JPS61119037A - Temperature controlling process and device of processed item in vacuum - Google Patents

Temperature controlling process and device of processed item in vacuum

Info

Publication number
JPS61119037A
JPS61119037A JP23950784A JP23950784A JPS61119037A JP S61119037 A JPS61119037 A JP S61119037A JP 23950784 A JP23950784 A JP 23950784A JP 23950784 A JP23950784 A JP 23950784A JP S61119037 A JPS61119037 A JP S61119037A
Authority
JP
Japan
Prior art keywords
pressure
gas
workpiece
processing
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23950784A
Other languages
Japanese (ja)
Inventor
Masayoshi Serizawa
芹澤 正芳
Toru Otsubo
徹 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23950784A priority Critical patent/JPS61119037A/en
Publication of JPS61119037A publication Critical patent/JPS61119037A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Abstract

PURPOSE:To make it feasible to perform fine pattern etching, high quality filming and ion implanting process by a method wherein in case of vacuum processing of plasma etc., temperature control such as highly efficient wafer cooling etc. is performed having no effect upon the processing characteristics. CONSTITUTION:Processing gas supplied from a processing gas bomb 61 is pressure-regulated by a pressure regulating valve 62 and flow-controlled by a massflow controller 63 to be fed to a spare chamber 64. The processing gas at constant pressure is passed through a vacuum gauge 66 to be led to a gas leading-in port 65 while being constantly fedback to the mass controller 63. In such a constitution, a pressure P2 detected by a vacuum gauge 66 and another pressure P1 of refrigerant 70 (i.e. the pressure in refrigerant diaphragm chamber 48) are compared with each other to control the pressure of refrigerant 70 at high level making it higher than the pressure on a member 41 loaded with processed item. Through these procedures, the loading member 41 may be brought into close contact with backside of wafer regardless of any swell due to the pressure of wafer cooling gas and warping of wafer itself.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、真空内処理における被処理物の温度制御方法
、およびその装置に関する。本発明は、例えばプラズマ
エツチングもしくは反応性スパッタエツチング装置を用
いてドライエツチングする際、あるいはイオンインプラ
ンテーションにより不純物のドーピングする際の、被処
理物の温度を効果的に制御し処理する方法および装置と
して利用することができる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for controlling the temperature of a workpiece in vacuum processing. The present invention provides a method and apparatus for effectively controlling the temperature of a workpiece during dry etching using a plasma etching or reactive sputter etching device, or doping with impurities through ion implantation. can be used.

〔発明の背景〕[Background of the invention]

被処理物(例えば半導体ウェハ)の処理、例えば集積回
路を製造するための処理において、被処理物が温度上昇
の影響を受けることがある。−例を挙げればドライエツ
チングの際、プラズマからの輻射やイオン電子などの衝
突により耐熱性に乏しいレジストが熱融解や軟化したり
してレジスト膜がただれたり、収縮することがある。こ
のため微細なパターンエツチングが行なえなかったり、
又ドライエツチング後に残留するマスクの除去が困難と
なる。特にエツチング速度を早めるため高周波印加電圧
を増大させた時、:その傾向は著しい。
2. Description of the Related Art In processing a workpiece (for example, a semiconductor wafer), for example, in a process for manufacturing an integrated circuit, the workpiece may be affected by an increase in temperature. - For example, during dry etching, a resist with poor heat resistance may melt or soften due to radiation from plasma or collisions with ions and electrons, causing the resist film to sag or shrink. For this reason, fine pattern etching cannot be performed,
Furthermore, it becomes difficult to remove the mask remaining after dry etching. Especially when the high frequency applied voltage is increased in order to accelerate the etching rate: this tendency is remarkable.

他の例は半導体ウェハのイオン着床(イオンインプラン
テーション)で見られる。イオン着床において高濃度の
イオン打込みをした場合、半導体ウェア、(1)1度力
、よ昇す6.S:“。状態1.よウジX8膜の受けるダ
メージは大きくなり、レジスト膜にクラック等を生じて
イオン打込みのマスクとならない場合や、レジスト膜が
炭化し該膜が除去不可能になることがあった。
Another example is found in ion implantation of semiconductor wafers. When high-concentration ion implantation is performed during ion implantation, semiconductor ware may (1) be heated once more.6. S: “.Condition 1. The damage to the Yoji there were.

