JPS61119083A - Sealed type carbon dioxide laser - Google Patents

Sealed type carbon dioxide laser

Info

Publication number
JPS61119083A
JPS61119083A JP24110584A JP24110584A JPS61119083A JP S61119083 A JPS61119083 A JP S61119083A JP 24110584 A JP24110584 A JP 24110584A JP 24110584 A JP24110584 A JP 24110584A JP S61119083 A JPS61119083 A JP S61119083A
Authority
JP
Japan
Prior art keywords
electrode
laser
gas
perovskite oxide
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24110584A
Other languages
Japanese (ja)
Inventor
Koji Matsuo
松尾 耕次
Kuniaki Fukaya
深谷 邦昭
Nobuaki Iehisa
信明 家久
Norio Karube
規夫 軽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24110584A priority Critical patent/JPS61119083A/en
Publication of JPS61119083A publication Critical patent/JPS61119083A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Abstract

PURPOSE:To contrive the improvement in a laser output and an operating life by forming a cathode electrode out of a perovskite oxide and keeping a temperature of self-heat generation by discharge lower than the redox reaction temperature. CONSTITUTION:A cathode electrode 6 is formed of a pervskite oxice and an anode electrode 7 is formed of a platinum rod. The electrode made of perovskite oxide is actuated in a reduction region of the electrode itself where an oxidizing ability of CO functions and a temperature of a surface of the electrode of self- heat generation due to discharge is kept lower than a redox reaction temperature. Thus reduction of O2 gas in a laser gas during the operation can be prevented and a catalysis of the electrode to CO can be kept good for a long time. A constant quantity of CO2 gas is maintained and a long operating life can be ensured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、医用外科手術メスとして用い、又は非金属加
工など、出力1oOW以下の簡便で、小製の非接触加工
を行う場合などに用いる封止型Co2レーザに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a sealing device for use as a medical surgical scalpel or for non-metal processing, which is simple and small-sized and non-contact processing with an output of 1oOW or less. This relates to a Co2 type laser.

従来の技術 封止型CO□レーザは出力及びエネルギー効率に優れた
特性を有し、波長10.6μの遠赤外レーザである。し
かしながらレーザガスの中で中心的な役割を示す002
分子は結合エネルギーが3.75 eVと低いので、電
子の持つ平均エネルギーが3.5@VであるCO2レー
ザガスプラズマの中では容易に電子衝突により解離する
。解離生成物CQ、o2の密度が増大すると逆反応であ
る再結合が起るので系は平衡状態に達する。この関係は
化学方程式 %式%(1) で表わされ、平衡に達する迄の時定数は通常の002レ
ーザガスプラズマにおいて約1秒と短かい。この平衡状
態におけるCo2濃度はきわめて小さくなり、出力も殆
んど得られない。従って封止型Co  レーザの出力と
寿命はレーザ管内のCQ2の解離を抑制することが最重
点の問題である。
The conventional technology sealed CO□ laser has excellent characteristics of output and energy efficiency, and is a far-infrared laser with a wavelength of 10.6μ. However, 002, which plays a central role in laser gas,
Since the molecules have a low binding energy of 3.75 eV, they are easily dissociated by electron collision in the CO2 laser gas plasma where the average energy of electrons is 3.5@V. As the density of the dissociation products CQ, o2 increases, recombination, which is a reverse reaction, occurs, and the system reaches an equilibrium state. This relationship is expressed by the chemical equation % (1), and the time constant until equilibrium is reached is as short as about 1 second in normal 002 laser gas plasma. The Co2 concentration in this equilibrium state becomes extremely small, and almost no output can be obtained. Therefore, suppressing the dissociation of CQ2 within the laser tube is the most important issue for the output and life of a sealed Co 2 laser.

