JPS61118970A - Molten salt fuel cell - Google Patents

Molten salt fuel cell

Info

Publication number
JPS61118970A
JPS61118970A JP59239742A JP23974284A JPS61118970A JP S61118970 A JPS61118970 A JP S61118970A JP 59239742 A JP59239742 A JP 59239742A JP 23974284 A JP23974284 A JP 23974284A JP S61118970 A JPS61118970 A JP S61118970A
Authority
JP
Japan
Prior art keywords
electrolyte
electrode
boron nitride
nickel
molten salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59239742A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Akihiro Hosoi
昭宏 細井
Junji Niikura
順二 新倉
Hisao Giyouten
久朗 行天
Teruyo Sakakibara
榊原 照代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59239742A priority Critical patent/JPS61118970A/en
Publication of JPS61118970A publication Critical patent/JPS61118970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the life of a molten salt fuel cell by inhibiting the migration of the electrolyte from the surface of the gas-diffusing electrode to the cell jar wall and pipings by forming a boron nitride layer on the surface of the oxidizing or fuel electrode touching the electrolyte. CONSTITUTION:After a powdery mixture composed of 92pts. nickel carbonyl and 8pts. chromium powder s packed into a core material consisting of a nickel net, the thus formed body is sintered in a hydrogen stream at 950 deg.C to obtain a sintered body principally consisting of nickel. Next, a boron nitride powder is fixed by pressure to the surface touching the electrolyte of the sintered body used as the fuel electrode. On the other hand, after a mixture composed of 100pts. nickel carbonyl and 32pts. lithium carbonate is heated in air and then oxidized, the oxidized mixture is pulverized before the pulverized mixture is pressed and packed into a foamy nickel plate and then the thus formed body is sintered in air to make an oxidizing electrode. Next, a boron nitride powder is fixed by pressure to the surface of the oxidizing electrode touching the electrolyte to form a porous layer between the oxidizing electrode and the electrolyte.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、600〜700℃程度で作動する溶融塩燃料
電池、と〈Kその電極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a molten salt fuel cell operating at about 600 to 700° C. and its electrode.

従来の技術 従来溶融塩燃料電池としては、溶融アルカリ炭酸塩を用
いる釆が最も一般的である。すなわち、炭酸リチウム、
炭酸ナトリウム、炭酸カリウムなどの混合物を電解質と
し、これをアルミン酸リチウムなどの耐溶融塩性の粉末
とともに板状に加工し、これさ燃料極と酸化極の間に保
持して電池を構成している。
BACKGROUND OF THE INVENTION The most common conventional molten salt fuel cells are those using molten alkali carbonates. That is, lithium carbonate,
A mixture of sodium carbonate, potassium carbonate, etc. is used as an electrolyte, which is processed into a plate shape along with a molten salt-resistant powder such as lithium aluminate, and this is held between a fuel electrode and an oxidation electrode to form a battery. There is.

酸化極としては、酸化性雰囲気中で耐溶融炭酸塩性を必
要とするところから、リチウムをドープした酸化ニッケ
ルが最も普通に考えられ試験されてきた。これは導電性
や触媒作用も有しているので酸化極の有力な候補になっ
ている。
As the oxidizing electrode, lithium-doped nickel oxide has been most commonly considered and tested because of the need for molten carbonate resistance in an oxidizing atmosphere. It also has electrical conductivity and catalytic activity, making it a promising candidate for an oxidizing electrode.

一方、燃料極としては、還元性雰囲気中で溶融炭酸塩に
耐える必要があるところから、多くの導電性材料のうち
二lケルが最も多く取り上げられ、これに作動時での過
焼結を抑制する目的でクロムなどの添加剤が用いられて
いる。
On the other hand, among the many conductive materials, Ni-Kel is most commonly used for fuel electrodes because it must withstand molten carbonate in a reducing atmosphere, and it suppresses oversintering during operation. Additives such as chromium are used for this purpose.

すなわち、最も一般的な電池構成材料として、リチウム
ドープニッケル酸化物の多孔性酸素極、溶融炭酸アルカ
リ塩とアルミン酸リチウムよりなる電解質体、ニッケル
多孔体燃料極の組合せである。
That is, the most common battery constituent materials are a combination of a porous oxygen electrode made of lithium-doped nickel oxide, an electrolyte body made of molten alkali carbonate and lithium aluminate, and a porous nickel fuel electrode.