上記のような場合半導体ウェハ等被処理物の温度を下げ
る必要がある。従来は例えば半導体については、半導体
ウェハを載せた電極を冷却用冷媒を循環させ、温度制御
をしていた。しかし、半導体ウェハには数10μm程度
のそりがあり、かつ。
In the above case, it is necessary to lower the temperature of the object to be processed, such as a semiconductor wafer. Conventionally, for example, in the case of semiconductors, the temperature was controlled by circulating a cooling refrigerant through an electrode on which a semiconductor wafer was mounted. However, semiconductor wafers have warpage of approximately several tens of micrometers.

軽いため、被処理物載置面上に単に載置するだけでは被
処理物載置面と半導体ウェハの熱的接触が十分でなく、
熱放散がうまく行なわれないという問題があった。そこ
で、かかる2面間の熱の授受を効果的に増大する方法が
考案され公開されている。この方法は、半導体ウェハと
被処理物載置面の2面間に処理雰囲気の圧力より加圧し
たガスを導入し、熱伝導率の向上を図るものである(特
開昭56−48132.特開昭58−32410)、こ
の従来例によれば、半導体ウェハと被処理物載置面との
間に設けられたガス室内の気体分子により、半導体ウェ
ハと温度制御された被処理物載置面との間の熱の授受が
行なわれ、半導体ウェハを単に被処理物載置面上に載置
した場合より効果的な温度制御が行なえる。しかしこの
従来例には、冷却のため使用するヘリウムガスが洩れて
、プラズマ処理用のガスと混合し、プラズマ処理が阻害
されることがあり、かつ、それを防ぐべくヘリウムガス
以外のガスを用いると、冷却効率が悪くなるという問題
がある。
Because it is light, simply placing it on the workpiece placement surface does not provide sufficient thermal contact between the workpiece placement surface and the semiconductor wafer.
There was a problem that heat dissipation was not performed well. Therefore, methods for effectively increasing the exchange of heat between the two surfaces have been devised and disclosed. This method aims to improve thermal conductivity by introducing a gas pressurized by the pressure of the processing atmosphere between the semiconductor wafer and the processing object mounting surface (Japanese Patent Laid-Open No. 56-48132. According to this conventional example, gas molecules in a gas chamber provided between the semiconductor wafer and the workpiece mounting surface allow the semiconductor wafer and the workpiece mounting surface to be controlled in temperature. This allows for more effective temperature control than when the semiconductor wafer is simply placed on the workpiece placement surface. However, in this conventional example, the helium gas used for cooling may leak and mix with the plasma processing gas, inhibiting the plasma processing, and in order to prevent this, a gas other than helium gas is used. However, there is a problem that the cooling efficiency deteriorates.

この従来例によるプラズマ処理装置につき、第2図を参
照して更に詳しく説明すると、次の通りである。
This conventional plasma processing apparatus will be described in more detail with reference to FIG. 2 as follows.

処理室1には基板支持台2、電極3、図示しないガスラ
インからのガス供給口41図示しない排気ポンプに接続
した排気口5が設けられている。
The processing chamber 1 is provided with a substrate support 2, an electrode 3, a gas supply port 41 from a gas line (not shown), and an exhaust port 5 connected to an exhaust pump (not shown).

電極3には高周波電源6が接続されている。基板支持台
2には冷却水通路7があり、この供給口8から排水口9
へと冷却水が通り、基板支持台2を冷却する。またこの
上面には基板10が載置され基板押えで基板支持台に押
え付けられている。
A high frequency power source 6 is connected to the electrode 3. The substrate support stand 2 has a cooling water passage 7, and a drain port 9 is connected to the supply port 8.
Cooling water passes through and cools the substrate support stand 2. Further, a substrate 10 is placed on this upper surface and is pressed against a substrate support stand by a substrate presser.