従来よりレーザ管内のCo2解離を抑制する方法として
解離により発生したCoを元のCo2に戻す触媒法があ
る。その触媒には弓などの気体触媒とptなどの貴金属
又はMn O2やペロブスカイトなどの酸化物の固体触
媒が用いられる。気体触媒は触媒能も低く、最適なガス
分圧制御が困難であるので、実用的ではない。一方、固
体触媒は一般に高温に加熱しないと触媒活性を示さない
ので、電極の放電中の自己カロ熱を利用している。しか
し従来、電極のスパッタリングが大きく、スパッタ生成
物がCO。ガスの吸脱着性に富み、従って上記固体触媒
を用いても最適なレーザガス組成を維持制御するのが困
難である。
Conventionally, as a method for suppressing the dissociation of Co2 in a laser tube, there is a catalytic method in which Co generated by dissociation is returned to the original Co2. As the catalyst, a gas catalyst such as a bow and a solid catalyst of a noble metal such as PT or an oxide such as MnO2 or perovskite are used. Gaseous catalysts have low catalytic ability and are difficult to control optimal gas partial pressure, so they are not practical. On the other hand, since solid catalysts generally do not exhibit catalytic activity unless heated to high temperatures, self-caloric heat generated during electrode discharge is utilized. However, in the past, sputtering of the electrode was large and the sputtering product was CO. It has a high gas adsorption/desorption property, and therefore it is difficult to maintain and control the optimum laser gas composition even if the solid catalyst described above is used.

この問題点を解決するため、従来、低スパツタ性の高融
点酸化物で、ガス吸脱着が少なく、COの酸化触媒作用
の大きなペロブスカイト酸化物、例えばLa1−.5r
xCoo3(0,2(x(0,5)により電極を形成し
、その高電導性を利用した封止型CO2レーザが提案さ
れている。
In order to solve this problem, conventional perovskite oxides, such as La1-. 5r
A sealed CO2 laser has been proposed in which an electrode is formed of xCoo3(0,2(x(0,5)) and utilizes its high conductivity.

発明が解決しようとする問題点 しかしながら上記高電導性のペロブスカイト酸化物層の
電極を用いた場合でも自己加熱にょシ温度が200℃〜
300℃になり、0□ガスが電極より放出され、レーザ
ガス組成中の02分圧を増大させ、封止型Co2レーザ
の出力特性や動作寿命に大きな影響を与えることが判っ
てきた。従って単に高電導性のペロブスカイト酸化物層
の電極を用いても未だ十分な出方と動作寿命を再現性よ
く得ることができない。この出方低下の原因としては5
(1)ペロブスカイト酸化物製電極の触媒作用を引き出
している02ガスが減少し、Co2解離が増大すること
、@)ペロブスカイト酸化物製電極。
Problems to be Solved by the Invention However, even when using the above-mentioned highly conductive perovskite oxide layer electrode, the self-heating temperature is 200°C or more.
It has been found that when the temperature reaches 300° C., 0□ gas is released from the electrode, increasing the 02 partial pressure in the laser gas composition, and having a significant impact on the output characteristics and operating life of the sealed Co2 laser. Therefore, even if an electrode made of a highly conductive perovskite oxide layer is simply used, it is still not possible to obtain sufficient output and operational life with good reproducibility. There are 5 reasons for this decline in output.
(1) The 02 gas that brings out the catalytic action of the perovskite oxide electrode decreases and Co2 dissociation increases; @) Perovskite oxide electrode.

スパッタ層、管壁などがCo2ガスを吸着することによ
るCO2ガスの減少が挙げられる。この中、第1の原因
である02ガスの減少を防ぐには、ペロブスカイト酸化
物が02ガスを放出する過剰酸素動作電極として作用さ
せることが必要である。
An example of this is a decrease in CO2 gas due to adsorption of Co2 gas by the sputtered layer, tube wall, etc. In order to prevent the decrease in O2 gas, which is the first cause, it is necessary for the perovskite oxide to act as an excess oxygen operating electrode that releases O2 gas.

そこで、本発明は、ペロブスカイト酸化物により形成し
た電極がちガスを放出することができ、レーザ出力と動
作寿命とを最良の状態に保つことができるようにした封
止型Co2レーザを提供しようとするものである。
Therefore, the present invention aims to provide a sealed Co2 laser in which gas can be released from the electrode formed by perovskite oxide, and the laser output and operating life can be kept in the best condition. It is something.

