JPH0487330A - Cooling method of wafer in plasma treatment apparatus - Google Patents

Cooling method of wafer in plasma treatment apparatus

Info

Publication number
JPH0487330A
JPH0487330A JP2202805A JP20280590A JPH0487330A JP H0487330 A JPH0487330 A JP H0487330A JP 2202805 A JP2202805 A JP 2202805A JP 20280590 A JP20280590 A JP 20280590A JP H0487330 A JPH0487330 A JP H0487330A
Authority
JP
Japan
Prior art keywords
wafer
electrode
dielectric
plasma processing
transfer gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2202805A
Other languages
Japanese (ja)
Inventor
Nobuo Ozawa
信男 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2202805A priority Critical patent/JPH0487330A/en
Publication of JPH0487330A publication Critical patent/JPH0487330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To eliminate an electrostatic breakdown and to enhance the uniformity of a plasma treatment by a method wherein the rear of a wafer is brought into close contact with a dielectric installed at the peripheral part on a wafer-mounting face and a gap formed between the wafer-mounting face and the wafer is filled with a heat-transfer gas. CONSTITUTION:A wafer 70 is placed on a wafer-mounting face 13a including the surface 15a of a dielectric 15; a plasma treatment gas is supplied to the inside of a treatment chamber 12; a part of the gas is evacuated from an evacuation tube 21; the pressure inside the treatment chamber 12 is kept definite. Then, high-frequency electric power is supplied to a wafer electrode 13; a self-bias voltage is generated between the wafer electrode 13 and the wafer 70; static electricity is generated between the wafer electrode 13 and the wafer 70; static electricity is generated at the dielectric 15. Thereby, the peripheral part on the rear 70b of the wafer 70 is brought into close contact with the surface 15a of the dielectric 15. Very small gaps 22 formed between the wafer-mounting face 13a and the rear 70b of the wafer 70 are filled with a heat- transfer gas G via a plurality of opening parts 17a in order to increase heat-transfer property. As a result, the wafer 70 which is being plasma-treated is cooled, and the temperature of the wafer 70 is set to a temperature which is nearly the same as the temperature of the wafer electrode 13.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、プラズマ処理中のウェハを冷却するプラズマ
処理装置のウェハ冷却方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a wafer cooling method for a plasma processing apparatus that cools a wafer during plasma processing.

〈従来の技術〉 ウェハをプラズマ処理する場合に、プラズマ処理中のウ
ェハ温度がプラズマ処理特性に影響を及ぼすことが知ら
れている。このため従来のプラズマ処理装置においては
、ウェハの温度を一定に保つべく、種々のウェハ冷却方
法が提案されている。
<Prior Art> When a wafer is subjected to plasma processing, it is known that the wafer temperature during plasma processing affects the plasma processing characteristics. For this reason, in conventional plasma processing apparatuses, various wafer cooling methods have been proposed in order to keep the wafer temperature constant.

例えば第2図に示すプラズマ処理装置31は、ウェハ電
極33の内部に、当該ウェハ電極33のウェハ載置面3
3aの中央部に開口部34aを設けた伝熱ガス導入路3
4と、恒温水が循環される恒温水循環路35とが設けら
れ、さらにウェハ70をウェハ載置面33aに押し付け
る爪37を形成したクランプ36がウェハ電極33の側
方に設けられたものである。
For example, the plasma processing apparatus 31 shown in FIG. 2 has a wafer mounting surface 3 inside the wafer electrode 33.
Heat transfer gas introduction path 3 having an opening 34a in the center of 3a
4 and a constant temperature water circulation path 35 through which constant temperature water is circulated, and a clamp 36 having a claw 37 for pressing the wafer 70 against the wafer placement surface 33a is provided on the side of the wafer electrode 33. .