基板10と基板支持台2の間にはガスライン12より冷
却用のヘリウムガスが供給される。
Helium gas for cooling is supplied between the substrate 10 and the substrate support 2 from a gas line 12.

ガスライン12には予備室13.ヘリウムガス源14、
コントロール弁15、予備室13の圧力測定用真空計1
6、制御系17が設けられている。予備室13は真空計
16の測定値をコントロール弁15にフィードバックし
、一定の圧力に保つようになっている。
The gas line 12 has a preliminary chamber 13. helium gas source 14;
Control valve 15, vacuum gauge 1 for pressure measurement in preliminary chamber 13
6. A control system 17 is provided. The preliminary chamber 13 feeds back the measured value of the vacuum gauge 16 to the control valve 15 to maintain a constant pressure.

この装置で処理室内を10pa前後にしプラズマ処理を
行なう場合、ガスライン12より300〜700pa程
度のヘリウムガスを供給する。ところがこの時、この装
置では基板支持台2と基板10の間のシールを完全に行
なうことができないため、図の破線Aで極端に示すよう
にヘリウムガスが処理室1内に漏れ、ガス供給口4より
供給される処理用ガスと混合する。そのためプラズマ処
理特性が変化し。
When performing plasma processing with this apparatus at a pressure of about 10 pa in the processing chamber, helium gas of about 300 to 700 pa is supplied from the gas line 12. However, at this time, since this apparatus cannot completely seal between the substrate support stand 2 and the substrate 10, helium gas leaks into the processing chamber 1 as shown by the broken line A in the figure, causing the gas supply port to leak. Mix with the processing gas supplied from 4. As a result, plasma processing characteristics change.

再現性が悪くなるという問題を生じる。またこのような
問題を解決するため処理ガスと同種類のガスをヘリウム
ガスの代りに供給すると、基板lOの冷却が十分に行な
われないという問題を生じる。
This causes a problem of poor reproducibility. Furthermore, if a gas of the same type as the processing gas is supplied instead of helium gas in order to solve this problem, a problem arises in that the substrate IO is not sufficiently cooled.

このように従来のガス冷却による基板冷却方法は、プラ
ズマ処理装置に適用するためには十分な性能を有してい
なかった。
As described above, the conventional substrate cooling method using gas cooling does not have sufficient performance for application to a plasma processing apparatus.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記目的を解決した。プラズマ処理装
置にも適用できる十分な性能を有した冷却方法を提供す
ること、およびその方法を実施する装置であって、より
高性能な真空内被処理物温度制御ができる冷却装置を提
供することにある。
The object of the present invention is to solve the above objectives. To provide a cooling method with sufficient performance that can be applied to plasma processing equipment, and to provide a cooling device that implements the method and is capable of controlling the temperature of a processed object in vacuum with higher performance. It is in.

〔発明の概要〕[Summary of the invention]

本発明は、以下のような知見に基づいてなされたもので
ある。即ち、基板と基板支持台間のガスによる熱の伝達
について調べた結果、処理用ガスはCCΩ4−CF4−
 Ca Faというように分子量が大きく、このような
ガスは基板と基板支持台間の密着状況に大きく影響され
ることが判った。また基板は一般に厚さが0.5■薦前
後のため、冷却ガスの圧力により凸にふくらみ、基板と
基板支持台間にすき間が発生することが判った0本発明
はこのように凸にふくらむことの影響を種々検討してな
されたもので、被処理物の密着状況を被処理物で隔てら
れた2空間の圧力をコントロールすることにより制御し
て、これにより基板のふくらみによってもすき間が発生
しないようにし、この結果冷却ガスとして処理用ガスを
用いることも可能ならしめたものである。
The present invention was made based on the following findings. That is, as a result of investigating the heat transfer by gas between the substrate and the substrate support, it was found that the processing gas was CCΩ4-CF4-
It has been found that gases such as CaFa, which have large molecular weights, are greatly affected by the state of close contact between the substrate and the substrate support. In addition, since the substrate is generally around 0.5 mm thick, it was found that the pressure of the cooling gas caused the substrate to swell into a convex shape, creating a gap between the substrate and the substrate support. This was done after various studies on the effects of this, and the adhesion of the objects to be processed was controlled by controlling the pressure in the two spaces separated by the objects to be processed. As a result, it is possible to use the processing gas as the cooling gas.