問題点を解決するための手段 上記問題点を解決するための本発明の技術的な手段は、
レーザ管と、このレーザ管に設けられた放電用の陰電極
及び陽電極と、上記レーザ管に封入されたレーザガスを
備え、上記放電用電極中、少なくとも陰電極はペロブス
カイト酸化物により形成し、放電による自己発熱の温度
がレドックス反応温度より低くなるようにしたものであ
る。
Means for solving the problems The technical means of the present invention for solving the above problems are as follows:
A laser tube, a negative electrode and a positive electrode for discharge provided in the laser tube, and a laser gas sealed in the laser tube, at least the negative electrode of the discharge electrodes is formed of perovskite oxide, and the discharge The temperature of self-heating caused by the reaction is lower than the redox reaction temperature.

作  用 本発明は上記構成によシ、レーザガス中の02が動作中
に減少するのを防止してCoに対する触媒作用を長時間
に亘って良好に保持することができる。
According to the above structure, the present invention can prevent O2 in the laser gas from decreasing during operation, and can maintain a good catalytic effect on Co for a long period of time.

実施例 以下、本発明の実施例を図面に基いて詳細に説明する。Example Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図に示すようにレーザ管1の両端にレーザ共振器を
構成する反射鏡2と3が光学的に調整された状態で接着
により固定されている。反射鏡2,3はレーザ管1に対
し固定せず、ベローズを介し可撓的に接続してもよく、
又は反射鏡2゜3の代りにブリュースタ窓などの透明窓
を取付け、外部鏡共撮器と組合わせるようにしてもよい
。レーザ管10両側部には分岐部4.5が設けられ、各
分岐部4,5の内部には陰電極6と陽電極7が設けられ
ている。陰電極6はペロブスカイト酸化物により形成さ
れ、陽電極7は白金ロッドにより形成されている。レー
ザ管1の外周には冷却用ジャケット8が設けられ、この
冷却用ジャケット8には水若しくは油等の冷却用流体の
入口9と出口10が設けられている。レーザ管1には前
処理排気後、レーザガスが封入部11より封入され、封
入部11が閉じられている。レーザガスの組成は。
As shown in FIG. 1, reflecting mirrors 2 and 3 constituting a laser resonator are fixed by adhesive at both ends of a laser tube 1 in an optically adjusted state. The reflecting mirrors 2 and 3 may not be fixed to the laser tube 1, but may be connected flexibly through a bellows,
Alternatively, a transparent window such as a Brewster window may be installed in place of the reflecting mirror 2.3 and combined with an external mirror camera. Branch portions 4.5 are provided on both sides of the laser tube 10, and a negative electrode 6 and a positive electrode 7 are provided inside each branch portion 4,5. The negative electrode 6 is formed from perovskite oxide, and the positive electrode 7 is formed from a platinum rod. A cooling jacket 8 is provided around the outer periphery of the laser tube 1, and this cooling jacket 8 is provided with an inlet 9 and an outlet 10 for a cooling fluid such as water or oil. After pretreatment exhaustion, laser gas is sealed in the laser tube 1 from the enclosure 11, and the enclosure 11 is closed. What is the composition of the laser gas?

例えばCO2: 2.4 Torr 、 N2: 5.
8 Torr 。
For example, CO2: 2.4 Torr, N2: 5.
8 Torr.

He : 13.8 Torr 、 Xs : 0.5
 Torr  である。本実施例では陰電極6のみをペ
ロブスカイト酸化物により形成しているので、陰電極6
と陽電極7が直流励起電源12に接続されている。陽電
極下側もペロブスカイト酸化物により形成した場合には
交流又は高周波励起電源を用いることもできる。
He: 13.8 Torr, Xs: 0.5
Torr. In this embodiment, only the negative electrode 6 is formed of perovskite oxide, so the negative electrode 6
and the positive electrode 7 are connected to a DC excitation power source 12. When the lower side of the positive electrode is also formed of perovskite oxide, an alternating current or high frequency excitation power source can be used.

而して陰電極6と陽電極7に直流電流を印加することに
より反射鏡2.3よりなる共振器によりレーザビームを
出力することができるが、このときの陰電極6の0゜ガ
スの放出量とO2ガスの吸収量と陰電極6の表面温度と
の関係を試験した。
By applying a direct current to the negative electrode 6 and the positive electrode 7, a laser beam can be output from the resonator formed by the reflecting mirror 2.3. The relationship between the amount of O2 gas absorbed and the surface temperature of the negative electrode 6 was tested.

