
エンが一般に、15〜25wt%の範囲で含まれてい
る。 ジシクロペンタジエンの沸点は170℃であり、
その他の成分の沸点は30〜40℃程度で、その沸点
差が大きい。したがつて、副生C5留分を蒸留
し、軽質分を塔頂より出し、塔底液としてジシク
ロペンタジエンを更に精製する方法が一般に行な
われ、各種の方法が提案されている。 例えば、シクロペンタジエンを完全に二量化さ
せたのち、常圧蒸留にかけ軽質留分を除去し、更
に減圧蒸留によつて軽質留分の除去を徹底する。
このジシクロペンタジエンに富んだ塔底液を再度
蒸留する。塔底温度を150〜170℃に保つことでジ
シクロペンタジエンが解重合し、塔頂よりシクロ
ペンタジエンが留出する。 更に純度を上げるために留出したシクロペンタ
ジエンを加熱して二量化し、ジシクロペンタジエ
ンへ変換後、減圧蒸留を行ない、軽質留分を分離
し塔底より90〜95%のジシクロペンタジエンを得
る。(特公昭46−37334号) また、C5留分を予熱して二量化し、N−メチ
ルピロリドンなどの有機溶媒で液々抽出を行ない
更に蒸留して回収する方法(特公昭48−8082号)
も提案されている。 この他、いずれも複雑な操作を必要としてい
る。それは、C5留分の中にジシクロペンタジエ
ンと類似の共二量体が存在し分離が困難となつて
いるためである。類似共二量体としてシクロペン
タジエンとイソプレン、ピペリレン等との反応生
成物などが知られている。このようにC5留分か
ら、ジシクロペンタジエンを回収する限り、共存
類似成分との分離のために、複数回の蒸留を繰返
えしたり、二量化、解重合の繰返えしなどの複雑
な操作が必要となり、多量のエネルギー消費が必
要であり、そのための設備も大型にならざるを得
ない。 本発明者らは、上記のような問題点を解決する
ような省資源の方法で、かつ品質良好なジシクロ
ペンタジエンを得る方法に関し鋭意検討し、C9
留分の熱分解解蒸留により高純度のジシクロペン
タジエンを安価なシンプルなプロセスで取出すこ
とを見出し本発明に至つた。 すなわち、本発明の方法はナフサ、灯軽油等の
液状炭化水素の熱分解により得られるC9留分を
塔底温度160〜300℃、塔頂温度41.5±0.5℃で精
留することを特徴とするC9留分よりジシクロペ
ンタジエンの分離精製法である。 C6留分中のジシクロペンタジエンは、160〜
300℃で精留することで熱分解され、シクロペン
タジエンとして留出する。精留はバツチ精留で行
ないシクロペンタジエン留出の前後をカツトして
高純度の製品を得ることができる。また、連続精
留で塔頂からシクロペンタジエン、塔底からC9
高沸留分を取出すことも出来る。精留塔の塔底温
度は160〜300℃の範囲、すなわち、160℃以上300
℃以下にすることが肝要である。160℃未満で
は、C9留分中のジシクロペンタジエンの分解が
起りにくい。また、起つても緩慢であり塔頂より
製品抜出し、流量が少なく工業的でない。300℃
を越えるとC9留分中のジシクロペンタジエン以
外の成分の分解や重合が起り、塔頂のシクロペン
タジエンの純度が低下するし、塔底液の粘度が増
大し、燃料油などの多種用途での問題が生ずるの
で好ましくない。 また、精留塔の塔頂温度は、41.5±0.5℃であ
る。この範囲の塔頂温度で高純度のジシクロペン
タジエンを回収することができる。 単蒸留でもシクロペンタジエンの回収が可能で
あるが純度が悪く、高純度製品を得るには還流を
かけることが必要である。還流比は必要とするシ
クロペンタジエンの純度やC9留分の成分組成、
熱分解精留塔の塔高、タイプにもより異なるが、
0.1以上が好ましい。 熱分解精留での上記以外の操作条件には特にき
びしい制限はない。圧力は常圧以上が好ましいが
減圧精留も可能であるし、窒素などの不活性ガス
を吹込み精留しても良い。 従来のC5留分からの得られるジシクロペンタ
ジエンには、有機過酸化物を含むため貯蔵安定性
が悪いことが指摘されている。そのために酸化防
止剤を予め添加し、熱分解蒸留することが公知で
あるが、本法にもこの方法を用いることが出来
る。 以下、本発明を実施例および比較例により説明
〓〓〓〓
する。 実施例 1 ラシヒリング充填部をもつ20mmφ×300mmLガ
ラス製精留装置の内容積500ml丸底フラスコに329
gのC9留分(ジシクロペンタジエン含量15.0wt
%)を仕込む。 圧力は大気圧下で、仕込液の加熱は温調付オイ
ルバスにより190℃に上げた。 留分の還流が始まり安定したところで還流比を
1.0に調節し留出を開始した。 留出液は氷水を通したコンデンサーにより冷却
されメスフラスコに捕集した。得られた留出液
は、ガスクロマトグラフイーにより分析し、その
結果を表−1に示した。 比較例 1 充填部をもたない内容積500mlの枝付フラスコ
に314gのC9留分を仕込み、単蒸留し表−1に示
す結果を得た。単蒸留では、ジシクロペンタジエ
ンの純度が65%と悪い。 実施例 2 実施例−1記載の方法に従つた。但し、塔底の
温度を202℃まで加熱した。 得られた結果を表−1に示した。 比較例 2,3 実施例−1記載の方法に従つた。但し、塔底の
温度を150℃および320℃に保ち蒸留した。 得られた結果を表−1に示す。 塔底温150℃は、シクロペンタジエンの分離が
困難で回収率が悪い。また、320℃は塔底液の粘
度が大きく、ジシクロペンタジエンの純度が低下
した。 実施例 3 実施例−1記載の蒸留装置を用いて充填塔中部
より連続的にC9留分を300g/hでフイードし、
塔底温度は185℃に保つた。得られた結果を表−
1に示す。
[Table] 〓〓〓〓
Contains 16.5wt% as a total of cyclopentadiene and dicyclopentadiene. Thus, the C5 fraction by-product of naphtha cracking generally contains cyclopentadiene and dicyclopentadiene in the range of 15 to 25 wt%. The boiling point of dicyclopentadiene is 170℃,
The boiling points of the other components are around 30 to 40°C, and there is a large difference in their boiling points. Therefore, a method is generally used in which the by-product C5 fraction is distilled, the light fraction is discharged from the top of the column, and dicyclopentadiene is further purified as a bottom liquid, and various methods have been proposed. For example, after cyclopentadiene is completely dimerized, it is subjected to atmospheric distillation to remove light fractions, and then thoroughly removed by vacuum distillation.
