JP3640386B2 - Pyroelectric high-dielectric etching method and apparatus - Google Patents

Pyroelectric high-dielectric etching method and apparatus Download PDF

Info

Publication number
JP3640386B2
JP3640386B2 JP2001393524A JP2001393524A JP3640386B2 JP 3640386 B2 JP3640386 B2 JP 3640386B2 JP 2001393524 A JP2001393524 A JP 2001393524A JP 2001393524 A JP2001393524 A JP 2001393524A JP 3640386 B2 JP3640386 B2 JP 3640386B2
Authority
JP
Japan
Prior art keywords
substrate
tray
surface recess
etching
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001393524A
Other languages
Japanese (ja)
Other versions
JP2003197608A (en
Inventor
広持 加賀
俊雄 林
俊夫 加藤
武 五十嵐
浩司 前場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001393524A priority Critical patent/JP3640386B2/en
Publication of JP2003197608A publication Critical patent/JP2003197608A/en
Application granted granted Critical
Publication of JP3640386B2 publication Critical patent/JP3640386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば光導波路用の光変調器に利用され得るLiNbOやPZT等の焦電性高誘電率材料をプラズマ中で加工するエッチング方法及び装置に関するものである。
【0002】
【従来の技術】
従来のこの種のエッチング装置においては、基板電極表面は耐食性を考慮して20〜30μmの陽極酸化膜で被覆され、基板押さえ治具あるいはクランプ材料はアルミナで構成され、また基板押さえ治具あるいはクランプ裏面はアルミナ素地のままである。
【0003】
ところで、従来のエッチング装置における基板保持機構の主たる目的は、熱伝導性を良くすることにあった。従って、高誘電率材料のように、プラズマ照射により表面電位と裏面電位の間に大きな隔たりがなく、高電圧(静電)破壊が生じないので、形状制御と均一エッチングが可能な基板電極構造であれば良かった。従来技術においては、例えば金属マスクを用いてSiOをエッチングした場合、僅かにアンダーカットが発生することが見出される。SiOは電荷を持たないプラズマ中の活性種と反応することはなくイオン衝撃でエッチングが進行する。イオンと電子の表面への到達量の僅かな差によって発生した電荷によりマスク金属が帯電し誘電体内部と異なった電位が発生する。従って、入射イオンの軌道は表面の金属マスクに帯電した電荷の作用で曲げられ、その結果アンダーカットが発生すると解釈できる。
【0004】
誘電率の低い誘電体ではこのように僅かなアンダーカットが生じるだけで基板割れの問題は発生しない。しかし、誘電率の高い誘電体では帯電する電荷量が多く静電破壊にまで達することが数多くの実験で確認された。これまでの実験では、密度1011cm−3のAr+Cプラズマを用いてLiNbOをエッチングしたとき5分間は基板の割れが発生しなかったものの10分では割れが発生した。この基板の割れは主として温度むら及びチャージアップが要因であることが判った。
【0005】
【発明が解決しようとする課題】
そこで、本発明は上記のような従来装置に伴う問題点である温度むら及びチャージアップを解消して基板の割れを発生しないようにしたエッチング方法及び装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明の第1の発明によれば、真空チャンバ内にガスを導入してマイクロ波や高周波を用いて高密度プラズマを形成し、基板電極上に焦電性高誘電体材料の基板を載置して、基板を加工するエッチング装置において、表面上に加工すべき基板を受ける受け面凹部を形成し、基板受け面凹部に対応した裏面の部分に裏面凹部と、裏面凹部を囲んで基板電極に接触する周囲接触面部とを形成し、裏面凹部から基板受け面凹部に貫通する複数のガス流通路を形成したアルミニウムから成る基板トレーを有し、基板電極上に装着した際に基板を基板トレー上にクランプリングにより固定すると共に主として基板トレーの表面側に冷却ガスを流すことができるようにように構成したことを特徴としている。
【0007】
基板トレーの裏面凹部から周囲接触面部までの高さは5〜100μm、好ましくは、10〜50μmに設定され得る。
【0008】
このように構成した本発明によるエッチング装置では、高誘電体基板の装着された基板トレーの裏面及び表面に一様に冷却ガスを流すことができるように構成されているので、基板に対して温度むらの生じるのが防止でき、それによりチャージアップも防止されるようになる。
【0009】
また、本発明の第2の発明によれば、真空チャンバ内にガスを導入してマイクロ波や高周波を用いて高密度プラズマを形成し、基板電極上に焦電性高誘電体材料の基板を載置して、基板を加工するエッチング方法において、表面上に加工すべき基板を受ける受け面凹部を形成し、基板トレーの表面における基板受け面凹部に対応した裏面の部分に裏面凹部と、裏面凹部を囲んで基板電極と接触する接触面部とを形成し、裏面凹部から基板受け面凹部に貫通する複数のガス流通路を形成したアルミニウムから成る基板トレーを用いて、基板電極上に加工すべき基板を装着し、冷却ガスを主として基板トレーの表面側に流すことを特徴としている。
【0010】
このように構成した本発明によるエッチング方法では、高誘電体基板のエッチング時に基板を支持している基板トレーの表側に主として冷却ガスを流すようにしているので、良好な冷却効率を得ることができるようになる。
【0011】
本発明の方法においては、基板トレーに供給される冷却ガスの漏れ量は7sccm以下に設定され処理中の基板温度を100℃以下に維持するようにされ得る。
【0012】
また、基板トレー上に載置する基板は好ましくは、基板に実質的な機械的応力を与えずしかも基板の処理中に発生する応力を逃がすことのできる程度のクランプ力で保持され得る。
【0013】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態について説明する。
図1には、高誘電体基板をエッチングする際に用いる本発明の一実施の形態によるエッチング装置の要部を示す。図1において、1は基板電極であり、アルミニウムで構成され、図示していない真空チャンバー内に配置されている。基板電極1上には基板トレー2が載置される。この基板トレー2の表面上には、LiNbOやPZT等の焦電性高誘電率材料の基板3を受ける受け面凹部2aが形成され、この受け面凹部2aは基板3の形状及び外寸に合わせて構成され、そして受け面凹部2aの表面は高平坦度及び高平滑度となるようにし、絶縁物である基板との接触面積をできるだけ広く確保するようにしている。また、基板トレー2の裏面には、基板受け面凹部2aに対応した部分に裏面凹部2bが形成され、この裏面凹部2bは基板電極1に接触する周囲接触面部2cで画定されている。周囲接触面部2cは高平坦度及び高面精度に形成されている。さらに、基板トレー2には、その裏面凹部2bから基板受け面凹部2aに貫通する複数のガス流路2dが形成されている。基板トレー2の裏面側における裏面凹部2bの底面と周囲接触面部2cとの間の段差は、Heガスによる良好な冷却効率を得る観点から5〜100μm、好ましくは、10〜50μmに設定され得る。
