JPS61117481A - Method of exchanging fuel for boiling water type reactor - Google Patents

Method of exchanging fuel for boiling water type reactor

Info

Publication number
JPS61117481A
JPS61117481A JP59238472A JP23847284A JPS61117481A JP S61117481 A JPS61117481 A JP S61117481A JP 59238472 A JP59238472 A JP 59238472A JP 23847284 A JP23847284 A JP 23847284A JP S61117481 A JPS61117481 A JP S61117481A
Authority
JP
Japan
Prior art keywords
fuel assembly
cycle
fuel
cycles
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59238472A
Other languages
Japanese (ja)
Inventor
利久 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59238472A priority Critical patent/JPS61117481A/en
Publication of JPS61117481A publication Critical patent/JPS61117481A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕  4 本発明は、沸騰水型原子炉における燃料集合体の交換方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] 4 The present invention relates to a method for replacing fuel assemblies in a boiling water nuclear reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

以下従来の沸騰水型原子炉の燃料交換方法を第7図から
第8図を参照して説明する。ここで第7図に従来の沸騰
水型原子炉炉心の構成図を示す。
A conventional fuel exchange method for a boiling water reactor will be described below with reference to FIGS. 7 and 8. FIG. 7 shows a configuration diagram of a conventional boiling water reactor core.

第7図1cおいて、沸騰水型原子炉の炉心11には燃料
集合体12が整然と装荷されており、この燃料集合体1
2の4体に1体の割で制御棒13が配置されている。こ
の燃料集合体12と制御棒13との配置関係を第禽図に
示す。ここで第8図は第7図のA部詳細図である。第8
図において、燃料集合体12には内部に図示しない燃料
ペレットを装填した燃料棒14が例えば8×8に正方配
列され、この正方配列された燃料棒14の外周には角筒
状のチャンネルボックス15が配置されている。この4
体の燃料集合体12によって形成された横断面十字形状
の間隙には横断面十字形状の制御棒13が配置されてい
る。
In FIG. 7 1c, fuel assemblies 12 are loaded in an orderly manner in the core 11 of a boiling water reactor.
A control rod 13 is arranged in one out of every four bodies. The arrangement relationship between the fuel assembly 12 and the control rods 13 is shown in Figure 1. Here, FIG. 8 is a detailed view of section A in FIG. 7. 8th
In the figure, fuel rods 14 loaded with fuel pellets (not shown) are arranged in a square array, for example, 8×8, in a fuel assembly 12, and a rectangular cylindrical channel box 15 is arranged around the outer periphery of the squarely arranged fuel rods 14. is located. This 4
A control rod 13 having a cross-shaped cross section is arranged in a gap having a cross-shaped cross section formed by the fuel assembly 12 of the body.

以上の構成において、冷却材(冷却水)は燃料集合体1
2の内部及び各燃料集合体12間のlTl’を隙を下か
ら上に流れている。なお、第9図において燃料集合体1
2内の数字は各サイクル数を示し、mlは未燃焼の新燃
料集合体を、田は1サイクル燃焼した燃料集合体を、(
2)は2サイクル燃焼した燃料集合体を、(3)け3サ
イクル燃焼した燃料集合体をそれぞれ示している。
In the above configuration, the coolant (cooling water) is supplied to the fuel assembly 1
2 and between the fuel assemblies 12 from bottom to top. In addition, in FIG. 9, fuel assembly 1
The numbers in 2 indicate the number of cycles, ml is the unburned new fuel assembly, ta is the fuel assembly that has been burned for one cycle, (
2) shows a fuel assembly that has been burned for 2 cycles, and (3) shows a fuel assembly that has been burned for 3 cycles.

また、1サイクルとけ原子炉の運転開始時から、炉心内
の燃料が燃焼し消耗した結果所定の出力が出なくなシ、
原子炉の運転を終了させた時までの期間を言っている。
In addition, from the start of operation of a nuclear reactor during one cycle, the fuel in the reactor core burns and is consumed, resulting in no longer producing the specified output.
This refers to the period until the end of nuclear reactor operation.

以上の構成において、1サイクル原子炉を運転させると
運転開始前3サイクル燃焼した燃料集合体12は4サイ
クル燃焼した燃料集合体12になる。
In the above configuration, when a one-cycle nuclear reactor is operated, the fuel assembly 12 that has been burned for three cycles before the start of operation becomes the fuel assembly 12 that has been burned for four cycles.

次サイクルに炉心ot借成するときは、4?イクル燃焼
した燃料集合体12は炉外に取り出され、その4サイク
ル燃焼した燃料集合体12の代夛に未燃焼のI7r燃料
燃料体が装荷される。これによって、炉心11け所定の
出力運転をすることができる様になる。
When borrowing the core in the next cycle, 4? The fuel assembly 12 that has been burned for four cycles is taken out of the furnace, and an unburned I7r fuel assembly is loaded as a substitute for the fuel assembly 12 that has been burned for four cycles. As a result, 11 cores can be operated at a predetermined output.

従来燃料集合体12の交換期間は約20日でちり、それ
と同時に原子炉詰機器の定期点検が行なわれ、通常これ
ら定期点検に約3カ月が贅やされていた。
Conventionally, the replacement period for the fuel assembly 12 was approximately 20 days, and at the same time periodic inspections of the reactor packing equipment were carried out, and these periodic inspections usually took about three months.