This dicyclopentadiene-rich bottoms is distilled again. Dicyclopentadiene is depolymerized by maintaining the bottom temperature at 150 to 170°C, and cyclopentadiene is distilled from the top of the tower. To further increase the purity, the distilled cyclopentadiene is heated to dimerize and converted to dicyclopentadiene, followed by distillation under reduced pressure to separate the light fraction and obtain 90-95% dicyclopentadiene from the bottom of the column. . (Japanese Patent Publication No. 46-37334) There is also a method of preheating the C5 fraction to dimerize it, performing liquid-liquid extraction with an organic solvent such as N-methylpyrrolidone, and then recovering it by distillation (Japanese Patent Publication No. 48-8082). )
has also been proposed. In addition, all of them require complicated operations. This is because a codimer similar to dicyclopentadiene exists in the C5 fraction, making separation difficult. Reaction products of cyclopentadiene and isoprene, piperylene, etc. are known as similar codimers. In this way, recovering dicyclopentadiene from the C5 fraction requires complicated processes such as multiple distillations and repeated dimerization and depolymerization in order to separate coexisting similar components. This requires extensive operations, consumes a large amount of energy, and requires large-scale equipment. The present inventors have conducted intensive studies on a method for obtaining dicyclopentadiene of good quality in a resource - saving manner that solves the above-mentioned problems.
The present inventors have discovered that high purity dicyclopentadiene can be extracted by a simple and inexpensive process by thermal decomposition distillation of fractions, leading to the present invention. That is, the method of the present invention is characterized in that the C9 fraction obtained by thermal decomposition of liquid hydrocarbons such as naphtha and kerosene is rectified at a tower bottom temperature of 160 to 300°C and a tower top temperature of 41.5 ± 0.5°C. This is a method for separating and purifying dicyclopentadiene from the C9 fraction. Dicyclopentadiene in C6 fraction is 160~
It is thermally decomposed by rectification at 300℃ and distilled out as cyclopentadiene. The rectification is carried out by batch rectification, and by cutting before and after the cyclopentadiene distillation, a highly pure product can be obtained. In addition, continuous rectification produces cyclopentadiene from the top of the column and C9 from the bottom of the column.
It is also possible to extract high boiling fractions. The bottom temperature of the rectification column is in the range of 160 to 300℃, that is, 160℃ or more 300℃
It is important to keep the temperature below ℃. At temperatures below 160°C, decomposition of dicyclopentadiene in the C9 fraction is unlikely to occur. Moreover, even if it occurs, it is slow and the product is extracted from the top of the tower, and the flow rate is small and is not industrially practical. 300℃
