JPS61118184A - Treatment of purified water - Google Patents

Treatment of purified water

Info

Publication number
JPS61118184A
JPS61118184A JP23816784A JP23816784A JPS61118184A JP S61118184 A JPS61118184 A JP S61118184A JP 23816784 A JP23816784 A JP 23816784A JP 23816784 A JP23816784 A JP 23816784A JP S61118184 A JPS61118184 A JP S61118184A
Authority
JP
Japan
Prior art keywords
water
manganese
activated carbon
iron
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23816784A
Other languages
Japanese (ja)
Inventor
Nobuaki Takagi
伸明 高木
Koichiro Nakai
中井 浩一郎
Mitsunobu Imamura
光伸 今村
Yoshitada Otani
大谷 嘉忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP23816784A priority Critical patent/JPS61118184A/en
Publication of JPS61118184A publication Critical patent/JPS61118184A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens

Abstract

PURPOSE:To remove efficiently org. substances forming trihalomethane, etc. by adsorbing and removing most of water-soluble org. substances, odor, iron, manganese, etc. with activated carbon, adding chlorine, and then treating the water in iron-removing and manganese-removing equipment. CONSTITUTION:In a water purifying plant wherein an activated carbon filter basin is provided, chlorine is not added before the activated carbon filter basin, and chlorine is added, after most of water-soluble org.substances, odor, iron, manganese, and ammoniacal nitrogen are removed by adsorption and filtration with activated carbon. Iron-removing and manganese-removing equipment are provided, and the water is treated in the equipment. Consequently, org. substances forming trihalomethane, org. halogen compds., etc.-, can be removed efficiently and economically without deteriorating the efficiency in removing iron, manganese, ammoniacal nitrogen, turbidity, bacteria, etc. which are the objects to be removed in the present water purification.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は浄水処理方法に関するものであり、さらに詳し
くは活性炭による水中の有機物、無機物の除去及び急速
砂濾過による無機物の除去処理に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a water purification method, and more specifically to a method for removing organic and inorganic substances in water using activated carbon and a process for removing inorganic substances by rapid sand filtration. .

(従来の技術) 従来、浄水処理場で行う浄水処理方法は、前塩素処理、
凝集沈殿処理、急速濾過処理1次いで後塩素処理を行う
処理方法が一般的に採られているのが現状である。
(Conventional technology) Conventionally, water treatment methods performed at water treatment plants include pre-chlorination,
Currently, a treatment method that includes coagulation-precipitation treatment, rapid filtration treatment, and then post-chlorine treatment is generally adopted.

(発明が解決しようとする問題点) 上記のごとき現行の処理方法では原水中の鉄。(Problem to be solved by the invention) Current treatment methods such as those mentioned above remove iron from raw water.

マンガン、アンモニア性窒素、ifi質、細菌類等はよ
く除去し得るが、有機物、臭気等の除去についてはほと
んど効果がない、また、原水中の有機物は前塩素処理に
て添加する塩素と反応して発ガン性が有ると疑われてい
るところのトリハロメタン(以下THMと略記する)や
有機ハロゲン化合物(以下↑OXと略記する)等が副成
して、水道の使命であるところのおいしい水、安全な水
の供給が脅かされている。
Although it can effectively remove manganese, ammonia nitrogen, ifi substances, bacteria, etc., it has little effect on removing organic substances, odors, etc. Also, organic substances in raw water react with the chlorine added during pre-chlorination treatment. Trihalomethane (hereinafter abbreviated as THM) and organic halogen compounds (hereinafter abbreviated as ↑OX), which are suspected to be carcinogenic, are produced as by-products, resulting in the deterioration of delicious water, which is the mission of waterworks. Safe water supplies are under threat.

ところで塩素処理時の塩素はアンモニア性窒素量の9倍
量以上を必要とするものであり、アンモニア性窒素濃度
がI PPMのときは9 PPM以上の塩素が必要とさ
れているので、この場合に塩素によるアンモニア性窒素
の分解は短時間内に進行し。
By the way, chlorine during chlorination requires at least 9 times the amount of ammonia nitrogen, and when the ammonia nitrogen concentration is I PPM, 9 PPM or more of chlorine is required. The decomposition of ammonia nitrogen by chlorine proceeds within a short time.