【0014】
基板電極1には図示したようにHeガスの通路1aが設けられ、この通路1aの外端は真空チャンバー外に設けられた流量調節用のマスフローメーター4を介してHeガス供給源5が接続されている。通路1aの内端は基板トレー2の裏面凹部2bに連通するようにされ、それにより、Heガス供給源5からマスフローメーター4及び基板電極1の通路1aを介して基板トレー2の表面にHeガスが供給できるようにされているが、裏面側にもHeガスが供給され得る。
【0015】
また、基板電極1上には、基板トレー2を位置決めするためのガイドリング6が配置されている。このガイドリング6によって位置決めされた基板トレー2に載置された基板3はクランプリング7によって本実施の形態では3点で支持されている。この場合、基板3に対する押圧力は、基板に過大な機械的応力を与えずしかも基板の処理中に発生する応力を逃がすことのできる程度に設定されるべきである。クランプリング7の構成材料としてはアルミナのような高誘電体材料は一般に金属酸化物であり、エッチング速度が低く、エッチング耐性が強いので、アルミナが最も適している。
【0016】
このように構成した図示装置の動作について説明する。
図示していないローディング室に用意された基板トレーに載置された基板は、基板電極1上に搬入され、ガイドリング6によって位置決めされ、基板トレー2の裏面側における周囲接触面部2cを基板電極1の表面に密着させて保持される。Heガス供給源5からマスフローメーター4及び基板電極1の通路1aを介して基板トレー2の裏面及び表面にHeガスが1730Paまで導入され、基板トレー2を所望の冷却温度に設定する。この場合、好ましくはHeガス供給源5からマスフローメーター4及び基板電極1の通路1aを介して導入されたHeガスは主として基板トレー2の表側すなわち基板3と基板トレー2との間に沿って流れる(漏れる)ようにされ、基板トレー2の裏面側すなわち基板トレー2の裏面と基板電極1との間では滞留はするが実質的に流れない(漏れない)ようにされる。
【0017】
基板トレー2におけるHeガスの漏れ量について以下の条件で測定した結果を図3に示す。
Heガス供給源5からマスフローメーター4及び基板電極1の通路1aを介して基板トレー2に導入されるHeガスの圧力を1730Paとし、プラズマ放電なしでLiNbO基板を基板トレー2に載置して測定した。
【0018】
次に、ArとCの混合ガスを真空チャンバー(図示していない)に100sccm導入し、真空チャンバー内の圧力を0.33Paにし、プラズマ形成用誘導コイル(図示していない)に高周波数電力を600W、基板電極2に高周波バイアス電力を350W印加しエッチングを行った。その結果、30分間のエッチング時間において基板トレー2におけるHeガスの漏れ量は7sccm以下に保持され、それにより基板3の温度はほぼ100℃以下に維持され、エッチング中の熱流入による温度上昇を抑えることができ、それによる熱応力も抑制でき、基板割れを発生せず30分のエッチングが可能であった。
【0019】
図2には、本発明の別の実施の形態によるエッチング装置の要部を示す。図1と対応する部分は同じ符号で示す。
図2に示す構造では、基板トレー2の裏面側の周辺部に段部を設ける代りに、厚さ40μmの環状緩衝材8が貼られている。その他の構造は図1に示す実施の形態の場合と実質的に同じである。
【0020】
【発明の効果】
以上説明してきたように、本発明によるエッチング装置においては、表面上に加工すべき基板を受ける受け面凹部を形成し、基板受け面凹部に対応した裏面の部分に裏面凹部と、裏面凹部を囲んで基板電極に接触する周囲接触面部とを形成し、裏面凹部から基板受け面凹部に貫通する複数のガス流通路を形成したアルミニウムから成る基板トレーを有し、基板電極上に装着した際に基板を基板トレー上にクランプリングにより固定すると共に主として基板トレーの表面側に冷却ガスを流すようにように構成したことにより、処理中基板はほぼ一様な温度に維持され、温度むら及びそれによるチャージアップが抑制でき、基板割れを起こさずに高誘電体加工が可能になるという効果を奏する。
【0021】
また、本発明によるエッチング方法においては、表面上に加工すべき基板を受ける受け面凹部を形成し、基板トレーの表面における基板受け面凹部に対応した裏面の部分に裏面凹部と、裏面凹部を囲んで基板電極と接触する接触面部とを形成し、裏面凹部から基板受け面凹部に貫通する複数のガス流通路を形成したアルミニウムから成る基板トレーを用いて、基板電極上に加工すべき基板を装着し、冷却ガスを主として基板トレーの表面側に沿って流すことにより、基板に対する良好な冷却効率が得られ、その結果、処理中基板をほぼ一様な温度に維持することができ、温度むら及びそれによるチャージアップが抑制でき、基板割れを起こさずに高誘電体加工が可能になるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施の形態におけるエッチング装置の要部を示す概略断面図。
【図2】本発明の別の実施の形態におけるエッチング装置の要部を示す概略断面図。
【図3】基板トレーにおけるHeガスの漏れ量の測定結果を示すグラフ。
【符号の説明】
1 :基板電極
1a:ガスの通路
2 :基板トレー
2a:受け面凹部
2b:裏面凹部
2c:周囲接触面部
2d:ガス流路
3 :焦電性高誘電率材料の基板
4 :マスフローメーター
5 :Heガス供給源
6 :ガイドリング
7 :クランプリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an etching method and apparatus for processing a pyroelectric high dielectric constant material such as LiNbO 3 or PZT that can be used in an optical modulator for an optical waveguide in plasma.
[0002]
[Prior art]
In this type of conventional etching apparatus, the surface of the substrate electrode is coated with an anodized film of 20 to 30 μm in consideration of corrosion resistance, the substrate pressing jig or clamp material is made of alumina, and the substrate pressing jig or clamp The back side remains the alumina substrate.
[0003]