Exceeding this will cause decomposition and polymerization of components other than dicyclopentadiene in the C9 fraction, reducing the purity of the cyclopentadiene at the top of the column and increasing the viscosity of the bottom liquid, making it difficult to use for various purposes such as fuel oil. This is not desirable because it causes problems. Moreover, the top temperature of the rectification column is 41.5±0.5°C. High purity dicyclopentadiene can be recovered at the top temperature within this range. Although it is possible to recover cyclopentadiene by simple distillation, the purity is poor, and reflux is required to obtain a high-purity product. The reflux ratio depends on the purity of the cyclopentadiene required, the component composition of the C9 fraction,
The height of the pyrolysis rectification column varies depending on the type, but
0.1 or more is preferable. There are no particularly severe restrictions on the operating conditions other than those mentioned above in the thermal decomposition rectification. The pressure is preferably at least normal pressure, but vacuum rectification is also possible, or rectification may be performed by blowing inert gas such as nitrogen. It has been pointed out that dicyclopentadiene obtained from conventional C5 fractions has poor storage stability because it contains organic peroxides. For this purpose, it is known to add an antioxidant in advance and carry out thermal decomposition distillation, but this method can also be used in the present method. The present invention will be explained below with reference to Examples and Comparative Examples.
do. Example 1 A 20mmφ x 300mmL glass rectification device with a Raschig ring filling section had an inner volume of 329 ml in a 500ml round bottom flask.
g of C9 fraction (dicyclopentadiene content 15.0wt
%). The pressure was at atmospheric pressure, and the charging liquid was heated to 190°C using a temperature-controlled oil bath. When the reflux of the fraction starts and stabilizes, change the reflux ratio.
The concentration was adjusted to 1.0 and distillation was started. The distillate was cooled in a condenser filled with ice water and collected in a volumetric flask. The obtained distillate was analyzed by gas chromatography, and the results are shown in Table 1. Comparative Example 1 314 g of C9 fraction was charged into a side-fitted flask with an internal volume of 500 ml and did not have a packing section, and simple distillation was performed to obtain the results shown in Table 1. By simple distillation, the purity of dicyclopentadiene is only 65%. Example 2 The method described in Example-1 was followed. However, the temperature at the bottom of the column was heated to 202°C. The results obtained are shown in Table-1. Comparative Examples 2 and 3 The method described in Example-1 was followed. However, the temperature at the bottom of the column was maintained at 150°C and 320°C during distillation. The results obtained are shown in Table-1. At a tower bottom temperature of 150°C, it is difficult to separate cyclopentadiene and the recovery rate is poor. Furthermore, at 320°C, the viscosity of the bottom liquid was high, and the purity of dicyclopentadiene was reduced. Example 3 Using the distillation apparatus described in Example-1, C9 fraction was continuously fed at 300 g/h from the middle of the packed column,
The bottom temperature was maintained at 185°C. Table of obtained results -
Shown in 1.