反応は終了するが5有機物によってのTOXやTHMの
生成も急速に進行し、有機物と塩素が共存する限りTO
X及びTHMの生成する反応は持続し増え続けているの
で、このようにアンモニア性窒素の濃度が低ければ塩素
の添加量は減少し得て、  TOXやTIIMの初期の
生成量が抑えられてはいるが、有機物の存在により水道
末端の各家庭の蛇口においてはTOX、  THMの濃
度は高(なる。
Although the reaction ends, the production of TOX and THM by the 5 organic substances also proceeds rapidly, and as long as organic substances and chlorine coexist, TO
Since the reaction producing X and THM continues and increases, if the concentration of ammonia nitrogen is low, the amount of chlorine added can be reduced, and the initial production amount of TOX and TIIM may be suppressed. However, due to the presence of organic matter, concentrations of TOX and THM are high at the faucets of each household at the water supply end.

これを解決するための水中の有機物、臭気。Organic matter and odor in water to solve this problem.

THM、  TOXの除去に有効な方法としては活性炭
処理が考えられる。この活性炭処理には粉末活性炭によ
る方法と粒状活性炭による方法とに大別されるが、前者
の粉末活性炭処理では活性炭が有する大きな表面積によ
り被収着物質を短時間内に吸着させる目的で通常は原水
に対して10〜200 mg/ 1(浸潤換算)添加し
、吸着処理後の凝集沈殿処理工程で他の濁質とともに系
外に排出されるので。
Activated carbon treatment is considered an effective method for removing THM and TOX. This activated carbon treatment is roughly divided into methods using powdered activated carbon and methods using granular activated carbon.In the former type of powdered activated carbon treatment, raw water is usually used to adsorb sorbed substances within a short time using the large surface area of activated carbon. 10 to 200 mg/1 (infiltration equivalent) is added to the water, and it is discharged out of the system together with other suspended solids in the coagulation sedimentation treatment step after the adsorption treatment.

現在は臭気除去を目的として多くの浄水処理場にて採用
されているが、処理は水温の影響を受は易いので処理効
果が一様でない。また使い捨てですな        
 サイクルができなく、従って汚泥量が多くなるので、
その処理費用がかさむという欠点がある。また後者の粒
状活性炭処理は活性炭を充填した容器や塔に被吸着物質
を含む水を通水して吸着させるものである。この通水方
法としては下向流と上向流等があり、また、充填した炭
層の状態で固定層。
Currently, it is used in many water treatment plants for the purpose of odor removal, but the treatment effect is not uniform because the treatment is easily affected by water temperature. It's also disposable
Since the cycle is not possible and the amount of sludge increases,
The disadvantage is that the processing cost is high. The latter granular activated carbon treatment involves passing water containing the adsorbed substance through a container or tower filled with activated carbon to adsorb the substance. This water flow method includes downward flow and upward flow, and fixed bed in the state of packed coal bed.

流動層、移動層に区分される。浄水処理場において前記
の前塩素処理した水を通水するとTHMの吸着について
は活性炭の寿命が短く、実用には難点が多い。また長期
間にわたワて通水を行うとTHMについては吸着塔出口
濃度が入口濃度の1.5〜2倍程度になる。すなわち活
性炭吸着塔がTHMの増殖器的作用をするという欠点も
育している。
It is divided into fluidized bed and moving bed. When pre-chlorinated water is passed through a water treatment plant, activated carbon has a short lifespan when it comes to adsorbing THM, and there are many difficulties in practical use. Furthermore, when water is passed for a long period of time, the concentration of THM at the outlet of the adsorption tower becomes approximately 1.5 to 2 times the concentration at the inlet. That is, the activated carbon adsorption tower has the disadvantage that it acts as a THM breeder.