このような各構成要素を用いて構成された溶融塩燃料電
池の特性、とくに寿命の向上にはなお多くの努力すべき
課題解決がある。たとえば、電極と電解質体との密着性
の長期維持、電解質の電槽や電極への移動により電解質
保持体中での電解質の不足など電解質に起因する問題点
がある。これらが、電極などの耐食性の問題、過焼結に
よる電極の多孔度の減少にともなう性能の低下などとと
もに重要である。
There are still many problems to be solved in order to improve the characteristics, especially the lifespan, of molten salt fuel cells constructed using these components. For example, there are problems caused by the electrolyte, such as long-term maintenance of adhesion between the electrode and the electrolyte body, and electrolyte shortage in the electrolyte holder due to migration of the electrolyte to the container or electrode. These problems are important along with the problem of corrosion resistance of electrodes, etc., and the deterioration of performance due to reduction in electrode porosity due to oversintering.

この電極と電解質の密着性の長期維持と電解質の移動に
ともなう電解質保持体中の電解質の不足などを抑制する
だめの手段として、電極、電解質体間に余分の電解質を
塗布するなどの試みがあり、一応の効果がある。すなわ
ち、このような手段により、電解質の不足による性能の
低下の抑制はかなり可能になった。
As a means to maintain long-term adhesion between the electrode and electrolyte and to prevent electrolyte shortages in the electrolyte holding body due to electrolyte movement, attempts have been made to apply extra electrolyte between the electrode and electrolyte body. , has some effect. In other words, by such means, it has become possible to considerably suppress the deterioration in performance due to electrolyte shortage.

発明が解決しようとする問題点 しかし、長期の作動になると、やはり電極と電解質体と
の密着性の低下や、電解質の移動にともなう電解質保持
体中での電解質の不足を生じ、性能の低下をもたらすこ
とがわかった。
Problems to be Solved by the Invention However, in long-term operation, the adhesion between the electrode and the electrolyte body decreases, and electrolyte movement causes a shortage of electrolyte in the electrolyte holding body, resulting in a decrease in performance. I found out that it brings.

本発明は、電極を改良して、電解質が電極を通して移動
するのを抑制し、長寿命の溶融塩燃料電池を提供するも
のである。
The present invention improves the electrodes to inhibit electrolyte migration through the electrodes and provides a long-life molten salt fuel cell.

問題点を解決するだめの手段 本発明は、水素を主とする燃料、空気を主とする酸化剤
、それに溶融塩を電解質として用いる溶融塩燃料電池に
おいて、酸化極と燃料極のいずれかあるいは両極の電解
質と接する面に窒化ホウ素の層を形成したことを特徴と
する。
Means for Solving the Problems The present invention provides a molten salt fuel cell using a fuel mainly composed of hydrogen, an oxidizing agent mainly composed of air, and a molten salt as an electrolyte. A boron nitride layer is formed on the surface in contact with the electrolyte.

作  用 上記の手段により電解質がガス拡散電極面から電槽壁や
配管部分などへ移動することを抑制することができる。
Effect: By the above means, it is possible to suppress the movement of the electrolyte from the gas diffusion electrode surface to the wall of the battery case, piping, etc.

従って、電解質保持体中の電解質の不足を抑制し、電極
と電解質体との密着性の長期維持を可能にし、溶融塩燃
料電池の長寿命化を可能にすることができる。
Therefore, the shortage of electrolyte in the electrolyte holder can be suppressed, the adhesion between the electrode and the electrolyte body can be maintained for a long period of time, and the life of the molten salt fuel cell can be extended.

窒化ホウ素の層の形成法としては、電極面に粉末をすり
込むように圧着させるのが最も有効である。また、結着
剤とともにうずく塗着してもよい0その他に均一でしか
も密着性の点ですぐれた多孔層の形成手段として、窒化
ホウ素をスパッタリングで形成する方法がある。しかし
、工業的には操作が簡単で均一性の点でもほぼ良好であ
る粉末の圧着法、あるいは接着剤とともにうすぐ塗着す
る方法で十分である。
The most effective method for forming the boron nitride layer is to rub the powder onto the electrode surface and press it. In addition, as a method for forming a porous layer that is uniform and has excellent adhesion, there is a method of forming boron nitride by sputtering. However, industrially, it is sufficient to use a powder pressure bonding method, which is easy to operate and has almost good uniformity, or a method in which it is applied directly with an adhesive.