本発明の被処理物の温度制御方法は、被処理物を真空雰
囲気下で処理するに当たり、被処理物を被処理物載置部
材の載置面に載せ、該被処理物を載置面に固着するとと
もに、被処理物載置部材は冷却用冷媒により冷却し、か
つ被処理物と被処理物載置面との間にガスを送給し、前
記冷却用冷媒の圧力をこの送給ガス圧力より高くできる
ようにしたことを特徴とする。
The method for controlling the temperature of a workpiece according to the present invention includes placing the workpiece on a mounting surface of a workpiece mounting member when processing the workpiece in a vacuum atmosphere, and placing the workpiece on the mounting surface. At the same time, the workpiece mounting member is cooled by a cooling refrigerant, and gas is supplied between the workpiece and the workpiece mounting surface, and the pressure of the cooling refrigerant is reduced by the supplied gas. The feature is that it can be made higher than the pressure.

又、本発明の被処理物の温度制御装置は、被処理物を真
空雰囲気下で処理するに当たり被処理物の温度を制御す
る装置であって、被処理物を載置して固着する被処理物
載置部材と、冷却用冷媒を循環させて被処理物載置部材
を冷却する冷却手段と、被処理物と被処理物載置面との
間にガスを送給するガス送給手段とを備え、更に前記冷
却用冷媒の圧力を送給ガス圧力より高くコントロールす
る制御手段を備えていることを特徴とする。
Further, the temperature control device for a processed object of the present invention is a device for controlling the temperature of the processed object when processing the processed object in a vacuum atmosphere, and is a device for controlling the temperature of the processed object when the processed object is placed and fixed. An object placement member, a cooling means for circulating a cooling refrigerant to cool the object placement member, and a gas feeding means for feeding gas between the object to be processed and the object placement surface. It is characterized in that it further comprises a control means for controlling the pressure of the cooling refrigerant to be higher than the feed gas pressure.

本発明は上記構成より成るので、被処理物と被処理物載
置面との間隙を極めて小さくすることができる。この結
果、必ずしもヘリウムでなく、分子量の比較的大きいガ
スを用いても十分な冷却効果が得られるようになり、よ
って所望のガスを用いた冷却を達成できる。即ち、被処
理物と被処理物載置面との間隙をdとした場合、この間
隙dが小さくなると、ヘリウムも、他の例えばCCA4
なども、冷却性能は余り変わらなくなり、第3図に示す
如く、dがOに近づくと、圧力pと熱伝導率にとの関係
は、CCA、も、HQやN2近くなる。
Since the present invention has the above configuration, the gap between the workpiece and the workpiece mounting surface can be made extremely small. As a result, a sufficient cooling effect can be obtained even when using a gas with a relatively large molecular weight, not necessarily helium, and thus cooling can be achieved using a desired gas. In other words, if the gap between the workpiece and the workpiece mounting surface is d, as the gap d becomes smaller, helium will also be absorbed by other materials such as CCA4.
As shown in FIG. 3, as d approaches O, the relationship between pressure p and thermal conductivity becomes close to that of CCA, HQ, and N2.

よって本発明を用いれば、ヘリウム以外の冷却ガスを用
いても、十分な効果が得られ、よって温度制御を効果的
になし得るものである。
Therefore, if the present invention is used, sufficient effects can be obtained even if a cooling gas other than helium is used, and therefore temperature control can be performed effectively.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について、第1図を参照して具
体的に説明する。第1図は本実施例の温度制御装置の縦
断面図である。この例は本発明を、プラズマ処理するに
際しての半導体ウェハの温度制御に適用したものである
Hereinafter, one embodiment of the present invention will be specifically described with reference to FIG. FIG. 1 is a longitudinal sectional view of the temperature control device of this embodiment. In this example, the present invention is applied to temperature control of a semiconductor wafer during plasma processing.