Incidentally, the main purpose of the substrate holding mechanism in the conventional etching apparatus is to improve the thermal conductivity. Therefore, unlike a high dielectric constant material, there is no large gap between the surface potential and the back surface potential due to plasma irradiation, and high voltage (electrostatic) breakdown does not occur. Therefore, a substrate electrode structure capable of shape control and uniform etching is used. I wish I had it. In the prior art, it is found that slight undercut occurs when, for example, SiO 2 is etched using a metal mask. SiO 2 does not react with active species in plasma having no charge, and etching proceeds by ion bombardment. The mask metal is charged by a charge generated by a slight difference in the amount of ions and electrons reaching the surface, and a potential different from that inside the dielectric is generated. Therefore, it can be interpreted that the trajectory of incident ions is bent by the action of electric charges charged on the metal mask on the surface, and as a result, undercut occurs.
[0004]
In a dielectric having a low dielectric constant, such a slight undercut is generated and the problem of substrate cracking does not occur. However, it has been confirmed in many experiments that a dielectric material having a high dielectric constant has a large amount of charge and reaches electrostatic breakdown. In the experiment so far, when LiNbO 3 was etched using Ar + C 4 F 8 plasma having a density of 10 11 cm −3 , the substrate did not crack for 5 minutes, but cracked in 10 minutes. It was found that the cracks in the substrate were mainly caused by temperature unevenness and charge-up.
[0005]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an etching method and apparatus that eliminates temperature unevenness and charge-up, which are problems associated with the above-described conventional apparatus, and prevents the substrate from cracking.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a gas is introduced into a vacuum chamber to form a high-density plasma using microwaves or high-frequency waves, and pyroelectricity is formed on the substrate electrode. In an etching apparatus for processing a substrate by placing a substrate of a high dielectric material, a receiving surface recess for receiving the substrate to be processed is formed on the surface, and a back surface recess is formed on the back surface corresponding to the substrate receiving surface recess. A substrate tray made of aluminum having a peripheral contact surface portion surrounding the back surface recess and contacting the substrate electrode, and a plurality of gas flow passages penetrating from the back surface recess to the substrate receiving surface recess. The substrate is fixed on the substrate tray by a clamp ring when mounted, and the cooling gas can be mainly flowed to the surface side of the substrate tray.
[0007]
The height from the concave portion on the back surface of the substrate tray to the peripheral contact surface portion can be set to 5 to 100 μm, preferably 10 to 50 μm.
[0008]
The etching apparatus according to the present invention configured as described above is configured so that the cooling gas can flow uniformly on the back surface and the front surface of the substrate tray on which the high dielectric substrate is mounted. Unevenness can be prevented, thereby preventing charge-up.
[0009]