このプラズマ処理装置31では、クランプ36の爪37
によってウェハ70がウェハ載置面33aに押し付けら
れる。この時、ウェハ70の裏面70bの微小な凹凸や
ウェハ載置面33aの微小な凹凸によって、ウェハ70
とウェハ載置面33aとの間には微小の隙間(図示せず
)が生じる、この隙間には、伝熱ガス導入路34より高
い熱伝導度を有する伝熱ガス、例えばヘリウムが充填さ
れる。さらに恒温水循環路35には恒温水(例えば5°
Cの水)が流されて、ウェハ電極33が常に所定の温度
に保たれる。そのために、プラズマ処理によって温度上
昇したウェハ70の熱は、ウェハ70とウェハ載置面3
3aとが接触する部分で直接的に伝導されるとともに隙
間に充填された伝熱ガスを介してウェハ70よりウェハ
電極33に伝導される。その結果、ウェハ70は冷却さ
れる。
In this plasma processing apparatus 31, the claw 37 of the clamp 36
The wafer 70 is pressed against the wafer mounting surface 33a. At this time, the wafer 70 is
A minute gap (not shown) is created between the wafer mounting surface 33a and the wafer mounting surface 33a, and this gap is filled with a heat transfer gas having a higher thermal conductivity than the heat transfer gas introduction path 34, such as helium. . Further, the constant temperature water circulation path 35 has constant temperature water (for example, 5°
The wafer electrode 33 is always kept at a predetermined temperature by flowing water (C). Therefore, the heat of the wafer 70 whose temperature has increased due to plasma processing is transferred between the wafer 70 and the wafer mounting surface 3.
The heat is directly conducted at the contact portion with the wafer 70 and the wafer electrode 33 via the heat transfer gas filled in the gap. As a result, wafer 70 is cooled.

また、第3図に示す別のプラズマ処理装置51は、ウェ
ハ電極53の上部全面に誘電体54が設けられ、前記ウ
ェハ電極53の内部に恒温水が循環される恒温水循環路
55が設けられたものである。
Further, another plasma processing apparatus 51 shown in FIG. 3 has a dielectric material 54 provided on the entire upper surface of a wafer electrode 53, and a constant temperature water circulation path 55 through which constant temperature water is circulated inside the wafer electrode 53. It is something.

このプラズマ処理装置51では、ウェハ電極53に高周
波電力を供給することで、ウェハ電極53と誘電体54
上に置かれたウェハ70との間に自己バイアス電圧を生
しさせて誘電体54の全体に静電気を発生させ、この静
電気によって誘電体54の上面にウェハ70の裏側全面
を密着させる。また恒温水W1環路55には所定の温度
(例えば5°C)の恒温水が流されて、ウェハ電極53
が所定の温度に保たれる。そのために、プラズマ処理に
よって温度上昇したウェハ70の熱は、誘電体54を介
してウェハ70よりも温度が低いウェハ電極53に伝導
される。その結果、ウェハ70の温度はウェハ電極53
の温度とほぼ同等の温度に冷却される。
In this plasma processing apparatus 51, by supplying high frequency power to the wafer electrode 53, the wafer electrode 53 and the dielectric material 54 are connected to each other.
A self-bias voltage is generated between the wafer 70 and the wafer 70 placed above to generate static electricity across the dielectric 54, and this static electricity brings the entire back side of the wafer 70 into close contact with the upper surface of the dielectric 54. In addition, constant temperature water at a predetermined temperature (for example, 5° C.) is flowed through the constant temperature water W1 ring path 55, and the constant temperature water is supplied to the wafer electrode 53.
is maintained at a predetermined temperature. Therefore, the heat of the wafer 70 whose temperature has increased due to the plasma treatment is conducted to the wafer electrode 53 whose temperature is lower than that of the wafer 70 via the dielectric 54. As a result, the temperature of the wafer 70 is lowered by the temperature of the wafer electrode 53.
is cooled to approximately the same temperature as that of

〈発明が解決しようとする課題〉 しかしながら、上記プラズマ処理装置の前者の場合には
、伝熱ガスを充填するための伝熱ガス導入路の開口部が
ウェハ載置面の中央部に形成されているため、ウェハと
ウェハ載置面との間に生じた全ての隙間に伝熱ガスが行
き亙らない。そのために、隙間に伝熱ガスが充填されな
い部分では、ウェハの熱が十分にウェハ電極に伝導され
ないので、ウェハの温度分布が不均一になる。その結果
、ウェハに対するプラズマ処理の均一性が低下する。
<Problems to be Solved by the Invention> However, in the former case of the above plasma processing apparatus, the opening of the heat transfer gas introduction path for filling the heat transfer gas is formed in the center of the wafer mounting surface. Therefore, the heat transfer gas cannot reach all the gaps created between the wafer and the wafer mounting surface. Therefore, in the portion where the gap is not filled with heat transfer gas, the heat of the wafer is not sufficiently conducted to the wafer electrode, resulting in non-uniform temperature distribution of the wafer. As a result, the uniformity of plasma processing on the wafer is reduced.