現在原子力発電においては、稼動率を大きく向上させる
ことが望まhている。この原子炉における稼動率F#i
炉心停止期間をTo +炉心の運転期間をT1とした場
合第1式の様になる。
Currently, in nuclear power generation, it is desired to greatly improve the operating rate. Operation rate F#i in this reactor
When the core shutdown period is To + the core operating period is T1, the equation 1 is obtained.

F : ’r、 /(T、 +T、 ’)      
  ・・・・・・(1)従来の稼動率FFi、1サイク
ル当りの運転期間が約9カ月であるため、0.75であ
った。
F: 'r, /(T, +T, ')
(1) The conventional operation rate FFi was 0.75 because the operating period per cycle was about 9 months.

さらに現在炉心から取勺出された燃料集合体は永久保管
されるか、化学処理が行なわれて核分裂性でない放射性
物質のみを永久保管されているためこの永久保管される
量は少なくすることが望まれていた。
Furthermore, currently, fuel assemblies removed from reactors are either permanently stored or chemically treated to permanently store only non-fissile radioactive materials, so it is desirable to reduce the amount of this permanent storage. It was rare.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、炉心内の燃料集合体を適切に配置する
ことに因り、燃料集合体の交換にまする期間が短く、燃
料集合体の取〉出し燃りa度が高くて経済的に勝れかつ
炉心内の出力の平担化が達成できる沸騰水型原子炉の燃
料交換方法を提供することにちる。
The purpose of the present invention is to appropriately arrange the fuel assemblies in the reactor core, thereby shortening the time required to replace the fuel assemblies, and making it possible to remove the fuel assemblies with a high burn-up temperature and economical. An object of the present invention is to provide a method for exchanging fuel in a boiling water reactor, which is effective and can achieve leveling of the output within the reactor core.

〔発明の概要〕[Summary of the invention]

本発明は、沸騰水型原子炉の炉心内(配置された制御棒
を2群に分割させ、第1群の各制御棒に隣接する4体の
燃料集合体は未燃焼燃pF!%合体。
In the present invention, the control rods arranged in the core of a boiling water reactor are divided into two groups, and the four fuel assemblies adjacent to each control rod of the first group combine unburned fuel pF!%.

第2サイクル燃焼燃料集合体、第5サイクル燃焼燃料集
合体、第7サイクル撚焼燃料集合体から構成され、第2
群の各制御T1欅に隣接する4体の燃料集合体り第1サ
イクル燃焼燃料集合体、肩3サイクル燃焼燃料集合体、
第4サイクル燃焼燃料集合体、第6サイクル燃焼燃料集
合体から構成され、1サイクル運転終了後8サイクル燃
焼した燃料集合体を取り出し、その後この8サイクル燃
焼した燃料集合体の装荷されていた位P、に4サイクル
燃焼した燃料集合体を装荷させ、この4サイクル燃焼し
た燃料集合体の装荷されていた位置に未燃焼燃料集合体
を装荷させることを特徴とする沸騰水1!!原子炉の燃
料交換方法1cIる。
Consists of a second cycle combustion fuel assembly, a fifth cycle combustion fuel assembly, a seventh cycle twisted and fired fuel assembly, and a second cycle combustion fuel assembly.
The four fuel assemblies adjacent to each control T1 keyaki in the group are a first cycle combustion fuel assembly, a shoulder three-cycle combustion fuel assembly,
Consisting of a 4th cycle combustion fuel assembly and a 6th cycle combustion fuel assembly, after the completion of 1 cycle operation, take out the fuel assembly that has been burned for 8 cycles, and then remove the loaded fuel assembly that has burned for 8 cycles. Boiling water 1! is characterized in that a fuel assembly that has been burned for 4 cycles is loaded into a fuel assembly that has been burned for 4 cycles, and an unburned fuel assembly is loaded at the position where the fuel assembly that has been burned for 4 cycles was loaded. ! Refueling method for nuclear reactor 1cI.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の第1実施例を第1図から第3図を参照し、
で説明する。ここでfs1図に本発明の第1実施例の炉
心の構成図を示す。第1図において、沸騰水型原子炉の
炉心16には燃料集合体17が整然と装荷されており、
この燃料集合体1704体rC1体の割で制御棒18が
配置されている。この制御棒18は2群に分割され、第
1群の制御棒18は一点鎖、IIBで示す様に隣接する
4体の燃料集合体17を未燃焼燃料集合体、第2サイク
ル燃焼燃料集合体。
The first embodiment of the present invention will be described below with reference to FIGS. 1 to 3.
I will explain. Here, Fig. fs1 shows a configuration diagram of the core of the first embodiment of the present invention. In FIG. 1, fuel assemblies 17 are loaded in an orderly manner in a core 16 of a boiling water reactor.
Control rods 18 are arranged for each fuel assembly 1704 (rC). The control rods 18 are divided into two groups, and the control rods 18 of the first group are chained, and as shown by IIB, the four adjacent fuel assemblies 17 are divided into unburned fuel assemblies and second cycle burnt fuel assemblies. .