Further, according to the second invention of the present invention, a gas is introduced into the vacuum chamber to form a high-density plasma using microwaves or high-frequency waves, and a pyroelectric high dielectric material substrate is formed on the substrate electrode. In the etching method for mounting and processing the substrate, a receiving surface recess for receiving the substrate to be processed is formed on the surface, and a back surface recess and a back surface are formed on the back surface corresponding to the substrate receiving surface recess on the surface of the substrate tray. It should be processed on the substrate electrode using a substrate tray made of aluminum that forms a contact surface portion that surrounds the recess and contacts the substrate electrode, and that has a plurality of gas flow passages that penetrate from the back surface recess to the substrate receiving surface recess. A substrate is mounted, and a cooling gas is mainly flowed to the surface side of the substrate tray.
[0010]
In the etching method according to the present invention configured as described above, since the cooling gas is mainly flowed to the front side of the substrate tray supporting the substrate at the time of etching the high dielectric substrate, a good cooling efficiency can be obtained. It becomes like this.
[0011]
In the method of the present invention, the leakage amount of the cooling gas supplied to the substrate tray can be set to 7 sccm or less, and the substrate temperature during processing can be maintained at 100 ° C. or less.
[0012]
Further, the substrate placed on the substrate tray can be preferably held with a clamping force that does not give a substantial mechanical stress to the substrate and can release the stress generated during the processing of the substrate.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows a main part of an etching apparatus according to an embodiment of the present invention used for etching a high dielectric substrate. In FIG. 1, reference numeral 1 denotes a substrate electrode, which is made of aluminum and disposed in a vacuum chamber (not shown). A substrate tray 2 is placed on the substrate electrode 1. On the surface of the substrate tray 2, a receiving surface recess 2 a that receives the substrate 3 of a pyroelectric high dielectric constant material such as LiNbO 3 or PZT is formed. The receiving surface recess 2 a has the shape and outer dimensions of the substrate 3. In addition, the surface of the receiving surface recess 2a is made to have high flatness and high smoothness so as to ensure as wide a contact area as possible with the substrate which is an insulator. A back surface recess 2 b is formed on the back surface of the substrate tray 2 at a portion corresponding to the substrate receiving surface recess 2 a, and the back surface recess 2 b is defined by a peripheral contact surface portion 2 c that contacts the substrate electrode 1. The peripheral contact surface portion 2c is formed with high flatness and high surface accuracy. Further, the substrate tray 2 is formed with a plurality of gas flow paths 2d penetrating from the back surface recess 2b to the substrate receiving surface recess 2a. The level difference between the bottom surface of the back surface recess 2b and the peripheral contact surface portion 2c on the back surface side of the substrate tray 2 can be set to 5 to 100 μm, preferably 10 to 50 μm from the viewpoint of obtaining good cooling efficiency with He gas.
[0014]