また、クランプの爪でウェハをウェハ載置面に押し付け
るために、クランプによってクランプを押し付けたウェ
ハ面が損傷を受けて塵埃が発生する。その結果、塵埃に
よってウェハは汚染される。
Further, since the wafer is pressed against the wafer mounting surface by the claws of the clamp, the wafer surface against which the clamp is pressed is damaged by the clamp, and dust is generated. As a result, the wafer becomes contaminated with dust.

さらに、クランプされたウェハの近傍とそれ以外のウェ
ハ上とではプラズマ放電のしきい値電圧が異なるために
、均一なプラズマ処理ができない。
Furthermore, since the threshold voltage of plasma discharge is different between the vicinity of the clamped wafer and the other wafers, uniform plasma processing cannot be performed.

一方、後者のプラズマ処理装置では、ウェハの裏側全面
が誘電体に密着しているためにウェハの全面に数百ボル
トの電圧がかかり、ウェハに形成される素子の薄いwA
縁膜、例えばゲート絶縁膜等が静電破壊される悪影響が
ある。
On the other hand, in the latter plasma processing equipment, the entire back side of the wafer is in close contact with the dielectric, so a voltage of several hundred volts is applied to the entire surface of the wafer, and the thin wA of the elements formed on the wafer is
There is an adverse effect that the edge film, such as the gate insulating film, is destroyed by electrostatic discharge.

本発明は、上記課題を解決するために成されたもので、
静電破壊がなくプラズマ処理の均一性に優れたプラズマ
処理装置のウェハ冷却方法を提供することを目的とする
The present invention was made to solve the above problems, and
It is an object of the present invention to provide a wafer cooling method for a plasma processing apparatus that is free from electrostatic damage and has excellent uniformity of plasma processing.

〈課題を解決するための手段〉 本発明は、上記目的を達成するために成されたもので、
プラズマ処理装置でプラズマ処理を行う場合に、ウェハ
が載置されるウェハ電極に高周波電力を供給することで
ウェハ電極のウェハ載置面の周部に設けた誘電体にウェ
ハの裏面の周部を密着させて、誘電体に密着させた周部
を除くウェハの裏面をウェハ載置面に密接させる。次に
、ウェハ!!2直面に複数の開口部を設けた伝熱ガス導
入路を経て、ウェハ載置面とウェハとの間に生じた隙間
に伝熱ガスを充填することよりなるウェハ冷却方法であ
る。
<Means for Solving the Problems> The present invention has been made to achieve the above objects, and
When performing plasma processing in a plasma processing apparatus, high-frequency power is supplied to the wafer electrode on which the wafer is placed, so that the periphery of the back surface of the wafer is applied to the dielectric material provided around the wafer placement surface of the wafer electrode. The back surface of the wafer, excluding the peripheral portion that is in close contact with the dielectric, is brought into close contact with the wafer mounting surface. Next, wafers! ! This is a wafer cooling method in which a gap created between a wafer mounting surface and a wafer is filled with heat transfer gas through a heat transfer gas introduction path having a plurality of openings on two surfaces.