第5サイクル燃情燃料集合体、&r7サイクル燃焼燃料
集合体で構成し、第2群の制御棒12け一点鎖線Oで示
す様Vr、隣接する4体の燃料集合体17を第1サイク
ル燃焼燃料集合体、第3サイクル燃焼燃料隻合体、第4
サイクル燃埠燃料集合体、゛筒6サイクル燃焼燃料集合
体で構成している。なお、第1図中燃料集合体17に示
された番号は各サイクル数を示し、四は未燃焼燃料集合
体を、川から[7]はそれぞれ1サイクル燃焼した燃料
集合体から7サイクル燃情した燃4集合体を示している
。寸た■■、■9口は第1群と第2群の数を会わせるた
めの調節用燃料集合体を示す。
It consists of a 5th cycle combustion fuel assembly, &r7 cycle combustion fuel assembly, and the 12 control rods of the second group are Vr as shown by the dashed line O, and the 4 adjacent fuel assemblies 17 are used as the 1st cycle combustion fuel assembly. Assembly, 3rd cycle combustion fuel vessel combination, 4th
It consists of a cycle combustion bunker fuel assembly and a cylinder six-cycle combustion fuel assembly. The numbers shown on the fuel assemblies 17 in Fig. 1 indicate the number of cycles, 4 indicates the unburned fuel assemblies, and [7] from the river indicates the 7-cycle fuel from the fuel assemblies that have been burned for 1 cycle. The figure shows a four-piece combustion assembly. Dimensions ■■ and ■9 indicate fuel assemblies for adjustment to match the numbers of the first and second groups.

以上の様に構成された炉心161’C:t=−いて、1
サイクル終了後8サイクル燃焼した燃料集合体を炉心外
に取り出し、七の取り出した位かに4サイクル燃焼した
燃料集合体を装荷させ、4サイクル燃焼した燃料集合体
を装荷させ、4サイクル燃焼した燃料集合体の装荷され
ていた位置に未燃焼燃料集合体を装荷させて次サイクル
の炉心を構を氏させる。
Core 161'C configured as above: t=-, 1
After the completion of the cycle, the fuel assembly that has been burned for 8 cycles is taken out of the core, and the fuel assembly that has been burned for 4 cycles is loaded at the place where it was taken out. Unburned fuel assemblies are loaded in the positions where the assemblies were loaded, and the reactor core is set up for the next cycle.

ここで第1表に原子炉の運兜に因リサイクルが更新する
ことによってどの様に変って行くのかを示す。
Here, Table 1 shows how the operation of the nuclear reactor will change as the cause recycling is updated.

(以下余白) 笥1表に示す様に現サイクルの運転に因り8サイクル燃
焼して核分裂性物質が十分消耗した燃料集合体は、次の
サイクルの炉心を構成する時には炉心から外に取り出さ
れ代υに4サイクル燃焼した燃料集合体が装荷され、こ
の4サイクル燃焼した燃料集合体が装荷されていた位置
には未燃焼の新燃料集合体が装荷される。これによって
、燃料集合体の交換に要する作業は低く抑えられるため
、この作業に要する期間は約%月はどとなる。さらに、
現サイクルにおいて田、(3)l III 1(6)の
組合せから成る第2群の燃料集合体は、次サイクルにお
いては口、(2)、(5)、(2)の組合せから成る#
I1群の燃料集合体となる。
(Left below) As shown in Table 1, fuel assemblies whose fissile material has been sufficiently consumed after 8 cycles of combustion due to current cycle operation are removed from the core when forming the core for the next cycle. A fuel assembly that has been burned for four cycles is loaded at υ, and a new unburned fuel assembly is loaded at the position where the fuel assembly that has been burned for four cycles was loaded. This keeps the work required to replace the fuel assembly low, so that the time required for this work is approximately % months. moreover,
In the current cycle, the second group of fuel assemblies consists of the combinations of (3) l III 1 (6), and in the next cycle, the fuel assemblies of the second group consist of the combinations of (2), (5), and (2).
This will be the I1 group fuel assembly.

この様に、炉心構成が循環しながらサイクルの昂進は行
なわれていくので、炉心の構成は原子炉の各運転サイク
ルにおいてほとんど変化せず安定した性能を得ることが
出来る。
In this way, the cycle is accelerated while the core configuration is circulated, so that the core configuration hardly changes in each operating cycle of the reactor, and stable performance can be obtained.

また、新燃料集合体に隣接する燃料集合体は、艮期運転
サイクルを経験して核分裂性物質が消耗している燃料集
合体で6る。そのため、新燃料集合体から発生する余剰
中性子ij:Fickの拡散法則(中性子の正味の流れ
は中性子密度の高い場所から離れていく方向に向かい、
その流れの大きさは一番大きな変化の割合に比例する。
Further, the fuel assemblies adjacent to the new fuel assemblies are fuel assemblies whose fissile material has been consumed due to undergoing a new operating cycle. Therefore, excess neutrons generated from the new fuel assembly: Fick's law of diffusion (the net flow of neutrons is directed away from areas with high neutron density,
The magnitude of the flow is proportional to the rate of greatest change.

)に従って燃焼の進んでいる燃料集合体に吸収される。) is absorbed into the fuel assembly where combustion is progressing.

それゆえ、新燃料集合体の核分裂は過度に促進されるこ
とが無くなり、出力が過度に上昇することが抑えられる
Therefore, nuclear fission in the new fuel assembly is not excessively promoted, and an excessive increase in output is suppressed.

一方、余剰中性子を吸収した燃焼の進んだ燃料集合体は
核分裂が促進されるので出力が高くなる。
On the other hand, fuel assemblies that have absorbed surplus neutrons and are well-burned have accelerated fission, resulting in higher output.

このことは、相対的に新燃料集合体の出力分担割合を軽
減させることになるので、新燃料集合体の出力が過度に
高くなるのを抑制する効果がちる。
This relatively reduces the output sharing ratio of the new fuel assembly, which tends to have the effect of suppressing the output of the new fuel assembly from becoming excessively high.