As shown in the figure, the substrate electrode 1 is provided with a He gas passage 1a, and an outer end of the passage 1a is connected to a He gas supply source 5 via a mass flow meter 4 for flow rate adjustment provided outside the vacuum chamber. ing. The inner end of the passage 1 a communicates with the back surface recess 2 b of the substrate tray 2, whereby the He gas is supplied from the He gas supply source 5 to the surface of the substrate tray 2 through the mass flow meter 4 and the passage 1 a of the substrate electrode 1. However, He gas can also be supplied to the back side.
[0015]
A guide ring 6 for positioning the substrate tray 2 is disposed on the substrate electrode 1. The substrate 3 placed on the substrate tray 2 positioned by the guide ring 6 is supported by the clamp ring 7 at three points in the present embodiment. In this case, the pressing force on the substrate 3 should be set to such an extent that stress that is generated during the processing of the substrate can be released without applying excessive mechanical stress to the substrate. As a constituent material of the clamp ring 7, alumina is most suitable because a high dielectric material such as alumina is generally a metal oxide and has a low etching rate and high etching resistance.
[0016]
The operation of the illustrated apparatus configured as described above will be described.
A substrate placed on a substrate tray prepared in a loading chamber (not shown) is loaded onto the substrate electrode 1 and positioned by the guide ring 6, and the peripheral contact surface portion 2 c on the back side of the substrate tray 2 is moved to the substrate electrode 1. It is held in intimate contact with the surface. He gas is introduced up to 1730 Pa from the He gas supply source 5 through the mass flow meter 4 and the passage 1a of the substrate electrode 1 to the back and front surfaces of the substrate tray 2 to set the substrate tray 2 to a desired cooling temperature. In this case, preferably, He gas introduced from the He gas supply source 5 through the mass flow meter 4 and the passage 1a of the substrate electrode 1 mainly flows along the front side of the substrate tray 2, that is, between the substrate 3 and the substrate tray 2. (Leaks), and stays between the back side of the substrate tray 2, that is, the back side of the substrate tray 2 and the substrate electrode 1, but does not substantially flow (does not leak).
[0017]
FIG. 3 shows the results of measuring the amount of He gas leakage in the substrate tray 2 under the following conditions.
The pressure of He gas introduced from the He gas supply source 5 to the substrate tray 2 through the mass flow meter 4 and the passage 1a of the substrate electrode 1 is set to 1730 Pa, and a LiNbO 3 substrate is placed on the substrate tray 2 without plasma discharge. It was measured.
[0018]
Next, a mixed gas of Ar and C 4 F 8 is introduced into a vacuum chamber (not shown) at 100 sccm, the pressure in the vacuum chamber is set to 0.33 Pa, and the plasma forming induction coil (not shown) is high. Etching was performed by applying 600 W of frequency power and 350 W of high frequency bias power to the substrate electrode 2. As a result, the leakage amount of He gas in the substrate tray 2 is maintained at 7 sccm or less during the etching time of 30 minutes, whereby the temperature of the substrate 3 is maintained at approximately 100 ° C. or less, and temperature rise due to heat inflow during etching is suppressed. It was possible to suppress the thermal stress caused by this, and it was possible to perform etching for 30 minutes without generating a substrate crack.