〈作用〉 上記したプラズマ処理装置のウェハ冷却方法では、ウェ
ハ電極のウェハ載置面の周部に設けた誘電体にウェハを
密着させたことにより、静電気によるウェハの密着がウ
ェハ裏面の周部で成されるので、ウェハの静電破壊は低
減される。またウェハ載置面に複数の開口部を設けた伝
熱ガス導入路を経て、ウェハ載置面とウェハとの間に生
じた隙間に伝熱ガスが充填されることにより、ウェハ載
置面とウェハとの間に生じた隙間の殆どに伝熱ガスが充
填されるので、プラズマ処理でウェハに生じた熱は、ウ
ェハがウェハ電極に直接接触している部分ではウェハよ
りウェハ電極に直接伝導され、隙間の部分では伝熱ガス
を媒体にしてウェハ電極に伝導される。その結果、ウェ
ハは全体に亙たって冷却されるので、ウェハのプラズマ
処理が均一になる。
<Function> In the wafer cooling method of the plasma processing apparatus described above, the wafer is brought into close contact with the dielectric material provided around the wafer mounting surface of the wafer electrode, so that the wafer adhesion due to static electricity is prevented from occurring at the wafer backside around the wafer surface. Therefore, electrostatic damage to the wafer is reduced. In addition, the gap created between the wafer placement surface and the wafer is filled with heat transfer gas through a heat transfer gas introduction path with multiple openings on the wafer placement surface. Most of the gap created between the wafer and the wafer is filled with heat transfer gas, so the heat generated in the wafer during plasma processing is directly conducted from the wafer to the wafer electrode in the area where the wafer is in direct contact with the wafer electrode. In the gap, the heat is conducted to the wafer electrode using a heat transfer gas as a medium. As a result, the wafer is cooled throughout, resulting in uniform plasma processing of the wafer.

〈実施例〉 本発明のウェハ冷却方法が実施されるプラズマ処理装置
の一例を第1図(a)に示す断面図および第1図(+)
)のA部拡大図により説明する。
<Example> A cross-sectional view of an example of a plasma processing apparatus in which the wafer cooling method of the present invention is implemented is shown in FIG. 1(a) and FIG. 1(+)
) will be explained using an enlarged view of part A.

図に示すプラズマ処理装置11は、処理室12の内部に
ウェハ70が載置されるウェハ電極13とこのウェハ電
極13に平行に対向させた電極14とを設けた、いわゆ
る平行平板型プラズマ処理装置である。
The plasma processing apparatus 11 shown in the figure is a so-called parallel plate plasma processing apparatus, which is provided with a wafer electrode 13 on which a wafer 70 is placed inside a processing chamber 12, and an electrode 14 opposed in parallel to the wafer electrode 13. It is.

前記ウェハ電極13のウェハ載置面13aの周部には、
ウェハ載置面13aと同一高さに上面15aを形成した
リング状の誘電体15が設けられる。またウェハ電極1
3の内部には、恒温水循環路16と、ウェハ載置面13
aに複数の微小な開口部17aを設itた伝熱ガス導入
路17とが形成される。
On the periphery of the wafer placement surface 13a of the wafer electrode 13,
A ring-shaped dielectric 15 is provided with an upper surface 15a formed at the same height as the wafer mounting surface 13a. Also, wafer electrode 1
3 has a constant temperature water circulation path 16 and a wafer mounting surface 13.
A heat transfer gas introduction path 17 having a plurality of minute openings 17a is formed in a.

またウェハ電極13には、ブロッキングコンデンサ18
を介して高周波電源19が接続される。
In addition, a blocking capacitor 18 is connected to the wafer electrode 13.
A high frequency power source 19 is connected via.

一方電極14の内部には、ウェハ電極13側に開口を設
けた処理ガス導入路20が形成される。
On the other hand, a processing gas introduction path 20 having an opening on the wafer electrode 13 side is formed inside the electrode 14 .

次に、上記構成のプラズマ処理装置11によって実施さ
れるウェハ冷却方法を説明する。
Next, a wafer cooling method performed by the plasma processing apparatus 11 having the above configuration will be explained.

零ウェハ冷却方法は、プラズマ処理時に行われる。The zero wafer cooling method is performed during plasma processing.

まず恒温水循環路16に恒温水(例えば温度が5°Cの
水)を循環させて、ウェハ電極13を所定の温度に保持
する。
First, constant temperature water (for example, water at a temperature of 5° C.) is circulated through the constant temperature water circulation path 16 to maintain the wafer electrode 13 at a predetermined temperature.

そして誘電体15の上面15aを含むウェハ載置面13
a上にウェハ70を置く。その後、処理ガス導入路20
より処理室12内にプラズマ処理ガスを供給するととも
に供給したプラズマ処理ガスの一部を処理室12に設け
た排気管21より排気して、処理室12内のプラズマ処
理ガスの圧力を一定に保つ。
A wafer mounting surface 13 including the upper surface 15a of the dielectric 15
Place the wafer 70 on top a. After that, the processing gas introduction path 20
A plasma processing gas is supplied into the processing chamber 12 and a part of the supplied plasma processing gas is exhausted from an exhaust pipe 21 provided in the processing chamber 12 to keep the pressure of the plasma processing gas within the processing chamber 12 constant. .