1+本発明において、炉心から取勺出される燃料集合体
f′i8サイクルに渡って炉心に装荷されていた燃料集
合体でらる。この運転サイクルを大きくすることによっ
て、取シ出し燃焼度を高くすることができる。このこと
について詳細を以下に述べる。
1+ In the present invention, fuel assembly f'i is taken out from the core, and is a fuel assembly that has been loaded in the core for eight cycles. By increasing this operation cycle, the discharge burnup can be increased. This will be discussed in detail below.

燃料集合体中の核分裂性物質とその周囲の水による中性
子減速作用とにより、核分裂連鎖反応は維持されるが、
その反応の度合を示す一つの尺度として無限増倍係数K
がらる。この無限増倍係数には燃料集合体の燃焼が進ん
で核分裂性・物質が消耗するにつれて小さくなっていく
係数であり第2式の様に近似される。
The fission chain reaction is maintained by the fissile material in the fuel assembly and the neutron moderating effect of the surrounding water;
Infinite multiplication coefficient K is one measure of the degree of reaction.
Garalu. This infinite multiplication coefficient is a coefficient that decreases as the combustion of the fuel assembly progresses and the fissile material is consumed, and is approximated by the second equation.

K=に’−m−E         ・・・・(2)こ
こでに0け燃焼度0での無限増倍係数を示し、mは燃焼
に因る核分裂性物質の消耗に因り無限増倍係aKが減少
する勾配を示し、Bid燃焼度を示す。
K = '-m-E ... (2) Here, 0 indicates the infinite multiplication coefficient at a burnup of 0, and m is the infinite multiplication coefficient aK due to the consumption of fissile material due to combustion. shows a decreasing slope, indicating the Bid burnup.

原子炉において一般的に炉心で発生した中性子の一部は
炉心外へ逃れ、この効果を示す補正係数をLとした場合
、炉心外に取り出した燃料集合体の燃焼度Kdと運転サ
イクル数Nとの関係は第3式%式% さらに原子炉の1運転サイクル当りの燃焼度増分EDは
第4式の襟に示される。
Generally, in a nuclear reactor, some of the neutrons generated in the core escape to the outside of the core, and if the correction coefficient representing this effect is L, then the burnup Kd of the fuel assembly taken out of the core and the number of operating cycles N are The relationship is shown in the third equation (%).Furthermore, the burnup increment ED per one operating cycle of the reactor is shown in the fourth equation.

ED=2・((ト)0・L−t) 、漏・Lトα+l)
ml  ・・(47ここでウラ7−235の濃縮度が3
チの場合を例に取ると、 K’ = 1.21 、 m= 0.01 (’/io
” M〜vD/T) 、 T=0.98からこの数値を
第3式、第4式に代入して求めると第5式、第6式とな
る。
ED=2・((g)0・L−t), leak・Ltα+l)
ml...(47Here, the concentration of Ura 7-235 is 3
Taking the case of Q as an example, K' = 1.21, m = 0.01 ('/io
"M~vD/T), T=0.98, and by substituting this value into the third and fourth equations, the fifth and sixth equations are obtained.

Ed=38・(1−(N+t)−’ )       
  ・・ totgD=3s・(N+1)−”    
        ・・ (6)この第5式及び第6式に
基づbて、第2図に炉心1かも取り出される燃料集合体
の燃焼度を縦軸にとシ、運転サイクル数を横@にとった
燃料集合体の特性図を示し、第3図に原子炉の1運転サ
イクル当りの燃焼度を縦軸にと9、運転サイクル数を横
IIIIにとった燃料集合体の特性図を示す。第2図に
示す様に運転サイクル数が4の場合には炉心から取り出
される燃4料集合体の燃焼度は3.OX 10’(MW
D/T)  でちるが、運転サイクル数が増加するにし
たがって燃焼eけ増加し、運転サイクル数が8の場合に
は炉心から取り出される燃料集合体の燃焼度は3.3 
X 10’ (MWD/T)となる。
Ed=38・(1-(N+t)-')
・totgD=3s・(N+1)−”
(6) Based on Equations 5 and 6, the burnup of the fuel assembly taken out of core 1 is plotted on the vertical axis and the number of operating cycles is plotted on the horizontal axis in Figure 2. A characteristic diagram of the fuel assembly is shown in FIG. 3, in which the vertical axis represents the burnup per one operating cycle of the reactor and 9 represents the number of operating cycles, and the horizontal axis represents the number of operating cycles. As shown in Figure 2, when the number of operating cycles is 4, the burnup of the four fuel assemblies taken out from the core is 3. OX 10'(MW
D/T) However, as the number of operating cycles increases, the burn-up increases, and when the number of operating cycles is 8, the burn-up of the fuel assembly taken out from the core is 3.3.
X 10' (MWD/T).