陰電極6にLa o 、y S r o 、s Co 
O3の酸化物を用い、体積1.6CI!、表面積1a、
ecaの円筒状に形成した。
La o , y S r o , s Co on the negative electrode 6
Using O3 oxide, the volume is 1.6 CI! , surface area 1a,
It was formed into a cylindrical shape of eca.

レーザガスはCo2: 2.2 Torr、 02: 
2.0Torr。
The laser gas is Co2: 2.2 Torr, 02:
2.0 Torr.

N2: 5.OTorr、 Xs : 0.5 Tor
r  、残部がHeよりなり、全圧が22.s Tor
rとした。そして陰電極e o 02 カス放出量(Δ
PD(O2)〉(1)と02ガスの吸収量(Δ、PD(
02)<O”)と陰電極6の表面温度TDとの関係は第
2図に示す通シであシ、放電時間が1o〜20分間と短
いにも拘らず、きわめて明瞭な傾向がある。第2図中、
縦軸のΔPD陰電陰電極6面 ΔPD(O2)が零の点、即ち上記の式(1)における
反応が丁度平衡している状態のレドックス反応を生じて
いる温度TB  は放電電流で2 3 mAで電極表面
温度は300’Cより高い動作状態にある。放電は陰電
極θ上の部分で発生しており、陰電極6の大きさが相対
的に小さくなると、TBを生ずる放電電流は23mAよ
り低い値になる。
N2: 5. OTorr, Xs: 0.5 Torr
r, the remainder consists of He, and the total pressure is 22. s Tor
It was set as r. And the cathode e o 02 waste emission amount (Δ
PD(O2)〉(1) and absorption amount of 02 gas (Δ, PD(
The relationship between the surface temperature TD of the negative electrode 6 and the surface temperature TD of the negative electrode 6 is as shown in FIG. 2, and there is a very clear tendency despite the short discharge time of 1 to 20 minutes. In Figure 2,
The point where ΔPD (O2) on the vertical axis of the six surfaces of the negative electrode and ΔPD is zero, that is, the temperature TB at which the redox reaction occurs in a state where the reaction in equation (1) above is exactly balanced, is 2 3 in terms of discharge current. mA, the electrode surface temperature is in an operating state higher than 300'C. The discharge occurs above the cathode θ, and when the size of the cathode 6 becomes relatively small, the discharge current that causes TB becomes a value lower than 23 mA.

しNドヮクス反応を生じる条件は陰電極6の表面温度以
外に陰電極6の組成により規定される。
The conditions for causing the N dox reaction are determined not only by the surface temperature of the cathode 6 but also by the composition of the cathode 6.

第3図にペロブスカイト酸化物の例として、La1−エ
S r xCo O3−δ のI値とδ値とで組成を示
し、その各組成に対応して電極表面温度TB(1)動作
時のレドックス反応を生じる曲線を得た。この福σ)よ
り上側の領域Aの組成では、TB(I)温度で動作させ
る限り陰電極6は02ガスを放出する還元作用をなし、
一方、TB(I)の下側の領域Bは02ガスを吸込む酸
化作用をなす。図中、陰電極6の表面温度がより高い場
合のレドックス反応曲線をTB(I+α)で示し、表面
温度がより低い場合のレドックス反応曲線をTB(I−
α)で示している。このように陰電極6の表面温度によ
り、即ち陰電極6の大きさと放電電流の大きさにより同
一組成の電極でもちガスの放出側にも吸込み側にも動作
する。
As an example of perovskite oxide, Fig. 3 shows the composition by I value and δ value of La1-ESrxCoO3-δ, and the electrode surface temperature TB(1) and redox during operation correspond to each composition. A curve producing the reaction was obtained. In the composition of region A above this value σ), as long as it is operated at the TB(I) temperature, the cathode 6 has a reducing action that releases 02 gas.
On the other hand, the region B below TB(I) has an oxidizing effect by sucking the 02 gas. In the figure, the redox reaction curve when the surface temperature of the cathode 6 is higher is shown as TB(I+α), and the redox reaction curve when the surface temperature is lower is shown as TB(I−
α). In this way, depending on the surface temperature of the cathode 6, that is, the size of the cathode 6 and the magnitude of the discharge current, an electrode of the same composition can operate on either the gas release side or the gas suction side.