このような多孔層を酸化極に適用する場合には、たとえ
ばリチウム化したニッケル酸化物多孔体の電解質と接す
る面に0.5〜5++y/c−程度の量で形成させれば
よい。他の金属酸化物を用いた場合にもその添加量は同
じでよい。 ゛ 一方、燃料極についても同様に、たとえば二yケルを主
とする焼結体を電極とし、これの電解質と接する面に窒
化ホウ素を0.5〜5my/crj程度の量で形成させ
る。
When such a porous layer is applied to an oxidation electrode, it may be formed in an amount of about 0.5 to 5++y/c-, for example, on the surface of a lithiated nickel oxide porous body in contact with the electrolyte. Even when other metal oxides are used, the amount added may be the same. Similarly, for the fuel electrode, a sintered body mainly composed of, for example, 2Y Kel is used as the electrode, and boron nitride is formed in an amount of about 0.5 to 5 my/crj on the surface of the electrode that comes into contact with the electrolyte.

このようにして製作した酸化極と燃料極を用いて電池を
構成する。両極にこのような窒化ホウ素の多孔層を形成
した電極を用いることが電池の長寿命化に最も効果的で
あるが、いずれか一方の極にのみ用いてもそれだけの効
果はある。
A battery is constructed using the oxidation electrode and fuel electrode thus manufactured. Although it is most effective to extend the life of the battery by using an electrode in which such a porous layer of boron nitride is formed at both electrodes, the same effect can be obtained even if it is used only at one of the electrodes.

なお、窒化ホウ素の量については、0.5〜6キ/cM
程度が適当である。
In addition, regarding the amount of boron nitride, 0.5 to 6 K/cM
The degree is appropriate.

実施例 以下、本発明を燃料極、酸化極それぞれに適用した実施
例により説明する。
EXAMPLES Hereinafter, the present invention will be explained using examples in which the present invention is applied to a fuel electrode and an oxidation electrode.

カーボニルニッケル92 重量部(以下単に部で表す)
と、クロム粉末8部の混合粉末を用い、線径0.18m
、16メノンユのニッケルネットを芯材とし、公知の方
法で水素気流中950℃で焼結して多孔度76%、厚さ
約o、7=のニッケルを主とする焼結体を得る。これを
燃料極とし、電解質と接する面に窒化ホウ素の粉末を0
.5mf/cni程度の量になるように軽く圧着させる
Carbonyl nickel 92 parts by weight (hereinafter simply expressed in parts)
Using a mixed powder of 8 parts of chromium powder, the wire diameter was 0.18 m.
, 16-a-menu nickel net is used as a core material, and is sintered at 950° C. in a hydrogen stream by a known method to obtain a sintered body mainly made of nickel with a porosity of 76% and a thickness of about 0.7=. This is used as a fuel electrode, and boron nitride powder is applied to the surface in contact with the electrolyte.
.. Apply light pressure to approximately 5mf/cni.

一方、カーボニルニッケル1o○部に炭酸リチウム32
部を加え、空気中900℃で1時間加熱。
On the other hand, 32 parts of lithium carbonate is added to 10 parts of carbonyl nickel.
of water and heated in air at 900°C for 1 hour.

酸化させ、これを粉砕後に多孔度95%、厚さ約1.2
wn、平均孔径150mμの発泡状ニッケル板に加工光
てんし、加圧により厚さを0.9 rrvn K調整し
、ついで空気中98o℃で2時間焼結して酸化極とした
。多孔度は約78%である。この電極の電解質と接する
面に、窒化ホウ素の粉末を0.91n9/c−程度の量
になるように圧着して多孔層を形成させる。
After oxidation and pulverization, the porosity is 95% and the thickness is approximately 1.2
A foamed nickel plate with an average pore diameter of 150 mμ was processed into an optical fiber, the thickness was adjusted to 0.9 rrvn K by pressure, and then sintered in air at 98° C. for 2 hours to obtain an oxidizing electrode. The porosity is approximately 78%. A porous layer is formed by pressing boron nitride powder in an amount of about 0.91n9/c- on the surface of this electrode that is in contact with the electrolyte.