次に、ウェハ電極13と電極14との間にプラズマを発
生させるために、ウェハ電極13に高周波電源19より
高周波電力を供給する。この時、ウェハ電極13とウェ
ハ70との間に自己バイアス電圧が生じる。この自己バ
イアス電圧によって誘電体15に静電気が発生する。こ
の静電気によってウェハ70の裏面70bの周部は誘電
体15の上面15aに密着される。従って、ウェハ70
は、誘電体15に発生じた静電気の影響を周部にしか受
けないので、ウェハ70に形成される素子の殆どは静電
破壊を受けない。
Next, high frequency power is supplied to the wafer electrode 13 from the high frequency power supply 19 in order to generate plasma between the wafer electrode 13 and the electrode 14 . At this time, a self-bias voltage is generated between the wafer electrode 13 and the wafer 70. Static electricity is generated in the dielectric 15 due to this self-bias voltage. This static electricity brings the peripheral portion of the back surface 70b of the wafer 70 into close contact with the upper surface 15a of the dielectric 15. Therefore, the wafer 70
Since only the peripheral portion is affected by the static electricity generated in the dielectric 15, most of the elements formed on the wafer 70 are not damaged by static electricity.

また、ウェハ電極13のウェハ載置面13aと誘電体1
5の上面15aとが同一高さに形成されているので、誘
電体15に密着された部分を除くウェハ70の裏面70
bはウェハ載置面13 a ニ密接される。
Furthermore, the wafer placement surface 13a of the wafer electrode 13 and the dielectric 1
Since the upper surface 15a of the wafer 70 is formed at the same height as the upper surface 15a of the wafer 70,
b is brought into close contact with the wafer mounting surface 13a.

ところが、ウェハ70の裏面70bやウェハ載置面13
aには、通常の研削加工による微小な凹凸があるので、
ウェハ載置面13aとウェハ7゜の裏面70bとの間に
は微小な隙間22が生じる。
However, the back surface 70b of the wafer 70 and the wafer mounting surface 13
Since a has minute irregularities due to normal grinding,
A minute gap 22 is created between the wafer placement surface 13a and the back surface 70b of the wafer 7°.

このため、この隙間22の伝熱性を高めるために、隙間
22には伝熱ガス導入路17より複数の開口部17aを
経て伝熱ガスGが充填される。この伝熱ガスGには高い
熱伝導度を有するヘリウムが用いられる。このため、プ
ラズマ処理によって温度が上昇したウェハ70の熱は、
ウェハ7oとウェハ載置面13aとが直接接触している
部分ではウェハ電極13に直接伝導され、伝熱ガスGが
充填されている部分では伝熱ガスGを媒体にしてウェハ
電極13に伝導される。この時、充填された伝熱ガスG
は、ウェハ70と誘電体15とが密着されているので、
処理室12の内部には漏れない。
Therefore, in order to improve the heat conductivity of this gap 22, the gap 22 is filled with heat transfer gas G from the heat transfer gas introduction path 17 through the plurality of openings 17a. Helium, which has high thermal conductivity, is used as the heat transfer gas G. Therefore, the heat of the wafer 70 whose temperature has increased due to plasma processing is
In the part where the wafer 7o and the wafer mounting surface 13a are in direct contact, the heat is directly conducted to the wafer electrode 13, and in the part where the heat transfer gas G is filled, the heat is conducted to the wafer electrode 13 using the heat transfer gas G as a medium. Ru. At this time, the filled heat transfer gas G
Since the wafer 70 and the dielectric 15 are in close contact with each other,
There is no leakage into the processing chamber 12.

その結果、プラズマ処理中のウェハ7oは冷却されて、
ウェハ70の温度はウェハ電極13の温度とほぼ同等の
温度になる。
As a result, the wafer 7o undergoing plasma processing is cooled,
The temperature of the wafer 70 becomes approximately the same as the temperature of the wafer electrode 13.