処理室30の上部には対向電極31を内蔵し、この対向
電極31の導入口32を経由して処理用ガスライン33
から処理用ガスが供給され、ガス排気口34から排気用
真空ポンプ35でガスが排出される。一方下部には下部
電極40を設け、下部電極上面に金属製の薄板(例えば
SUS厚さ50μ耐程度)から成る載置部材41を載せ
、リング状親材42を介してボルト43で固定する。そ
して、載置部材41に載せた半導体ウェハ56の外周を
石英板から成る被処理物押え44をボルト45にて押え
固定している。電極下部には、冷却用冷媒導入046及
び排出口47と、冷媒ダイアフラム室48を形成し、更
に前記被処理物載置面の中央部にろう付は接合49され
下方に位置するスライド軸50を摺動案内するガイド5
1を形成する。被処理物載置部材41と下部電極40及
び該下部電極40とスライド1plh50の接地面には
、それぞれの溝中の○リング52,53で冷媒が密閉さ
れ、冷却用冷媒70は循環ポンプ72に吸引され冷媒タ
ンク71より電極内ダイアフラム室48へ循環し、冷媒
排出口47を流れる。この際、冷媒タンク内の冷媒70
(蒸気圧の低いオイルなど)は、真空ポンプ73の圧力
制御弁74によってダイアフラムに加わる圧力を制御さ
れ、温度コントロールユニット80によって−定温度に
保たれる。又、下部電極は高周波電源54に接続すると
ともに、真空容器30は絶縁体55によって電極絶縁さ
れている。
A counter electrode 31 is built in the upper part of the processing chamber 30, and a processing gas line 33 is connected via an inlet 32 of the counter electrode 31.
A processing gas is supplied from the gas exhaust port 34, and the gas is exhausted from the gas exhaust port 34 by an exhaust vacuum pump 35. On the other hand, a lower electrode 40 is provided at the lower part, and a mounting member 41 made of a thin metal plate (for example, SUS with a thickness of about 50 μm) is placed on the upper surface of the lower electrode, and is fixed with a bolt 43 via a ring-shaped parent material 42 . The outer periphery of the semiconductor wafer 56 placed on the mounting member 41 is held and fixed by a workpiece presser 44 made of a quartz plate with bolts 45 . A cooling refrigerant inlet 046, an outlet 47, and a refrigerant diaphragm chamber 48 are formed in the lower part of the electrode, and a slide shaft 50 located below is connected by brazing 49 to the center of the workpiece mounting surface. Sliding guide 5
form 1. A refrigerant is sealed between the workpiece mounting member 41 and the lower electrode 40, and between the lower electrode 40 and the slide 1plh50 through rings 52 and 53 in the respective grooves, and the cooling refrigerant 70 is sent to the circulation pump 72. The refrigerant is sucked and circulated from the refrigerant tank 71 to the internal electrode diaphragm chamber 48 and flows through the refrigerant outlet 47 . At this time, the refrigerant 70 in the refrigerant tank
The pressure applied to the diaphragm (such as oil with low vapor pressure) is controlled by the pressure control valve 74 of the vacuum pump 73, and the temperature is maintained at a constant temperature by the temperature control unit 80. Further, the lower electrode is connected to a high frequency power source 54, and the vacuum container 30 is insulated from the electrode by an insulator 55.

一方、スライド軸には、ガス供給口60があけられてい
る。処理用ガスボンベ61から送給された処理用ガスは
、圧力制御弁62より圧力調整及びマスフローコントロ
ーラ63流量調整されて予備室64に送られる。ガス圧
力を一定に保ちガス導入口65に導入するため真空計6
6を通し、常にマスフローコントローラー63へフィー
ドバックをかけている。
On the other hand, a gas supply port 60 is opened in the slide shaft. The processing gas supplied from the processing gas cylinder 61 is sent to the preparatory chamber 64 after its pressure is adjusted by a pressure control valve 62 and its flow rate is adjusted by a mass flow controller 63 . A vacuum gauge 6 is used to keep the gas pressure constant and introduce it into the gas inlet 65.
6, feedback is constantly applied to the mass flow controller 63.