電解質およびその保持体としては、炭酸リチウムと炭酸
カリウムの混合塩を52重量%、アルミン酸リチウム粉
末48重量%から成るペーストタイプで、ホットプレス
により得られた厚さ1.1順のものを用いた。
As the electrolyte and its holder, a paste type consisting of 52% by weight of a mixed salt of lithium carbonate and potassium carbonate and 48% by weight of lithium aluminate powder, with a thickness of 1.1 mm obtained by hot pressing, was used. there was.

これらとステンレススチール製の電槽を用いて電池を構
成した。この溶融炭酸塩燃料電池を(5)とし、燃料極
にのみ窒化ホウ素の多孔層を形成させた電池を(B)、
酸化極のみに窒化ホウ素の多孔層を形成させた電池を9
としだ。これら本び発明の電池に対して、いずれの極に
も窒化ホウ素の層を形成させなかった電池を(至)比較
例とした。
A battery was constructed using these and a stainless steel battery case. This molten carbonate fuel cell is designated as (5), and a battery in which a porous layer of boron nitride is formed only on the fuel electrode is designated as (B).
9 batteries with a porous layer of boron nitride formed only on the oxidation electrode.
Toshida. In contrast to these batteries of the present invention, a battery in which no boron nitride layer was formed on either electrode was used as a comparative example.

各電池を650℃に保ち、燃料として炭酸ガス20チを
含む水素(容積比)を、同じく酸化剤と1しては炭酸ガ
ス3o%を含む空気をそれぞれ理論値の2倍と3倍供給
して作動させた。
Each cell was kept at 650°C, and hydrogen containing 20% carbon dioxide (by volume) was supplied as a fuel, and air containing 30% carbon dioxide was supplied as an oxidizer, twice and three times the theoretical value, respectively. I activated it.

本発明はとぐに寿命の向上に対して効果・が犬きいので
各電池の寿命特性について述べる。図は各電池を100
 mA /crtlの電流密度で連続放電した際の時間
−電圧の関係である。30oO時間で電解質を追加した
。作動時間5000時間で、電池(8)、(至)、(q
は、比較例qよりも電圧の低下が少なく、なかでも(3
)が最もすぐれた電圧を維持していることが明らかであ
る。その理由としては、本発明の電池では、電極の電解
質と接する面に設けた窒化ホウ素の多孔層が、あたかも
常温の電解液で作動させるガス拡散電極のフッ素樹脂防
水剤のような働きをして、溶融炭酸塩が電池を通して電
槽など他の部分へ移動することを抑制する効果があるこ
とによる。すなわち、このような移動の抑制により、電
解質体中での電解質の不足が抑制され。
Since the present invention is very effective in improving the lifespan, the lifespan characteristics of each battery will be described. The diagram shows each battery at 100
This is the time-voltage relationship during continuous discharge at a current density of mA/crtl. Electrolyte was added at 30oO hours. After 5000 hours of operation time, batteries (8), (to), (q
In this case, the voltage drop was smaller than in Comparative Example q, and in particular, (3
) clearly maintains the best voltage. The reason for this is that in the battery of the present invention, the porous layer of boron nitride provided on the surface of the electrode in contact with the electrolyte acts as if it were a fluororesin waterproofing agent for the gas diffusion electrode that is operated with an electrolyte at room temperature. This is because it has the effect of suppressing the movement of molten carbonate through the battery to other parts such as the battery case. That is, by suppressing such movement, shortage of electrolyte in the electrolyte body is suppressed.

これによって電池電圧の低下が減少するのである。This reduces the drop in battery voltage.

また、それほど多量に加えていないので、この層による
初期性能の低下は少ない。したがって、窒化ホウ素の多
孔層を両極に設けた電池(8)の放電経過時における電
圧低下は最も少なく、ついで溶融炭酸塩にぬれ易い酸化
極にもうけた電池(qの低下かつぎに少なく、以下(B
)、qの順に大きくなっている。
Also, since it is not added in such a large amount, there is little deterioration in initial performance due to this layer. Therefore, the battery (8) with a porous layer of boron nitride on both electrodes has the least voltage drop during discharge, and the battery with the oxidized electrode, which is easily wetted by molten carbonate, has the lowest voltage drop (q) and the following ( B
) and q increase in order.