上記したようにウェハ70は静電気によって誘電体15
に密着されるので、密着時に塵埃は発生しない。
As described above, the wafer 70 is caused by static electricity to cause the dielectric 15 to
Since it is in close contact with the surface, no dust is generated when it is in close contact with the surface.

さらに、ウェハ70の上面にはプラズマ放電を乱すもの
がないので、プラズマ放電のしきい値電圧は安定し、プ
ラズマはウェハ7oと電極14との間で均一に発生する
Further, since there is nothing on the upper surface of the wafer 70 that disturbs the plasma discharge, the threshold voltage of the plasma discharge is stable, and plasma is generated uniformly between the wafer 7o and the electrode 14.

なお、上記実施例は平行平板型電極のプラズマ処理装置
11で説明したが、平行平板型の電極構造で上部側の電
極をウェハ電極に形成したプラズマ処理装置や、いわゆ
るヘキソード型電極のプラズマ処理装置等にも、本発明
のウェハ冷却方法を適用することが可能である。
Although the above embodiment has been explained using a plasma processing apparatus 11 with parallel plate electrodes, it is also possible to use a plasma processing apparatus with a parallel plate electrode structure in which the upper electrode is formed as a wafer electrode, or a plasma processing apparatus with a so-called hexode electrode. The wafer cooling method of the present invention can also be applied to the following.

〈発明の効果〉 以上、説明したように本発明によれば、ウェハ電極に高
周波電力を供給し、ウェハ電極のウェハ載置面の周部に
設けた誘電体に静電気を発生させてウェハを密着させる
ので、ウェハの静電破壊が低減されてウェハの品質の向
上が図れる。またウェハ密着時に塵埃が発生−しないの
で、ウェハの清浄度は保たれる。さらにウェハとウェハ
を極との隙間の殆どに複数の開口部を設けた伝熱ガス導
入路より伝熱ガスが充填されるので、ウェハの熱は伝熱
ガスを媒体にしてウェハ電極に伝導できる。
<Effects of the Invention> As described above, according to the present invention, high-frequency power is supplied to the wafer electrode, and static electricity is generated in the dielectric provided around the wafer mounting surface of the wafer electrode to tightly bond the wafer. As a result, electrostatic damage to the wafer is reduced and the quality of the wafer can be improved. Further, since no dust is generated when the wafer is brought into close contact with the wafer, the cleanliness of the wafer is maintained. Furthermore, most of the gaps between the wafers and the electrodes are filled with heat transfer gas through a heat transfer gas introduction path with multiple openings, so the heat from the wafers can be conducted to the wafer electrodes using the heat transfer gas as a medium. .

よって、ウェハの冷却効果が高められるので、プラズマ
処理の均一性の向上が図れる。
Therefore, the cooling effect of the wafer is enhanced, so that the uniformity of plasma processing can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は、プラズマ処理装置の構成断面図、第1
図(b)は、第1図(a)中のA部拡大図、第2図は、
従来例の構成断面図、 第3図は、別の従来例の構成断面図である。 11・・・プラズマ処理装置、  12・・・処理室。 13・・・ウェハ電極、  13a・・・ウェハ載置面
。 14・・・電極、     15・・・誘電体。 15a・・・誘電体の上面、  16・・・恒温水循環
路17・・・伝熱ガス導入路、  17a・・・開口部
22・・・隙間。
FIG. 1(a) is a sectional view of the configuration of the plasma processing apparatus.
Figure (b) is an enlarged view of section A in Figure 1 (a), Figure 2 is
3 is a sectional view of another conventional example. 11... Plasma processing apparatus, 12... Processing chamber. 13... Wafer electrode, 13a... Wafer mounting surface. 14... Electrode, 15... Dielectric. 15a... Upper surface of dielectric, 16... Constant temperature water circulation path 17... Heat transfer gas introduction path, 17a... Opening 22... Gap.