取水口又は着水井で塩素を添加する前塩素処理に代えて
急速砂濾過池直前で塩素を添加する中間塩素処理によっ
ても同様な現象が起こり実用化は困難である0次に塩素
を消費するものは前記アンモニア性窒素や有機物の他に
鉄やマンガン等の金属イオンもある。これらはアンモニ
ア性窒素や有機物とは異なって塩素との反応速度が比較
的緩やかであり、現行の浄水処理方法すなわち前塩素処
       や理あるいは中間塩素処理を用いる方法
ではマンガン砂などによる急速砂濾過池である程度は除
去されるものの、後工程ひいては末端の家庭の蛇口にお
いて「赤い水」あるいは「黒い水」の原因となるもので
あり、塩素を添加しない水を活性炭処理後、その処理水
に塩素を添加すると前塩素処理法あるいは中間塩素処理
法による場合よりも着色が著しくなるという欠点を有す
る。
Instead of pre-chlorination treatment in which chlorine is added at the water intake or landing well, a similar phenomenon occurs with intermediate chlorination treatment in which chlorine is added immediately before the rapid sand filter, making it difficult to put it into practical use. In addition to the ammonia nitrogen and organic substances mentioned above, there are also metal ions such as iron and manganese. Unlike ammonia nitrogen and organic substances, these have a relatively slow reaction rate with chlorine, and the current water purification methods, which use pre-chlorination or intermediate chlorination, require rapid sand filters using manganese sand, etc. Although it can be removed to some extent, it is the cause of "red water" or "black water" in subsequent processes and ultimately in household faucets. When added, the disadvantage is that the coloring becomes more pronounced than when using the pre-chlorination method or the intermediate chlorination method.

(問題点を解決するための手段) 本発明者らは、上記の浄水処理方法の欠点に鑑み、現行
の浄水処理において除去対象としていた鉄、マンガン、
アンモニア性窒素、濁質、細菌等の除去効率を減するこ
とな(、シかもTHM、  TOX等を生成する有機物
を効率的に、かつ経済的に除去し得る処理方法を提供す
ることを目的として鋭意検討の結果、水溶性有機物、臭
気、マンガン。
(Means for Solving the Problems) In view of the drawbacks of the above-mentioned water purification treatment methods, the present inventors have discovered that iron, manganese, and
The purpose of the present invention is to provide a treatment method that can efficiently and economically remove organic matter that generates THM, TOX, etc. without reducing the removal efficiency of ammonia nitrogen, suspended solids, bacteria, etc. As a result of intensive study, water-soluble organic matter, odor, and manganese were found.

アンモニア性窒素の大部分を吸着除去させた活性炭濾過
処理後に塩素添加を行い1次いで除鉄、除マンガン設備
を設けて処理すると、上記の目的が達成されることを見
出し1本発明に到達した。
The present inventors have discovered that the above object can be achieved by adding chlorine after activated carbon filtration treatment, which adsorbs and removes most of the ammonia nitrogen, and then installing iron and manganese removal equipment.

すなわち本発明は、浄水処理場において活性炭濾過池を
設けた浄水処理場において、該活性炭濾過池前において
は塩素添加を行わず、水溶性有機物、臭気、鉄、マンガ
ン、アンモニア性窒素の大部分を吸着除去させた活性炭
濾過処理後に塩素添加を行い1次いで除鉄、除マンガン
設備を設けて処理することを特徴とする浄水処理方法で
ある。
That is, the present invention eliminates most of water-soluble organic matter, odors, iron, manganese, and ammonia nitrogen without adding chlorine in front of the activated carbon filtration tank in a water treatment plant equipped with an activated carbon filtration tank. This water purification treatment method is characterized in that chlorine is added after adsorption and removal by activated carbon filtration, and then iron and manganese removal equipment is installed for treatment.

本発明の処理方法において活性炭吸着塔への通水方式は
上向流、下向流のいずれでもよく、また活性炭吸着処理
後に用いる除鉄、除マンガン設備(急速砂濾過池)の濾
過材としては濾砂、マンガン砂、マンガンゼオライトア
ンスラサイト等。
In the treatment method of the present invention, the water flow method to the activated carbon adsorption tower may be either an upward flow or a downward flow, and as a filter material for iron and manganese removal equipment (rapid sand filtration pond) used after activated carbon adsorption treatment. Filter sand, manganese sand, manganese zeolite anthracite, etc.

除鉄、除マンガンに用いることのできるものであればい
かなるものでもよい。
Any material may be used as long as it can be used for removing iron and manganese.