他の試験例として陰電極6はペロブスカイト酸化物”0
.78rO.3”03 −0.01 5のX値が0.3
、δ値が0.01 5の組成で混練し、予焼温度900
℃で仮焼成後、プレス圧力0 、5 t o n /c
rdで成型したペレットを本焼成温度1150℃で数時
間焼成した。プレス成型時1休積: o.5cIll,
表面積:3、6crttの小型円筒電極と、体積1.6
i.表面積:14、ecrAの大型円筒電極の二種類を
製作した。
As another test example, the negative electrode 6 was made of perovskite oxide “0”.
.. 78rO. 3”03 -0.01 The X value of 5 is 0.3
, kneaded with a composition with a δ value of 0.015, and pre-fired at a temperature of 900.
After pre-firing at ℃, press pressure 0,5 ton/c
The pellets molded using RD were fired at a main firing temperature of 1150°C for several hours. 1 idle period during press molding: o. 5cIll,
Surface area: 3.6 crtt small cylindrical electrode, volume 1.6
i. Two types of large cylindrical electrodes with a surface area of 14 and ecrA were manufactured.

試験用レーザ管1は第1図に示すような構造で、放電部
容積55CC1これに連通されたパラスト部容積300
CCの空間にCO2 : 2 、 6 Torr 、 
O2:1、0Torr 、 N2: 5.O Torr
%Xs : 1.0 Torr。
The test laser tube 1 has a structure as shown in FIG.
CO2 in the CC space: 2, 6 Torr,
O2: 1, 0 Torr, N2: 5. O Torr
%Xs: 1.0 Torr.

He : 2 0 Torr  の全圧29.6 To
rrでレーザガスを封入した。
He: 20 Torr total pressure 29.6 To
Laser gas was filled with rr.

而して放電電流2 0 mAとして連続動作寿命の試験
を行った結果、第4図に示すように大型円筒電極はaで
示すように1ooo時間以上の動作寿命をもっているの
に対し、小型円筒電極はbで示すように100時間強の
動作寿命で、約1桁の性能の差が生ずる。
As a result of conducting a continuous operation life test at a discharge current of 20 mA, as shown in Figure 4, the large cylindrical electrode had an operation life of more than 100 hours as shown by a, whereas the small cylindrical electrode had an operation life of more than 100 hours. As shown by b, the operating life is just over 100 hours, and there is a difference in performance of about one order of magnitude.

両者の放電中のガス組成の分析を質量分析で調べた結果
、電極での02ガスの放出,吸込み量ΔPD(O2)が
大型円筒電極では+1.O Torr  で放出特性を
、小型円筒電極では一〇.2 Torrで吸込み特性を
示している。
As a result of mass spectrometry analysis of the gas composition during discharge in both cases, it was found that the amount of 02 gas released and sucked in at the electrode ΔPD(O2) was +1. The emission characteristics are measured at O Torr and 10.0 Torr for a small cylindrical electrode. The suction characteristics are shown at 2 Torr.

上記試験結果からも明らかなようにペロブスカイト酸化
物部の電極をCoの酸化能力の発揮する電極自体の還元
域で動作させ、放電による自己発熱の電極表面温度をレ
ドックス反応温度よりも低くなるようにしているので、
動作中、レーザガス中のO2ガスが減少するのを防止し
、電極のCOに対する触媒作用を長時間良好に保つこと
ができ、Co2ガスを一定量存続させ、長い動作寿命を
確保することができる。そしてこのような作用効果は、
ペロブスカイト酸化物により形成した電極の大きさが体
積で0.8cIjt以上、面積でe、7H上、又、La
1−x Sr、CoO3−、yのX値が0.2<x <
0.5、δ値がo、oos <δ<0.055  の範
囲で適宜選択すると共に、この電極を25 mA以下の
放電電流で連続的に動作させることにより達成すること
ができる。
As is clear from the above test results, the electrode of the perovskite oxide part is operated in its own reduction region where the oxidation ability of Co is exerted, so that the electrode surface temperature due to self-heating due to discharge is lower than the redox reaction temperature. Because
During operation, the O2 gas in the laser gas can be prevented from decreasing, the catalytic effect of the electrode on CO can be maintained well for a long time, and a constant amount of Co2 gas can be maintained to ensure a long operating life. And this kind of effect is
The size of the electrode formed of perovskite oxide is 0.8 cIjt or more in volume, e in area, 7H or more, and La
1-x Sr, CoO3-, X value of y is 0.2<x<
This can be achieved by appropriately selecting the δ value in the range o, oos < δ < 0.055, and by continuously operating this electrode at a discharge current of 25 mA or less.