【表】 〓〓〓〓
[Table] 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 ナフサ、灯軽油等の液状炭化水素の熱分解に
より得られるC9留分を塔底温度160〜300℃、塔
頂温度41.5±0.5℃で精留することを特徴とする
ジシクロペンタジエンの分離方法。
1 Separation of dicyclopentadiene characterized by rectifying the C9 fraction obtained by thermal decomposition of liquid hydrocarbons such as naphtha and kerosene at a bottom temperature of 160 to 300°C and a top temperature of 41.5±0.5°C. Method.
JP13873980A 1980-10-06 1980-10-06 Separating method of dicyclopentadiene Granted JPS5764622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13873980A JPS5764622A (en) 1980-10-06 1980-10-06 Separating method of dicyclopentadiene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13873980A JPS5764622A (en) 1980-10-06 1980-10-06 Separating method of dicyclopentadiene

Publications (2)

Publication Number Publication Date
JPS5764622A JPS5764622A (en) 1982-04-19
JPS6111936B2 true JPS6111936B2 (en) 1986-04-05

Family

ID=15229033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13873980A Granted JPS5764622A (en) 1980-10-06 1980-10-06 Separating method of dicyclopentadiene

Country Status (1)

Country Link
JP (1) JPS5764622A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401891A (en) * 1993-12-17 1995-03-28 Exxon Chemical Patents Inc. Production of polymerization grade dicyclopentadiene
JP5441025B2 (en) * 2008-12-26 2014-03-12 Jx日鉱日石エネルギー株式会社 Method for purifying dicyclopentadiene
WO2010073841A1 (en) * 2008-12-26 2010-07-01 新日本石油株式会社 Method for refining dicyclopentadiene
JP5441026B2 (en) * 2008-12-26 2014-03-12 Jx日鉱日石エネルギー株式会社 Method for purifying dicyclopentadiene
WO2017103736A1 (en) * 2015-12-14 2017-06-22 Sabic Global Technologies B.V. Methods and systems for recovering dicyclopentadiene from pygas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501021A (en) * 1973-05-09 1975-01-08
JPS5487790A (en) * 1977-12-26 1979-07-12 Mitsui Petrochem Ind Ltd Preparation of hydrocarbon resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501021A (en) * 1973-05-09 1975-01-08
JPS5487790A (en) * 1977-12-26 1979-07-12 Mitsui Petrochem Ind Ltd Preparation of hydrocarbon resin

Also Published As

Publication number Publication date
JPS5764622A (en) 1982-04-19

Similar Documents

Publication Publication Date Title
JP2905910B2 (en) Gas phase pyrolysis method for dicyclopentadiene and method for producing high-purity dicyclopentadiene
US4647344A (en) Recovery of isoprene from a C5 -hydrocarbon mixture
JP2011528655A (en) Method for separating 1,3-butadiene from crude C4 fraction using acetylene conversion
US3860496A (en) Process for the recovery of isoprene from mixtures containing the same
US2386927A (en) Process for separating diolefins
US4128457A (en) Process for the separation of butadiene by plural stage extractive distillation
CN101190870A (en) Method for preparing dicyclopentadiene by using cracking C9 fractioning as raw material
JPS6111936B2 (en)
US2542520A (en) Ethylene extraction
CA2748247C (en) Method for refining dicyclopentadiene
JP2006502123A (en) Post-treatment method of crude 1,3-butadiene
US2356986A (en) Process for separating hydrocarbons
US3436318A (en) Solvent purification by distillation with a hydrocarbon oil
JPS6232730B2 (en)
US3676509A (en) Recovery of dicyclopentadiene from cracked petroleum
US3252997A (en) Purification of sulfolane compounds
US11623906B2 (en) Oxygen stripping in etherification, ethers decomposition and isooctene production
EP3233772B1 (en) Isoprene extraction with preserved c5 feedstock
US2558556A (en) Production of hydrocarbons and oxygenated compounds
US4048242A (en) Process for the production of cyclopentene from dicyclopentadiene
US2439307A (en) Recovery and purification of cyclopentadiene
CA1146978A (en) Process for the recovery of isoprene, and isoprene so recovered
US3689584A (en) A chemical process of separating olefins from aluminum alkyls by forming complexes of the aluminum alkyls which are insoluble in the olefins
NO139477B (en) PROCEDURE FOR EXTRACTING ISOPRENE IN AZEOTROP MIXTURE WITH N-PENTANE FROM C-5 HYDROCARBON MIXTURE BY TWO STEP DISTILLATION
US3347756A (en) Production of pure acetic acid from methyl vinyl ketone by distillation