この構成により、真空計66で検知した圧力P2と、冷
却用冷媒70の圧力P工(従って冷媒ダイヤフラム室4
8の圧力)とを比較して、冷媒フOの圧力を高く制御し
、これを被処理物載置部材41の上がわの圧力より高く
する。
With this configuration, the pressure P2 detected by the vacuum gauge 66 and the pressure P of the cooling refrigerant 70 (therefore, the refrigerant diaphragm chamber 4
8), the pressure of the refrigerant flow O is controlled to be higher than the pressure above the processing object mounting member 41.

この制御は、具体的には次のようになされる。Specifically, this control is performed as follows.

即ち、以上示したプラズマ処理装置にいて、処理1: 室30内には処理用のガスを供給しながら該室内を排気
用真空ポンプ35で排気し、10〜20paの圧力とし
、高周波電源54より高周波電圧を印加し、プラズマを
発生させ、処理を行なう。ウェハ56とこれを載せたa
置部材41の間には、予備室64から、300〜700
paの処理用ガスを供給する。
That is, in the plasma processing apparatus shown above, Process 1: While supplying processing gas into the chamber 30, the chamber is evacuated by the exhaust vacuum pump 35 to a pressure of 10 to 20 pa, and the high frequency power source 54 is used to evacuate the chamber. A high frequency voltage is applied to generate plasma and processing is performed. Wafer 56 and a with it placed on it
Between the mounting members 41, 300 to 700
Supply a processing gas of pa.

またダイアフラム室48を流れる冷媒は、この処理用ガ
スよりも500pa程度高い圧力がダイアフラムに印加
されるようコントロールする。
Further, the refrigerant flowing through the diaphragm chamber 48 is controlled so that a pressure approximately 500 pa higher than that of the processing gas is applied to the diaphragm.

ダイアフラムのスンレス板は50μ鳳とウェハ56に比
べ約1/10の厚さであるため、載置部材41は。
The thickness of the diaphragm's stainless steel plate is approximately 1/10 that of the 50 μm wafer 56, so the mounting member 41 is.

ダイアフラム雨面間の圧力差でウェハ56にならって押
付けられる。
The diaphragm is pressed against the wafer 56 due to the pressure difference between the rain surfaces.

したがってウェハの冷却用処理ガスの圧力によるふくら
みやウェハ自身のそりなどに関係なく、載置部材41と
ウェハ裏面を密着させることができる。
Therefore, the mounting member 41 and the back surface of the wafer can be brought into close contact with each other regardless of the bulge caused by the pressure of the processing gas for cooling the wafer or the warpage of the wafer itself.

このように、被処理物たるウェハ56と、これを載置す
る載置部材41とを密着させて、両者間の間隙を極めて
小さくしたので、必ずしもヘリウムガスを用いなくても
、十分な冷却効果が得られる。
In this way, the wafer 56, which is the object to be processed, and the mounting member 41 on which it is placed are brought into close contact with each other, and the gap between them is made extremely small, so that a sufficient cooling effect can be achieved without necessarily using helium gas. is obtained.

本実施例では、冷却ガスとして処理用ガスを用いたので
あるが、この場合でもヘリウムを用いた場合に劣らず、
良好な冷却性能を得ることができた。また、このように
冷却用ガスとして処理用ガスを使用できるようになった
結果1両ガスが結局向じであるから、処理特性への影響
を全くなくすことができた。
In this example, a processing gas was used as the cooling gas, but even in this case, it was as good as when helium was used.
Good cooling performance could be obtained. Furthermore, as a result of being able to use the processing gas as the cooling gas in this way, both gases are used in the opposite direction, so that no influence on the processing characteristics can be completely eliminated.