発明の効果 以上の説明より明らかなように本発明によれば、レーザ
管に設けた陰電極及び陽電極の中、少なくとも陰電極は
ペロブスカイト酸化物により形成し、放電による自己発
熱の温度がレドックス反応温度より低くなるようにして
いる。従ってこのペロブスカイト酸化物製の電極が0□
ガスを放出することができ、Coに対する触媒作用を長
時間に亘って保つことができ、CO2ガスを一定量存続
させ、レーザ出力と動作寿命を向上させることができる
Effects of the Invention As is clear from the above explanation, according to the present invention, at least the negative electrode of the negative electrode and positive electrode provided in the laser tube is formed of perovskite oxide, and the temperature of self-heating due to discharge is reduced by the redox reaction. I try to keep it lower than the temperature. Therefore, this perovskite oxide electrode is 0□
The gas can be released, the catalytic effect on Co can be maintained for a long time, and the CO2 gas can be maintained in a certain amount, improving the laser output and the operating life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の封止型CO□レーザの要部断面図、第
2図はペロブスカイト酸化物製電極におけるo2ガスの
放出、吸込み特性の電極表面温度依存性を示す図、第3
図はペロブスカイト酸化物製電極の組成とレドックス反
応との関係を示す図、第4図はペロブスカイト酸化物製
電極の大きさによる動作寿命の図である。 1・・・・・・レーザ管、2,3・・・・・・反射鏡、
6・・川・陰電極、7・・・・・・陽電極、8・・・−
・・冷却用ジャケット、12・・・・・・電源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓 
1111 t −1,−ft 2−R軸恍 3−及村蚊 C−玲qe碩 7−−γ秦脣糧 8−一些弔ジヤケしト 筒2図 1113  図 ’ lW、−8δrlCo03−tr ’tfI第 4
 図 一
Fig. 1 is a cross-sectional view of the main part of the sealed CO□ laser of the present invention, Fig. 2 is a diagram showing the dependence of O2 gas release and suction characteristics on the electrode surface temperature in a perovskite oxide electrode, and Fig. 3
The figure shows the relationship between the composition of the perovskite oxide electrode and the redox reaction, and FIG. 4 shows the operating life of the perovskite oxide electrode depending on its size. 1...Laser tube, 2,3...Reflector,
6... River/negative electrode, 7... Positive electrode, 8...-
...Cooling jacket, 12...Power supply. Name of agent: Patent attorney Toshio Nakao and one other name
1111 t -1, -ft 2-R axis 3-Oimura Mosquito C-Reiqe 7--γQin Supplement 8-One small condolence jacket tube 2 Figure 1113 Figure' lW, -8δrlCo03-tr 'tfI Fourth
Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)レーザ管と、このレーザ管に設けられた放電用の
陰電極及び陽電極と、上記レーザ管に封入されたレーザ
ガスを備え、上記放電用電極の中、少なくとも陰電極は
ペロブスカイト酸化物により形成し、放電による自己発
熱の温度がレドックス反応温度より低くなるように構成
したことを特徴とする封止型CO_2レーザ。
(1) A laser tube, a cathode and an anode for discharge provided in the laser tube, and a laser gas sealed in the laser tube, wherein at least the cathode among the discharge electrodes is made of perovskite oxide. 1. A sealed CO_2 laser characterized in that the temperature of self-heating due to discharge is lower than the redox reaction temperature.
(2)ペロブスカイト酸化物により形成した電極の大き
さが体積で0.8cm^3以上、面積で6cm^2以上
である特許請求の範囲第1項記載の封止型CO_2レー
ザ。
(2) The sealed CO_2 laser according to claim 1, wherein the electrode formed of perovskite oxide has a volume of 0.8 cm^3 or more and an area of 6 cm^2 or more.
(3)ペロブスカイト酸化物により形成した電極が25
mA以下の放電電流で連続的に動作する特許請求の範囲
第1項記載の封止型CO_2レーザ。
(3) The electrode formed from perovskite oxide is 25
The sealed CO_2 laser according to claim 1, which operates continuously with a discharge current of mA or less.
(4)ペロブスカイト酸化物はLa_1_−_xSr_
xCoO_3_−_δのx値が0.2≦x≦0.5、δ
値が0.005≦δ≦0.055である特許請求の範囲
第1項記載の封止型CO_2レーザ。
(4) Perovskite oxide is La_1_-_xSr_
The x value of xCoO_3_−_δ is 0.2≦x≦0.5, δ
The sealed CO_2 laser according to claim 1, wherein the value is 0.005≦δ≦0.055.
JP24110584A 1984-11-15 1984-11-15 Sealed type carbon dioxide laser Pending JPS61119083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24110584A JPS61119083A (en) 1984-11-15 1984-11-15 Sealed type carbon dioxide laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24110584A JPS61119083A (en) 1984-11-15 1984-11-15 Sealed type carbon dioxide laser