(作  用) 本発明において、原水中の鉄、マンガンは有機物と錯体
を形成している鉄、マンガンと、いわゆる無機性の鉄、
マンガンとが共存しており、無機性の鉄及びマンガンは
塩素との反応が早く、直ちに酸化物となってマンガン砂
等に容易に吸着除去されるが、有機性の鉄、マンガンは
塩素による酸化反応が遅く短時間内ではマンガン砂等に
よって除去されないものである。ところが有機性の鉄及
びマンガンは塩素無添加の状態で活性炭吸着塔に通水す
ると大部分が吸着除去されるが、無機性の鉄、マンガン
は大部分が吸着されずに処理水中に残存するということ
が判明するとともに、またアンモニア性窒素についても
同様で、有機物に吸着された形のアンモニア性窒素と無
機性のアンモニウムイオンの存在が判明し、この両者は
塩素に対する反応性はほとんど変わらす1速やかに分解
するが活性炭に対する吸着性については、有機物に吸着
されたアンモニア性窒素が良好であり、無機性のアンモ
ニア窒素は吸着されずに処理水中に残存するものである
ということも判明した。
(Function) In the present invention, iron and manganese in raw water are iron and manganese that form a complex with organic matter, and so-called inorganic iron,
Inorganic iron and manganese react quickly with chlorine and immediately become oxides that are easily adsorbed and removed by manganese sand, etc., but organic iron and manganese are easily oxidized by chlorine. The reaction is slow and cannot be removed by manganese sand or the like within a short period of time. However, most of the organic iron and manganese are adsorbed and removed when the water is passed through an activated carbon adsorption tower without the addition of chlorine, but the majority of the inorganic iron and manganese remain in the treated water without being adsorbed. In addition to this, it was also found that ammonia nitrogen exists in the form of ammonia nitrogen adsorbed on organic matter and inorganic ammonium ion, and the reactivity of the two to chlorine is almost the same. However, it was also found that ammonia nitrogen adsorbed to organic matter has good adsorption properties on activated carbon, while inorganic ammonia nitrogen remains in the treated water without being adsorbed.

(実施例) 以下に本発明の実施例をあげて具体的に説明する。(Example) EXAMPLES The present invention will be specifically explained below by giving examples.

TOC;総有機炭素量(mg/ II 、湿式光酸化分
解”            法による)TOX 、総
有機ハロゲン化合物量(μg/C塩素Ct量で表示、電
量滴定法による) TIIM;)リハロメタン濃度(μg/ffi、SC法
による) THM−P i 24時間後の遊離残留塩素を1〜2 
PPMとなるように塩素を添加した場合の24時間後の
THM濃度、 (μg/l、GC法によるFeH鉄(A
lglI、  ICP法による)Mn;マンガン(Al
glI  ICP法による)NIl、4 ;アンモニア
性窒素(sg/j!、電量滴定法による) 実施例1.比較例1 性用原水を取水し、硫酸バンドをアルミニウムとしてI
 PPM添加し、凝集沈殿処理を行った後。
TOC: Total organic carbon content (mg/II, by wet photooxidative decomposition method) TOX, Total organic halogen compound content (expressed as μg/C chlorine Ct amount, by coulometric titration method) TIIM;) Rehalomethane concentration (μg/ffi) , by SC method) THM-P i Free residual chlorine after 24 hours is 1 to 2
THM concentration after 24 hours when chlorine is added to PPM, (μg/l, FeH iron (A
lglI, by ICP method) Mn; manganese (Al
glI (by ICP method) NIl, 4; ammonia nitrogen (sg/j!, by coulometric titration method) Example 1. Comparative Example 1 Raw water for sex was taken and aluminum sulfate was added to I
After adding PPM and performing coagulation and precipitation treatment.