なお、以上本発明について、処理用ガスを冷却用ガスと
して用いる場合について主に述べてきたが、本発明はこ
れに限定されるものではない。すなわち、冷却性能に優
れたヘリウムガスにおいてもウェハと載置面間の密着性
は冷却性に関係し、密着性を良くしたことにより同じヘ
リウムガスを用いた場合、従来より1.5倍の熱伝導率
を得ることができた。
Although the present invention has been mainly described above with respect to the case where the processing gas is used as the cooling gas, the present invention is not limited to this. In other words, even with helium gas, which has excellent cooling performance, the adhesion between the wafer and the mounting surface is related to the cooling performance, and by improving the adhesion, when the same helium gas is used, it generates 1.5 times more heat than before. I was able to obtain the conductivity.

したがってこれをイオン打込み等に真空内での処理物の
温度制御に適用できることは明らかである。
Therefore, it is clear that this can be applied to temperature control of a processed material in vacuum, such as in ion implantation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プラズマ処理等の真空自処理に際し、
その処理特性に影響を与えずに高性能なウェハ冷却等の
温度コントロールが行なえ、また一般に冷却性能を良く
温度コントロールが行えるため、微細なパターンのエツ
チングや、高品質な成膜およびイオン打込みを行−うこ
とができ、半導体製品製造における歩留りを向上させる
ことができる。
According to the present invention, during vacuum self-processing such as plasma processing,
Temperature control such as high-performance wafer cooling can be performed without affecting the processing characteristics, and temperature control with good cooling performance can be performed in general, making it possible to perform fine pattern etching, high-quality film formation, and ion implantation. - It is possible to improve the yield in semiconductor product manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の一実施例に係る温度制御装置の縦断
面図、第2図は、従来の基板温度制御装置の縦断面図、
第3図は本発明の詳細な説明するための図である。 40・・・下部電極、41・・・被処理物載置部材、4
4・・・被処理物押え、44.47・・・冷却用冷媒導
入口及び排出口、48・・・ダイアフラム室、50・・
・スライド軸、60・・・ガス供給口、64・・・予備
室、80・・・温度コントロールユニット。 代理人弁理士  秋  本  正  実第1図 第2図
FIG. 1 is a vertical cross-sectional view of a temperature control device according to an embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view of a conventional substrate temperature control device.
FIG. 3 is a diagram for explaining the present invention in detail. 40... Lower electrode, 41... Processed object mounting member, 4
4... Workpiece holding down, 44.47... Cooling refrigerant inlet and outlet, 48... Diaphragm chamber, 50...
- Slide shaft, 60... Gas supply port, 64... Preparation chamber, 80... Temperature control unit. Representative Patent Attorney Tadashi Akimoto Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] 1.被処理物を真空雰囲気下で処理するに当たり、被処
理物を被処理物載置部材の載置面に載せ、該被処理物を
載置面に固着するとともに、被処理物載置部材は冷却用
冷媒により冷却し、かつ被処理物と被処理物載置面との
間にガスを送給し、前記冷却用冷媒の圧力をこの送給ガ
ス圧力より高くできるようにしたことを特徴とする真空
内処理における被処理物の温度制御方法。
1. When processing the workpiece in a vacuum atmosphere, the workpiece is placed on the mounting surface of the workpiece mounting member, the workpiece is fixed to the mounting surface, and the workpiece mounting member is cooled. The cooling refrigerant is cooled by a cooling refrigerant, and gas is supplied between the workpiece and the workpiece mounting surface, so that the pressure of the cooling refrigerant can be made higher than the pressure of the supplied gas. A method for controlling the temperature of a processed object in vacuum processing.
2.被処理物載置部材は、被処理物の剛性より低い薄板
で形成したものである、特許請求の範囲第1項記載の真
空内処理における被処理物の温度制御方法。
2. 2. The method for controlling the temperature of a workpiece in vacuum processing according to claim 1, wherein the workpiece mounting member is formed of a thin plate having a rigidity lower than that of the workpiece.
3.冷却用冷媒として、処理用のガスと同質のガスを用
いることを特徴とする特許請求の範囲第1項または第2
項記載の真空内処理における被処理物の温度制御方法。
3. Claim 1 or 2, characterized in that a gas of the same quality as the processing gas is used as the cooling refrigerant.
A method for controlling the temperature of a workpiece in vacuum processing as described in 2.
4.被処理物を真空雰囲気下で処理するに当たり被処理
物の温度を制御する装置であって、被処理物を載置して
固着する被処理物載置部材と、冷却冷媒を循環させて被
処理物載置部材を冷却する冷却手段と、被処理物と被処
理物載置面との間にガスを給送するガス送給手段とを備
え、更に前記冷却用冷媒の圧力を送給ガス圧力より高く
コントロールする制御手段を備えていることを特徴とす
る真空内における被処理物の温度制御装置。
4. This is a device that controls the temperature of the workpiece when processing the workpiece in a vacuum atmosphere, and includes a workpiece mounting member on which the workpiece is placed and fixed, and a workpiece that circulates a cooling refrigerant to control the temperature of the workpiece. It is equipped with a cooling means for cooling the object placement member, and a gas supply means for feeding gas between the object to be processed and the object placement surface, and the pressure of the cooling refrigerant is adjusted to the feeding gas pressure. An apparatus for controlling the temperature of a processed object in a vacuum, characterized by comprising a control means for controlling the temperature at a higher temperature.
JP23950784A 1984-11-15 1984-11-15 Temperature controlling process and device of processed item in vacuum Pending JPS61119037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23950784A JPS61119037A (en) 1984-11-15 1984-11-15 Temperature controlling process and device of processed item in vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23950784A JPS61119037A (en) 1984-11-15 1984-11-15 Temperature controlling process and device of processed item in vacuum