Publications (1)

Publication Number Publication Date
JPS61119083A true JPS61119083A (en) 1986-06-06

Family

ID=17069356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24110584A Pending JPS61119083A (en) 1984-11-15 1984-11-15 Sealed type carbon dioxide laser

Country Status (1)

Country Link
JP (1) JPS61119083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146478A (en) * 1986-12-10 1988-06-18 Tohoku Ricoh Co Ltd Electrode for carbon dioxide gas laser
JPH05102552A (en) * 1991-10-11 1993-04-23 Matsushita Electric Ind Co Ltd Sealed type carbonic acid gas laser tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146478A (en) * 1986-12-10 1988-06-18 Tohoku Ricoh Co Ltd Electrode for carbon dioxide gas laser
JPH05102552A (en) * 1991-10-11 1993-04-23 Matsushita Electric Ind Co Ltd Sealed type carbonic acid gas laser tube

Similar Documents

Publication Publication Date Title
Witteman High‐Output Powers and Long Lifetimes of Sealed‐Off CO2 Lasers
Stark et al. A sealed 100-Hz CO2 TEA laser using high CO2 concentrations and ambient-temperature catalysts
GB2028571A (en) Carbon dioxide gas lasers
US5771259A (en) Laser electrode coating
JP3211378B2 (en) Polymer electrolyte fuel cell
US5860359A (en) Gas-permselective gas pump and warmer for using same
GB2083687A (en) Circulating gas laser
JPS61119083A (en) Sealed type carbon dioxide laser
US5804325A (en) Non poisoning fuel cell and method
GB2107109A (en) Catalyzed CO2 laser
JP3189481B2 (en) Dielectric barrier discharge lamp
Nagai et al. High-pressure sealed CW CO 2 laser with high efficiency
JPH069143B2 (en) Fuel cell storage method
US3684578A (en) Fuel cell with electrodes having spinel crystal structure
JP2008053194A (en) One-chamber type solid oxide fuel cell using lower hydrocarbon as fuel
JPS6020468A (en) Hydrogen-oxygen solid electrolyte fuel cell
JPS6022386A (en) Carbonic acid laser sealed tube
JPS5841673B2 (en) Enclosed carbon dioxide laser tube
JPH08770Y2 (en) External mirror type UV output laser resonator
Cloud et al. Barium Absorption Pumps for High‐Vacuum Systems
US3377204A (en) Method of incorporating platinum in carbon
JPH01161661A (en) Infrared source and its manufacture
JPS6366763B2 (en)
JPH0311900Y2 (en)
JPS5921083A (en) Carbon dioxide gas laser