Claims (1)

【特許請求の範囲】 プラズマ処理装置でプラズマ処理を行う場合に、ウェハ
電極に高周波電力を供給することで前記ウェハ電極のウ
ェハ載置面の周部に設けた誘電体にウェハ裏面の周部を
密着させて、誘電体に密着させた周部を除く前記ウェハ
裏面を前記ウェハ載置面に密接させる工程と、 前記ウェハ電極のウェハ載置面に複数の開口部を設けた
伝熱ガス導入路を経て、前記ウェハ載置面と前記ウェハ
との間に生じた隙間に伝熱ガスを充填する工程とにより
なることを特徴とするプラズマ処理装置のウェハ冷却方
法。
[Claims] When plasma processing is performed in a plasma processing apparatus, by supplying high-frequency power to the wafer electrode, the periphery of the back surface of the wafer is applied to the dielectric provided around the wafer mounting surface of the wafer electrode. a step of bringing the back surface of the wafer, excluding the peripheral portion that is in close contact with the dielectric, into close contact with the wafer placement surface; and a heat transfer gas introduction path provided with a plurality of openings on the wafer placement surface of the wafer electrode. A wafer cooling method for a plasma processing apparatus, comprising the steps of: filling a gap formed between the wafer mounting surface and the wafer with a heat transfer gas.
JP2202805A 1990-07-31 1990-07-31 Cooling method of wafer in plasma treatment apparatus Pending JPH0487330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202805A JPH0487330A (en) 1990-07-31 1990-07-31 Cooling method of wafer in plasma treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202805A JPH0487330A (en) 1990-07-31 1990-07-31 Cooling method of wafer in plasma treatment apparatus

Publications (1)

Publication Number Publication Date
JPH0487330A true JPH0487330A (en) 1992-03-19

Family

ID=16463492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202805A Pending JPH0487330A (en) 1990-07-31 1990-07-31 Cooling method of wafer in plasma treatment apparatus

Country Status (1)

Country Link
JP (1) JPH0487330A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169824A (en) * 1993-12-13 1995-07-04 Anelva Corp Substrate heating and cooling mechanism
JPH07273175A (en) * 1994-03-31 1995-10-20 Ngk Insulators Ltd Holding member
KR970008470A (en) * 1995-07-18 1997-02-24 제임스 조셉 드롱 Electrostatic chuck with fluid flow regulator
US5804089A (en) * 1994-10-31 1998-09-08 Matsushita Electric Industrial Co., Ltd. Plasma processing apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169824A (en) * 1993-12-13 1995-07-04 Anelva Corp Substrate heating and cooling mechanism
JPH07273175A (en) * 1994-03-31 1995-10-20 Ngk Insulators Ltd Holding member
US5804089A (en) * 1994-10-31 1998-09-08 Matsushita Electric Industrial Co., Ltd. Plasma processing apparatus and method
KR970008470A (en) * 1995-07-18 1997-02-24 제임스 조셉 드롱 Electrostatic chuck with fluid flow regulator

Similar Documents

Publication Publication Date Title
US4968374A (en) Plasma etching apparatus with dielectrically isolated electrodes
JP2939355B2 (en) Plasma processing equipment
TWI250219B (en) Plasma processing apparatus
JPH10261698A (en) Plasma processor
JP2001267297A (en) Plasma treatment system
KR100188455B1 (en) Drying etching method
JPH0487330A (en) Cooling method of wafer in plasma treatment apparatus
JP3640385B2 (en) Pyroelectric high-dielectric etching method and apparatus
KR102199738B1 (en) Direct cooling type electrostatic chuck for dry etching equipment
JPH08167595A (en) Plasma treatment device
JP3251762B2 (en) Method of forming joint and method of joining members of processing apparatus
JPS61264649A (en) Substrate cooling device
JP3736103B2 (en) Plasma processing apparatus and processing method thereof
JPH0670984B2 (en) Sample temperature control method and apparatus
JP2006504239A (en) Electrostatic chuck wafer port and top plate for edge shield and gas discharge
JPS5856339A (en) Plasma etching device
JP2502271B2 (en) Plasma processing device
JP3640386B2 (en) Pyroelectric high-dielectric etching method and apparatus
JP4357849B2 (en) Plasma processing equipment
KR100316307B1 (en) Substrate cooling apparatus having grooved clamp
JP3328625B2 (en) Plasma processing method and plasma processing apparatus
TWI837534B (en) Plasma processing device and processing method
JP3064464B2 (en) Plasma surface treatment equipment
JPH0334540A (en) Plasma treatment apparatus and temperature control of wafer in this apparatus
JP3402129B2 (en) Substrate dry etching equipment