まだ、実施例では、電極の電解質と接する面にのみ窒化
ホウ素の多孔層を形成させたが、この形成とともに電極
内部に窒化ホウ素を含浸したり、電極のガス側にも形成
させることも長寿命化にとって有効である。
In the example, a porous layer of boron nitride was formed only on the surface of the electrode in contact with the electrolyte, but it is also possible to impregnate the inside of the electrode with boron nitride or form it on the gas side of the electrode in order to extend the life of the electrode. It is effective for

発明の効果 以上のように本発明は、溶融塩燃料電池の長寿命化を可
能にするものである。
Effects of the Invention As described above, the present invention makes it possible to extend the life of a molten salt fuel cell.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は溶融塩燃料電池の連続放電時の電圧の経時変化を
示す図である。
The figure is a diagram showing changes in voltage over time during continuous discharge of a molten salt fuel cell.

Claims (3)

【特許請求の範囲】[Claims] (1)溶融塩電解質、前記電解質に接する酸化極及び燃
料極を備え、前記電極の少なくとも一方の電解質と接す
る面に、窒化ホウ素の層を形成させたことを特徴とする
溶融塩燃料電池。
(1) A molten salt fuel cell comprising a molten salt electrolyte, an oxidation electrode and a fuel electrode in contact with the electrolyte, and a layer of boron nitride is formed on at least one surface of the electrode in contact with the electrolyte.
(2)前記窒化ホウ素の層が、窒化ホウ素粉末の塗着層
からなる特許請求の範囲第1項記載の溶融塩燃料電池。
(2) The molten salt fuel cell according to claim 1, wherein the boron nitride layer comprises a coated layer of boron nitride powder.
(3)前記電極がその内にも窒化ホウ素を含む特許請求
の範囲第1項記載の溶融塩燃料電池。
(3) The molten salt fuel cell of claim 1, wherein said electrode also contains boron nitride.
JP59239742A 1984-11-13 1984-11-13 Molten salt fuel cell Pending JPS61118970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59239742A JPS61118970A (en) 1984-11-13 1984-11-13 Molten salt fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59239742A JPS61118970A (en) 1984-11-13 1984-11-13 Molten salt fuel cell

Publications (1)

Publication Number Publication Date
JPS61118970A true JPS61118970A (en) 1986-06-06

Family

ID=17049254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59239742A Pending JPS61118970A (en) 1984-11-13 1984-11-13 Molten salt fuel cell

Country Status (1)

Country Link
JP (1) JPS61118970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329458A (en) * 1986-07-23 1988-02-08 Toshiba Corp Inside reformation type molten carbonate fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329458A (en) * 1986-07-23 1988-02-08 Toshiba Corp Inside reformation type molten carbonate fuel cell

Similar Documents

Publication Publication Date Title
EP0667041B1 (en) Bifunctional airelectrode
CN109560310A (en) A kind of fuel cell very low platinum carrying amount self-humidifying membrane electrode and preparation method thereof
US2536699A (en) Alkaline dry cell
US3040115A (en) Fuel cell electrodes
Elmore et al. Intermediate temperature fuel cells
JPS61118970A (en) Molten salt fuel cell
US3783026A (en) Air-depolarized cells utilizing a cyanate or thiocyanate-containing electrolyte
Abrashev et al. Optimization of the bi-functional oxygen electrode (BOE) structure for application in a Zn-air accumulator
JP2813350B2 (en) Molten carbonate fuel cell
JPH10321245A (en) Molten carbonate type fuel cell
US3888699A (en) Primary dry cell
JPS61248363A (en) Fused salt fuel cell
JP2988673B2 (en) Molten carbonate fuel cell
US2535742A (en) Primary cell with electrodes of magnesium and magnesium permanganate
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation
JPS60167270A (en) Oxidation electrode for molten salt fuel cell
JPS61110971A (en) Molten salt fuel cell
JPS6171553A (en) Electrode for fused salt fuel cell
US3496021A (en) Fuel cell comprising a foraminous electrode consisting essentially of nickel manganese alloy
JPS59181463A (en) Gas diffusion electrode
JPH0520866B2 (en)
JPH0569267B2 (en)
JPH0570265B2 (en)
JPS58131666A (en) Fused salt type fuel cell
JPS60154466A (en) Manufacture of fuel electrode for molten carbonate fuel cell