−力筒3図に示す様に、原子炉の1運転サイクル当りの
燃焼度増分は運転サイクル数が4から8(なると7 X
 10” (MWD/T)から4 X 10 ’ (L
TtV’D/T)と下がってしまう。この燃焼度増分に
よって、1日当シの燃v8度増分を約25 (MWD/
T)とすると、15重転サすクル当りの運転日数は9.
3力月から5.3力月と減少し、これにともなって稼動
率も従来より低下する。しかしながら、本発明に係る炉
心では運転サイクル数の増力口にともなってfr燃料集
合体の装荷体数は減少でき、ざらには燃料集合体の移動
が少ないため燃料交換の作業を短縮でき、原子炉の運転
サイクル期間が約34分になるため機2τの点検作業を
1回おきにすることによって、従来と同程度の稼動率を
得ることができる。
- As shown in Figure 3, the burnup increment per one operating cycle of a nuclear reactor increases from 4 to 8 (7 x
10" (MWD/T) to 4 x 10' (L
TtV'D/T). This burn-up increment increases the daily burn-up by approximately 25 degrees (MWD/
T), the number of operating days per vehicle that rotates 15 times is 9.
This will decrease from 3 months to 5.3 months, and along with this, the operating rate will also be lower than before. However, in the reactor core according to the present invention, the number of loaded fr fuel assemblies can be reduced as the number of operating cycles increases, and in general, the movement of fuel assemblies is small, so the fuel exchange work can be shortened, and the reactor Since the operation cycle period of the machine 2τ is approximately 34 minutes, by performing inspection work on the machine 2τ every other time, it is possible to obtain the same operating rate as in the past.

例として、燃料交換日数を0.7力月、1運転サイクル
EII数を5.3力月、定期点検日数を3力月とすると
稼動率は第1式より0.74となり従来と同程度となる
As an example, if the number of fuel change days is 0.7 months, the number of EIIs in one operation cycle is 5.3 months, and the number of regular inspection days is 3 months, the operating rate is 0.74 from equation 1, which is about the same as before. Become.

次に本発明の第2実施例を第4図を参照して説明する。Next, a second embodiment of the present invention will be described with reference to FIG.

ここで桝■4図に本発明の第2実施例の炉心の構成図を
示す。第4図において、沸腸水型原子炉の炉心20には
燃料集合体21が整然と装r:rされており、この燃料
集合体21の4体に1体の割で制御棒22が配置されて
いる。この制i卸棒22け第1実施例と同はに2群に分
割され、第1群の制御棒02け一点鎖線りで示す様に隣
接する4体の燃料集合体21を未燃焼燃料集合体、第1
サイクル燃焼燃料集合体、第6サイクル燃焼燃料集合体
、第7サイクル燃焼燃料集合体で構成し、第2群の制御
棒22は一点鎖線Eで示す様に隣接する4体の燃料集合
体21を第2サイクル燃焼燃料集合体、第3サイクル燃
焼燃料集合体、第4サイクル燃焼燃料集合体。
Here, Fig. 4 shows a configuration diagram of a reactor core according to a second embodiment of the present invention. In FIG. 4, fuel assemblies 21 are arranged in an orderly manner in a core 20 of a boiling water reactor, and a control rod 22 is arranged in one out of every four fuel assemblies 21. ing. The 22 control rods in the first embodiment are divided into two groups, and the four adjacent fuel assemblies 21 are assembled into unburned fuel as shown by the dashed line. body, first
Consisting of a cycle combustion fuel assembly, a sixth cycle combustion fuel assembly, and a seventh cycle combustion fuel assembly, the second group of control rods 22 connects the four adjacent fuel assemblies 21 as shown by the dashed line E. 2nd cycle combustion fuel assembly, 3rd cycle combustion fuel assembly, 4th cycle combustion fuel assembly.

第5サイクル燃焼燃料集合体で構成し、ている。It consists of a fifth cycle combustion fuel assembly.

ここで第2表に原子炉の運転に因りサイクルが更新する
ことによってどの様に変って行くのかを示す。
Here, Table 2 shows how the cycle changes depending on the operation of the nuclear reactor.

(以下余白) 第2表 第2表に示す様に現サイクルの運転に因り8サイクル燃
焼して核分裂性物質が十分消耗した撚掛集合体は、次の
サイクルの炉心を構成する時には炉心から外に取り出さ
れ代シに6サイクル燃焼された燃料集合体が装荷される
。そして、現サイクルの運転に因り6サイクル燃焼され
た燃料集合体の装荷されていた位置に2サイクル燃焼さ
れた燃料集合体が装荷され、2サイクル燃焼された燃料
集合体の装荷されていた位@に新燃料集合体が装荷され
る。これによって、本発明の第1実施例と同様の効果を
得ることができる。
(Leaving space below) Table 2 As shown in Table 2, the twisted assemblies whose fissile material has been sufficiently consumed through 8 cycles of combustion due to the current cycle operation are removed from the core when forming the core for the next cycle. A fuel assembly that has been taken out and burned for 6 cycles is then loaded. Then, due to the current cycle operation, a fuel assembly that has been burned for 2 cycles is loaded in the position where the fuel assembly that has been burned for 6 cycles was loaded, and the fuel assembly that has been burned for 2 cycles is loaded at the location where the fuel assembly that was burned for 2 cycles was loaded. A new fuel assembly is loaded into the tank. As a result, the same effects as in the first embodiment of the present invention can be obtained.

次に本発明の第3実施例を第5図を参照して説明する。Next, a third embodiment of the present invention will be described with reference to FIG.