Publications (1)

Publication Number Publication Date
JPS61119037A true JPS61119037A (en) 1986-06-06

Family

ID=17045814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23950784A Pending JPS61119037A (en) 1984-11-15 1984-11-15 Temperature controlling process and device of processed item in vacuum

Country Status (1)

Country Link
JP (1) JPS61119037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227438A (en) * 1988-03-07 1989-09-11 Tokyo Electron Ltd Base plate for semiconductor substrate
CN109489900A (en) * 2018-11-08 2019-03-19 上海华力微电子有限公司 Implanter vacuum meter damages control device and the method for answering a pager's call of answering a pager's call

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227438A (en) * 1988-03-07 1989-09-11 Tokyo Electron Ltd Base plate for semiconductor substrate
CN109489900A (en) * 2018-11-08 2019-03-19 上海华力微电子有限公司 Implanter vacuum meter damages control device and the method for answering a pager's call of answering a pager's call

Similar Documents

Publication Publication Date Title
US5950723A (en) Method of regulating substrate temperature in a low pressure environment
EP0513834B1 (en) Method and apparatus for cooling wafers
EP0025670B1 (en) Method and apparatus for conducting heat to or from an article being treated under vacuum
US4771730A (en) Vacuum processing apparatus wherein temperature can be controlled
JPH08316215A (en) Gas heat transfer plasma treating device
EP0651424A3 (en) Quasi-infinite heat source/sink.
JPH0450735B2 (en)
US4514636A (en) Ion treatment apparatus
JP2697432B2 (en) Etching equipment
JPS61119037A (en) Temperature controlling process and device of processed item in vacuum
JP2002305188A (en) Apparatus and method for processing
JPH07102372A (en) Vacuum treatment of material and device therefor
US20040079289A1 (en) Electrostatic chuck wafer port and top plate with edge shielding and gas scavenging
JPS61264649A (en) Substrate cooling device
JP3237046B2 (en) Substrate holder
JPH0461325A (en) Treating device
JPS63156321A (en) Plasma treating apparatus
JP2778284B2 (en) Heating equipment
JPS63227021A (en) Dry etching system
JPH0487331A (en) Treatment apparatus
JPH0487330A (en) Cooling method of wafer in plasma treatment apparatus
JPH03153027A (en) Method and apparatus for etching
JPH0453135A (en) Processor
JP3788272B2 (en) Plasma processing equipment
JPH01309328A (en) Method and apparatus for plasma treatment