[0019]
FIG. 2 shows a main part of an etching apparatus according to another embodiment of the present invention. Portions corresponding to those in FIG. 1 are denoted by the same reference numerals.
In the structure shown in FIG. 2, an annular cushioning material 8 having a thickness of 40 μm is pasted instead of providing a stepped portion in the peripheral portion on the back side of the substrate tray 2. Other structures are substantially the same as those of the embodiment shown in FIG.
[0020]
【The invention's effect】
As described above, in the etching apparatus according to the present invention, the receiving surface recess for receiving the substrate to be processed is formed on the surface, and the back surface recess and the back surface recess are surrounded by the back surface corresponding to the substrate receiving surface recess. And a substrate tray made of aluminum and having a plurality of gas flow passages penetrating from the recesses on the back surface to the recesses on the substrate receiving surface. The substrate tray is mounted when mounted on the substrate electrode. The substrate is fixed on the substrate tray by a clamp ring, and the cooling gas is made to flow mainly on the surface side of the substrate tray, so that the substrate is maintained at a substantially uniform temperature during processing, and the temperature unevenness and the charge caused thereby. It is possible to suppress the increase, and it is possible to perform high dielectric processing without causing substrate cracking.
[0021]
Further, in the etching method according to the present invention, a receiving surface recess for receiving a substrate to be processed is formed on the surface, and the back surface recess and the back surface recess are surrounded by a back surface portion corresponding to the substrate receiving surface recess on the surface of the substrate tray. The substrate to be processed is mounted on the substrate electrode using a substrate tray made of aluminum that forms a contact surface portion that contacts the substrate electrode and forms a plurality of gas flow passages that penetrate from the back surface recess to the substrate receiving surface recess. In addition, by flowing the cooling gas mainly along the surface side of the substrate tray, good cooling efficiency for the substrate can be obtained, and as a result, the substrate can be maintained at a substantially uniform temperature during processing, and temperature unevenness and As a result, it is possible to suppress the charge-up, and it is possible to perform high dielectric processing without causing substrate cracking.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a main part of an etching apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing a main part of an etching apparatus according to another embodiment of the present invention.
FIG. 3 is a graph showing a measurement result of a leak amount of He gas in a substrate tray.
[Explanation of symbols]
1: substrate electrode 1a: gas passage 2: substrate tray 2a: receiving surface recess 2b: back surface recess 2c: peripheral contact surface 2d: gas flow path 3: substrate of pyroelectric high dielectric constant material 4: mass flow meter 5: He Gas supply source 6: Guide ring 7: Clamp ring