ここで第5図に本発明の第3実施例の炉心の構成図を示
す。第5図において、沸騰水型原子炉の炉心23には燃
料集合体24が整然と装荷されておシ、この燃料集合体
2404体vC1体の割で制御棒25が配置されている
。この制御n25け第1実施例と同様に2群に分割され
、第1群の制御棒25は一点鎖線Fで示す様に隣接する
4体の燃料集合体24を未燃焼燃料集合体、第3サイク
ル燃焼燃料隼合体、第4サイクル燃焼燃料集合体、第7
サイクル燃焼燃料集合体で構成し、第2群の制御n25
は一点釧線Gで示す様に@接する4体の燃料集合体24
を第1サイクル燃焼燃料集合体、第2サイクル燃焼燃料
集合体、第5サイクル燃焼燃料集合体。
FIG. 5 shows a block diagram of a reactor core according to a third embodiment of the present invention. In FIG. 5, fuel assemblies 24 are loaded in an orderly manner in a core 23 of a boiling water reactor, and control rods 25 are arranged for every 2404 fuel assemblies vC1. This control rod 25 is divided into two groups as in the first embodiment, and the control rods 25 of the first group control the four adjacent fuel assemblies 24 as shown by the dashed line F, the unburned fuel assemblies and the third group. Cycle combustion fuel Hayabusa combination, 4th cycle combustion fuel assembly, 7th
Consists of cycle combustion fuel assembly, second group control n25
is the four fuel assemblies 24 that are in contact with each other as shown by the dotted line G.
a first cycle combustion fuel assembly, a second cycle combustion fuel assembly, and a fifth cycle combustion fuel assembly.

第6サイクル燃焼燃料集合体で構成している。It consists of a 6th cycle combustion fuel assembly.

ここで第3表に原子炉の運転に因りサイクルが更新する
ことによってどの様に変って行くのかを示す。
Here, Table 3 shows how the cycle changes depending on the operation of the nuclear reactor.

第3表に示す様に現サイクルの運転に因シ8サイクル燃
焼し、て核分裂性物質が十分消耗した燃料集合体は、次
のサイクルの炉心を構成する時には炉心から外に取り出
され代りに6サイクル燃焼燃料集合体が装荷される。そ
して、現サイクルの運転に因り6サイクル燃焼した燃料
集合体の装荷されていた位置に4サイクル燃焼した燃料
集合体が装荷され、4サイクル燃焼さねた燃料集合体の
装荷されていた位置に2サイクル燃焼した燃料集合体が
装荷され、2サイクル燃焼した燃料集合体の装荷されて
いた位置に新燃料集合体が装荷される。
As shown in Table 3, fuel assemblies that have been burnt for 8 cycles during the current cycle operation and have had enough fissile material consumed are taken out of the core and replaced with 6 Cycle combustion fuel assemblies are loaded. Then, due to the current cycle operation, a fuel assembly that has burned for 4 cycles is loaded in the position where the fuel assembly that has burned for 6 cycles was loaded, and a fuel assembly that has burned for 4 cycles is loaded in the position where the fuel assembly that has burned for 4 cycles was loaded. The cycle-burned fuel assembly is loaded, and a new fuel assembly is loaded in the position where the two-cycle burnt fuel assembly was loaded.

これによって、本発明の第1実施例と同様の効果を得る
ことができる。
As a result, the same effects as in the first embodiment of the present invention can be obtained.

次に本発明の第4実施例を第6図を参照して説明する。Next, a fourth embodiment of the present invention will be described with reference to FIG.

ここで第6図に本発明の第4実施例の炉心の構成図を示
す。第6図において、沸騰水型原子炉の炉心26には燃
料集合体27が整然と装荷さねておυ、この燃料集合体
27の4体に1体の割で制御棒28が配置されている。
Here, FIG. 6 shows a block diagram of a reactor core according to a fourth embodiment of the present invention. In FIG. 6, fuel assemblies 27 are loaded in an orderly manner in a core 26 of a boiling water reactor, and a control rod 28 is arranged for every four fuel assemblies 27. .

この制御棒28ij3群に分割され、第1群の制御棒2
8は一点り線Hで示す様に隣接する4体の燃料集合体2
7を未燃焼燃料集合体、第2サイクル燃焼燃料集合体、
第5サイクル燃焼燃料集合体、第7サイクル燃φ燃料隼
合体で栴成し、第2群の制御棒28は一点鎖線Jで示す
、様に隣接する4体の燃料集合体27を第1サイクル燃
焼燃料集合体、第3サイクル燃焼燃料集合体。
The control rods 28ij are divided into three groups, and the first group of control rods 2
8 indicates four adjacent fuel assemblies 2 as shown by dotted lines H.
7 is an unburned fuel assembly, a second cycle combustion fuel assembly,
The 5th cycle combustion fuel assembly is formed by the 7th cycle combustion fuel assembly, and the control rods 28 of the 2nd group are formed by the 4 adjacent fuel assemblies 27 as shown by the dashed line J in the 1st cycle. Combustion fuel assembly, third cycle combustion fuel assembly.

第4サイクル燃焼燃料集合体、第6サイクル燃焼燃料集
合体で構成している。
It consists of a fourth cycle combustion fuel assembly and a sixth cycle combustion fuel assembly.

そして、この第1群の制御棒及び第2群の制御棒は炉心
26の中央領域に配置されている。また第6図に示す様
に中央領域近傍にはω】から■で示す調節燃料集合体が
装荷さhlこの調節燃料集合体によって各サイクル数の
燃料集合体の数は同一になっている。また、tIK3群
の制御棒28は炉心の外周領域に配置され前記調節燃料
集合体の他に口で示す部分と区で示す部分には8サイク
ル燃焼した燃料集合体から11サイクル燃焼した燃料集
合体が装荷されている。なお第8図中区で示す燃料集合
体は制御棒が隣接していない炉心の外周領域の調節燃料
集合体である。
The first group of control rods and the second group of control rods are arranged in the central region of the reactor core 26. Further, as shown in FIG. 6, adjusting fuel assemblies indicated by ω] to ■ are loaded in the vicinity of the central region.By means of these adjusting fuel assemblies, the number of fuel assemblies for each cycle number is the same. The control rods 28 of the tIK3 group are arranged in the outer peripheral region of the reactor core, and in addition to the regulating fuel assemblies, the portions indicated by the opening and the portion indicated by the sections include fuel assemblies that have been burned for 8 cycles to fuel assemblies that have been burned for 11 cycles. is loaded. The fuel assemblies shown in the middle section of FIG. 8 are adjustment fuel assemblies in the outer peripheral region of the core where no control rods are adjacent.