濾過速度120m/日で急速濾過処理した。この濾過水
をキャタラー社製粒状活性炭(商品名−HA)8〜32
メツシユを充填した塔に下向流でLV = 10 m/
hr、 5V=lOhr−’の条件で連続通水した。こ
の活性炭処理水に残留塩素が1.0 PP−になるよう
に次亜塩素酸ナトリウムを添加し、その後マンガン砂を
60cm敷設した除鉄設備に濾過速度200m/日で通
水した0表−1に粒状活性炭層に通水総1)0,000
ベッド通水したときの原水、′a沈水、活性炭処理水、
最終処理水の結果を示す。
Rapid filtration treatment was performed at a filtration rate of 120 m/day. This filtered water was mixed with Cataler's granular activated carbon (product name - HA) 8-32.
LV = 10 m/downward flow in a tower packed with mesh
hr, and water was continuously passed under the conditions of 5V=lOhr-'. Sodium hypochlorite was added to this activated carbon-treated water so that the residual chlorine was 1.0 PP-, and then the water was passed through iron removal equipment with 60 cm of manganese sand laid at a filtration rate of 200 m/day.0Table-1 Total water flow through the granular activated carbon layer 1) 0,000
Raw water when water is passed through the bed, 'a settled water, activated carbon treated water,
The results of the final treated water are shown.

表−1 比較のため、まず次亜塩素酸ナトリウムを添加した後、
マンガン砂による急速濾過池に通す従来の方法で処理し
た。すなわち、実施例1と同様に取下した原水に次亜塩
素酸ナトリウムを残留塩素がI PPMになるように添
加した後、 AI 1.0 PPM相当の硫酸バンドを
加えて凝集沈殿処理した0次いでマンガン砂による急速
濾過池を通し、実施例1と同一条件で活性炭吸着塔に通
水処理し、再び遊離残留塩素がI PPMになるように
次亜塩素酸ナトリウムを添加し、これを最終処理水とし
た。実施例1と同様に活性炭吸着塔に10.000ベッ
ド通水した時の各工程における水質を測定した。その結
果を表−2に示す。
Table 1 For comparison, after adding sodium hypochlorite,
It was treated by the conventional method of passing through a rapid filtration basin with manganese sand. That is, sodium hypochlorite was added to the raw water taken in the same manner as in Example 1 so that the residual chlorine was I PPM, and then sulfuric acid band equivalent to AI 1.0 PPM was added and coagulated and precipitated. The water was passed through a rapid filtration basin made of manganese sand and then to an activated carbon adsorption tower under the same conditions as in Example 1. Sodium hypochlorite was added again so that the free residual chlorine became IPPM, and this was used as the final treated water. And so. In the same manner as in Example 1, the water quality in each step was measured when 10,000 beds of water were passed through the activated carbon adsorption tower. The results are shown in Table-2.

表−2 表−1)表−2における本年は塩素添加箇所を示す。Table-2 Table 1) Table 2 shows the locations where chlorine was added this year.

N、D;不検出を示す。N, D: Indicates non-detection.

(発明の効果) 本発明の処理方法は上記のごとき従来の処理方法の欠点
を解消するごとく、塩素を添加していない水を活性炭吸
着塔へ通水し、有機性の鉄、マンガン及びアンモニア性
窒素を吸着除去せしめた後に塩素を添加しマンガン砂等
の急速濾過池を通過させるので、容易に鉄、マンガン及
びアンモニア性窒素を除去することが可能となり、さら
に加うるに有機物に吸着されているアンモニア性窒素の
ほとんどが活性炭に吸着されるために塩素の必要添加量
を大幅に低下させることを得、同時に有機物も吸着除去
されるので塩素によるTOX、 TIFMの生成が大幅
に緩和されるという著しく優れた処理方法である。
(Effects of the Invention) The treatment method of the present invention eliminates the drawbacks of the conventional treatment methods as described above, by passing water to which chlorine has not been added to an activated carbon adsorption tower to absorb organic iron, manganese and ammonia. After nitrogen is adsorbed and removed, chlorine is added and passed through a rapid filtration basin made of manganese sand, etc., making it possible to easily remove iron, manganese, and ammonia nitrogen. Since most of the ammonia nitrogen is adsorbed by the activated carbon, the amount of chlorine required to be added can be significantly reduced, and at the same time, organic matter is also adsorbed and removed, significantly reducing the generation of TOX and TIFM caused by chlorine. This is an excellent treatment method.