Claims (5)

ガスを導入してマイクロ波や高周波を用いて高密度プラズマを形成し、基板電極上に焦電性高誘電体材料の基板を載置して、基板を加工するエッチング装置において、表面上に加工すべき基板を受ける受け面凹部を形成し、基板受け面凹部に対応した裏面の部分に裏面凹部と、裏面凹部を囲んで基板電極に接触する周囲接触面部とを形成し、裏面凹部から基板受け面凹部に貫通する複数のガス流通路を形成したアルミニウムから成る基板トレーを有し、基板電極上に装着した際に基板を基板トレー上にクランプリングにより固定すると共に主として基板トレーの表面側に冷却ガスを流すようにように構成したことを特徴とする焦電性高誘電体のエッチング装置。Processed on the surface of an etching apparatus that processes a substrate by forming a high-density plasma using a microwave or high frequency by introducing a gas, placing a substrate of a pyroelectric high-dielectric material on the substrate electrode A receiving surface recess for receiving the substrate to be formed is formed, a back surface recess corresponding to the substrate receiving surface recess is formed, and a peripheral contact surface portion that surrounds the back surface recess and contacts the substrate electrode is formed. It has a substrate tray made of aluminum with a plurality of gas flow passages penetrating the surface recess, and when mounted on the substrate electrode, the substrate is fixed on the substrate tray by a clamp ring and cooled mainly to the surface side of the substrate tray An apparatus for etching a pyroelectric high-dielectric, characterized in that a gas is allowed to flow. 基板トレーの裏面凹部から周囲接触面部までの高さが5〜100μmであることを特徴とする請求項1に記載の焦電性高誘電体のエッチング装置。The pyroelectric high-dielectric etching apparatus according to claim 1, wherein a height from a back surface concave portion to a peripheral contact surface portion of the substrate tray is 5 to 100 μm. 真空チャンバ内にガスを導入してマイクロ波や高周波を用いて高密度プラズマを形成し、基板電極上に焦電性高誘電体材料の基板を載置して、基板を加工するエッチング方法において、表面上に加工すべき基板を受ける受け面凹部を形成し、基板トレーの表面における基板受け面凹部に対応した裏面の部分に裏面凹部と、裏面凹部を囲んで基板電極と接触する接触面部とを形成し、裏面凹部から基板受け面凹部に貫通する複数のガス流通路を形成したアルミニウムから成る基板トレーを用いて、基板電極上に加工すべき基板を装着し、冷却ガスを主として基板トレーの表面側に沿って流すことを特徴とする焦電性高誘電体のエッチング方法。In an etching method in which a gas is introduced into a vacuum chamber to form high-density plasma using microwaves or high-frequency waves, a substrate of a pyroelectric high-dielectric material is placed on a substrate electrode, and the substrate is processed. A receiving surface recess for receiving a substrate to be processed is formed on the front surface, a back surface recess corresponding to the substrate receiving surface recess on the surface of the substrate tray, and a contact surface portion surrounding the back surface recess and contacting the substrate electrode. A substrate tray made of aluminum is formed and formed with a plurality of gas flow passages penetrating from the back surface recess to the substrate receiving surface recess, and a substrate to be processed is mounted on the substrate electrode, and cooling gas is mainly used on the surface of the substrate tray. A method of etching a pyroelectric high-dielectric, characterized by flowing along a side. 基板トレーに供給される冷却ガスの漏れ量を7sccm以下に設定して処理中の基板温度を100℃以下に維持することを特徴とする請求項3に記載の焦電性高誘電体のエッチング方法。4. The pyroelectric high-dielectric etching method according to claim 3, wherein the leakage temperature of the cooling gas supplied to the substrate tray is set to 7 sccm or less to maintain the substrate temperature during processing at 100 ° C. or less. . 基板トレー上に載置する基板を、基板に実質的な機械的応力を与えずしかも基板の処理中に発生する応力を逃がすことのできる程度のクランプ力で保持することを特徴とする請求項3に記載の焦電性高誘電体のエッチング方法。4. The substrate placed on the substrate tray is held with a clamping force that does not give a substantial mechanical stress to the substrate and can release the stress generated during the processing of the substrate. A method for etching a pyroelectric high-dielectric material described in 1.
JP2001393524A 2001-12-26 2001-12-26 Pyroelectric high-dielectric etching method and apparatus Expired - Lifetime JP3640386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393524A JP3640386B2 (en) 2001-12-26 2001-12-26 Pyroelectric high-dielectric etching method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393524A JP3640386B2 (en) 2001-12-26 2001-12-26 Pyroelectric high-dielectric etching method and apparatus