ここで第4表に原子炉の運転に因りサイクルが更新する
ことによってどの様に変って行くのかを示す。第4表に
示す様に、1サイクル運転が終了すると外周領域に装荷
されている12運転サイクルを経験した燃料集合体は炉
心外に取り出され、代りにその位置に中心領域に装荷さ
れている8運転サイクルを経験した燃料集合体が装荷さ
れる。また、この中心領域に装荷されていた8運転サイ
クルを経験した燃料集合体の位置には4運転サイク′ル
を経験した燃料集合体が装荷され、この4運転サイクル
を経験した燃料集合体の位rには新燃料集合体が装荷さ
れることによって次サイクル炉心は構成される。
Here, Table 4 shows how the cycle changes depending on the operation of the nuclear reactor. As shown in Table 4, when one cycle of operation is completed, the fuel assemblies that have undergone 12 operation cycles and are loaded in the outer peripheral area are taken out of the core and loaded in their place in the central area. A fuel assembly that has undergone a driving cycle is loaded. In addition, fuel assemblies that have experienced 4 operation cycles are loaded in the position of the fuel assemblies that have experienced 8 operation cycles that were loaded in this central area, and the positions of the fuel assemblies that have experienced 4 operation cycles are loaded. The next cycle core is constructed by loading a new fuel assembly into r.

(以下余白) 以上、本発明のM4実施例の方法によれば、炉心の外周
領域に燃焼が進んだ燃料集合体を配置させたため、第1
実施例の効果の他に中心領域で発生する余剰中性子は外
周領域で吸収され炉心から外へ漏れ出る中性子を少なく
でき、さらには吸収された中性子によって外周領域の出
力を上昇させることができる。従って、第4実施例によ
って炉心外に取り出された燃料集合体の燃焼度は、中心
領域で発生する余剰中性子によって燃焼度が高くなるた
め、第5式に示す燃焼度と運転サイクルの関係式に示す
値より高い燃焼度を得ることができる。
(Left below) As described above, according to the method of the M4 embodiment of the present invention, since the fuel assemblies in which combustion has progressed are placed in the outer peripheral region of the core, the first
In addition to the effects of the embodiment, surplus neutrons generated in the central region are absorbed in the outer peripheral region, reducing the number of neutrons leaking out of the core, and furthermore, the absorbed neutrons can increase the output of the outer peripheral region. Therefore, the burnup of the fuel assembly taken out of the core in the fourth embodiment is increased by the excess neutrons generated in the central region, so the relationship between burnup and operation cycle shown in Equation 5 is expressed as follows: It is possible to obtain a higher burnup than the indicated value.