Claims (1)

【特許請求の範囲】[Claims] (1)活性炭濾過池を設けた浄水処理場において、該活
性炭濾過池前においては塩素添加を行わず、水溶性有機
物、臭気、鉄、マンガン、アンモニア性窒素の大部分を
吸着除去させた活性炭濾過処理後に塩素添加を行い、次
いで除鉄、除マンガン設備を設けて処理することを特徴
とする浄水処理方法。
(1) In a water treatment plant equipped with an activated carbon filtration basin, no chlorine is added in front of the activated carbon filtration basin, and activated carbon filtration adsorbs and removes most of water-soluble organic matter, odors, iron, manganese, and ammonia nitrogen. A water purification treatment method characterized in that chlorine is added after treatment, and then iron removal and manganese removal equipment is installed for treatment.
JP23816784A 1984-11-12 1984-11-12 Treatment of purified water Pending JPS61118184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23816784A JPS61118184A (en) 1984-11-12 1984-11-12 Treatment of purified water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23816784A JPS61118184A (en) 1984-11-12 1984-11-12 Treatment of purified water

Publications (1)

Publication Number Publication Date
JPS61118184A true JPS61118184A (en) 1986-06-05

Family

ID=17026178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23816784A Pending JPS61118184A (en) 1984-11-12 1984-11-12 Treatment of purified water

Country Status (1)

Country Link
JP (1) JPS61118184A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296830A (en) * 1993-04-01 1994-10-25 Suido Kiko Kk Permeable membrane utilizing type manganese-containing water filter apparatus
CN106186168A (en) * 2016-08-25 2016-12-07 贵州万山兴隆锰业有限公司 A kind of char-forming material for waste water process and preparation method thereof
CN106186478A (en) * 2016-08-25 2016-12-07 贵州万山兴隆锰业有限公司 A kind of char-forming material processes the method for waste water
CN106336052A (en) * 2016-08-25 2017-01-18 贵州万山兴隆锰业有限公司 Method for adsorption treatment on wastewater containing magnesium
JP2019171228A (en) * 2018-03-26 2019-10-10 水ing株式会社 Water purifying treatment method and water purifying treatment apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296830A (en) * 1993-04-01 1994-10-25 Suido Kiko Kk Permeable membrane utilizing type manganese-containing water filter apparatus
CN106186168A (en) * 2016-08-25 2016-12-07 贵州万山兴隆锰业有限公司 A kind of char-forming material for waste water process and preparation method thereof
CN106186478A (en) * 2016-08-25 2016-12-07 贵州万山兴隆锰业有限公司 A kind of char-forming material processes the method for waste water
CN106336052A (en) * 2016-08-25 2017-01-18 贵州万山兴隆锰业有限公司 Method for adsorption treatment on wastewater containing magnesium
JP2019171228A (en) * 2018-03-26 2019-10-10 水ing株式会社 Water purifying treatment method and water purifying treatment apparatus

Similar Documents

Publication Publication Date Title
CA1187216A (en) Reduction of metal content of treated effluents
EP2792645B1 (en) Process for removing fluorides from water
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
JP3600458B2 (en) Treatment of flue gas desulfurization wastewater
US5681476A (en) Process for the purification of groundwater
JP2005193167A (en) Drainage purification method and purification method
JPS61118184A (en) Treatment of purified water
JP2002205077A (en) Method and apparatus for treating organic sewage
JPS5815193B2 (en) How to treat boron-containing water
JP2002086160A (en) Treatment method of fluorine-containing waste water
JP2005324137A (en) Method for removing fluoride ion in wastewater
JP4629851B2 (en) Wastewater treatment method
JPS6218230B2 (en)
CN1274403C (en) Method for preparing active filtering absorbent material and method for intensify water treatment thereby
JPS6231995B2 (en)
RU2815146C1 (en) Method for treating terephthalic acid production wastewater from cobalt, manganese and bromine ions
CA1160370A (en) Waste water treatment system for elemental phosphorus removal
JPS6230596A (en) Method for treating fluorine in waste water
SU941301A1 (en) Process for purifying water from fluorine
JPS61245889A (en) Water purifying method
JPH0716564A (en) Treatment of exhaust gas-desulfurization wastewater
CA2197044A1 (en) Process for removing ethers and polycyclic aromatic hydrocarbons from groundwater
JPS61245887A (en) Water purifying treatment
RU2353588C2 (en) Method of sewage water purification from mercury compounds
JPS6055197B2 (en) Wastewater treatment method