Publications (2)

Publication Number Publication Date
JP2003197608A JP2003197608A (en) 2003-07-11
JP3640386B2 true JP3640386B2 (en) 2005-04-20

Family

ID=27600497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393524A Expired - Lifetime JP3640386B2 (en) 2001-12-26 2001-12-26 Pyroelectric high-dielectric etching method and apparatus

Country Status (1)

Country Link
JP (1) JP3640386B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098012A (en) * 2008-10-14 2010-04-30 Ulvac Japan Ltd Etching equipment and etching method
JP2010098010A (en) * 2008-10-14 2010-04-30 Ulvac Japan Ltd Etching equipment and etching method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5264403B2 (en) * 2008-10-14 2013-08-14 株式会社アルバック Substrate tray, etching apparatus and etching method used in plasma etching apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098012A (en) * 2008-10-14 2010-04-30 Ulvac Japan Ltd Etching equipment and etching method
JP2010098010A (en) * 2008-10-14 2010-04-30 Ulvac Japan Ltd Etching equipment and etching method

Also Published As

Publication number Publication date
JP2003197608A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
TWI818997B (en) Substrate support pedestal
KR100635845B1 (en) Electrostatic chuck and its manufacturing method
US8124539B2 (en) Plasma processing apparatus, focus ring, and susceptor
US6544379B2 (en) Method of holding substrate and substrate holding system
KR100980972B1 (en) Plasma processing apparatus and method of plasma processing
US20100307686A1 (en) Substrate processing apparatus
JPH0119253B2 (en)
TW200423250A (en) Plasma processing device, electrode plate for the same, and manufacturing method for electrode plate
JP3640385B2 (en) Pyroelectric high-dielectric etching method and apparatus
JPH0963793A (en) Plasma processing device
JP2003309168A (en) Electrostatic attraction holder and substrate treatment device
CN112553592B (en) Method for processing electrostatic chuck by using ALD (atomic layer deposition) process
JPH0581674B2 (en)
JP5264403B2 (en) Substrate tray, etching apparatus and etching method used in plasma etching apparatus
JP2022542090A (en) Process kit sheath and temperature control
JP3640386B2 (en) Pyroelectric high-dielectric etching method and apparatus
US5447595A (en) Electrodes for plasma etching apparatus and plasma etching apparatus using the same
JP4456218B2 (en) Plasma processing equipment
JPH01200625A (en) Semiconductor wafer processing equipment
JP2002184756A (en) Plasma processing apparatus
JP2008042137A (en) Electrostatic chuck device
JP2004006813A (en) Electrostatic chuck susceptor and substrate processor
JP2913666B2 (en) Sample holding device
JP3264441B2 (en) Substrate holding device for vacuum processing equipment
JPS63227021A (en) Dry etching system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

R150 Certificate of patent or registration of utility model

Ref document number: 3640386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term