なお、本発明の第4実施例において、第1群及び第2群
の制御棒に隣接する4体の燃料集合体の配置を本発明の
第2実施例及び第3実施例の様に変化させても第4実施
例と同様の効果を得ることができる。
In addition, in the fourth embodiment of the present invention, the arrangement of the four fuel assemblies adjacent to the control rods of the first group and the second group is changed as in the second and third embodiments of the present invention. However, the same effects as in the fourth embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料集合体の交換に要する期間を短縮
でき、ざらには燃料集合体の取シ出し燃焼度を高くする
ことができる。
According to the present invention, it is possible to shorten the period required to replace a fuel assembly, and moreover, it is possible to increase the discharge burnup of the fuel assembly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す沸騰水型原子炉の炉
心の構成図、第2図は炉心から取り出される燃料集合体
の燃焼度と運転サイクル数の関連を示す燃料集合体の特
性図、第3図は原子炉の1運転サイクル当シの燃焼度と
運転サイクル数の関連を示す燃料集合体の特性図、第4
図から第6図はそれぞれ本発明の第2実施例から第4実
施例を示す沸騰水型原子炉の炉心の構成図、第7図は従
来の沸騰水型原子炉の炉心の構成図、第8図(d第7図
のA部詳細図である。 11.16,20,23.26・・・炉心12.17,
21.24,27・・・燃料集合体13.18,22,
25.28・・制御棒14・・・燃料棒 15・・・チャンネルボッ・クス 代理人 弁理士 則 近 憲 佑 (ほか1名)第1図 第2図 書 第3図 1転ブイフル奴 第4図 第5図
FIG. 1 is a configuration diagram of a core of a boiling water reactor showing a first embodiment of the present invention, and FIG. 2 is a diagram of a fuel assembly showing the relationship between the burnup of a fuel assembly taken out from the core and the number of operating cycles. Figure 3 is a characteristic diagram of a fuel assembly showing the relationship between the burnup per operating cycle of a nuclear reactor and the number of operating cycles.
6 to 6 are block diagrams of the core of a boiling water reactor showing the second to fourth embodiments of the present invention, and FIG. 7 is a block diagram of the core of a conventional boiling water reactor. Figure 8 (d Detailed view of part A in Figure 7. 11.16, 20, 23.26...core 12.17,
21.24,27...Fuel assembly 13.18,22,
25.28...Control rod 14...Fuel rod 15...Channel Box agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 Book 3 Figure 1 Turn-build guy Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)沸騰水型原子炉の炉心内に配置された制御棒を2
群に分割させ、第1群の各制御棒に隣接する4体の燃料
集合体は未燃焼燃料集合体、第2サイクル燃焼燃料集合
体、第5サイクル燃焼燃料集合体、第7サイクル燃焼燃
料集合体から構成され、第2群の各制御棒に隣接する4
体の燃料集合体は第1サイクル燃焼燃料集合体、第3サ
イクル燃焼燃料集合体、第4サイクル燃焼燃料集合体、
第6サイクル燃焼燃料集合体から構成され、1サイクル
運転終了後8サイクル燃焼した燃料集合体を取り出し、
その後この8サイクル燃焼した燃料集合体の装荷されて
いた位置に4サイクル燃焼した燃料集合体を装荷させ、
この4サイクル燃焼した燃料集合体の装荷されていた位
置に未燃焼燃料集合体を装荷させることを特徴とする沸
騰水型原子炉の燃料交換方法。
(1) Control rods placed in the core of a boiling water reactor are
The four fuel assemblies adjacent to each control rod in the first group are an unburned fuel assembly, a second cycle combustion fuel assembly, a fifth cycle combustion fuel assembly, and a seventh cycle combustion fuel assembly. 4 adjacent to each control rod of the second group.
The fuel assemblies of the body include a first cycle combustion fuel assembly, a third cycle combustion fuel assembly, a fourth cycle combustion fuel assembly,
It consists of a 6th cycle combustion fuel assembly, and after the completion of 1 cycle operation, the fuel assembly that has been burned for 8 cycles is taken out,
After that, a fuel assembly that has been burned for 4 cycles is loaded in the position where the fuel assembly that has been burned for 8 cycles was loaded,
A method for exchanging fuel for a boiling water reactor, characterized by loading an unburned fuel assembly into the position where the fuel assembly that has been burned for four cycles was loaded.
(2)沸騰水型原子炉の炉心内に配置された制御棒を3
群に分割させ、第1群の各制御棒に隣接する4体の燃料
集合体は未燃焼燃料集合体、第2サイクル燃焼燃料集合
体、第5サイクル燃焼燃料集合体、第7サイクル燃焼燃
料集合体から構成され、第2群の各制御棒に隣接する4
体の燃料集合体は第1サイクル燃焼燃料集合体、第3サ
イクル燃焼燃料集合体、第4サイクル燃焼燃料集合体、
第6サイクル燃焼燃料集合体から構成され、第3群の各
制御棒に隣接する4体の燃料集合体は第8サイクル燃焼
燃料集合体、第9サイクル燃焼燃料集合体、第10サイ
クル燃焼燃料集合体、第11サイクル燃焼燃料集合体か
ら構成され、第1群及び第2群の制御棒は炉心の中央領
域に配置され、第3群の制御棒は炉心の外周領域に配置
され、1サイクル運転終了後12サイクル燃焼した燃料
集合体を取り出し、その後この12サイクル燃焼した燃
料集合体の装荷されていた位置に炉心の中央領域に配置
された8サイクル燃焼した燃料集合体を装荷させ、この
8サイクル燃焼した燃料集合体の装荷されていた位置に
4サイクル燃焼した燃料集合体を装荷させ、この4サイ
クル燃焼した燃料集合体の装荷されていた位置に未燃焼
燃料集合体を装荷させることを特徴とする沸騰水型原子
炉の燃料交換方法。
(2) Control rods placed in the core of a boiling water reactor
The four fuel assemblies adjacent to each control rod in the first group are an unburned fuel assembly, a second cycle combustion fuel assembly, a fifth cycle combustion fuel assembly, and a seventh cycle combustion fuel assembly. 4 adjacent to each control rod of the second group.
The fuel assemblies of the body include a first cycle combustion fuel assembly, a third cycle combustion fuel assembly, a fourth cycle combustion fuel assembly,
It consists of a 6th cycle combustion fuel assembly, and the 4 fuel assemblies adjacent to each control rod of the 3rd group are an 8th cycle combustion fuel assembly, a 9th cycle combustion fuel assembly, and a 10th cycle combustion fuel assembly. The control rods of the first group and the second group are arranged in the central region of the reactor core, the control rods of the third group are arranged in the outer peripheral region of the core, and the control rods of the first group and the second group are arranged in the outer peripheral region of the core. After the completion of the combustion, the fuel assembly that has been burned for 12 cycles is taken out, and then the fuel assembly that has been burned for 8 cycles and placed in the central area of the reactor core is loaded in the position where the fuel assembly that has been burned for 12 cycles was loaded. A fuel assembly that has been burned for 4 cycles is loaded in the position where the burned fuel assembly was loaded, and an unburned fuel assembly is loaded in the position where the 4-cycle burned fuel assembly was loaded. How to replace fuel in a boiling water reactor.
JP59238472A 1984-11-14 1984-11-14 Method of exchanging fuel for boiling water type reactor Pending JPS61117481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238472A JPS61117481A (en) 1984-11-14 1984-11-14 Method of exchanging fuel for boiling water type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238472A JPS61117481A (en) 1984-11-14 1984-11-14 Method of exchanging fuel for boiling water type reactor

Publications (1)

Publication Number Publication Date
JPS61117481A true JPS61117481A (en) 1986-06-04

Family

ID=17030742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238472A Pending JPS61117481A (en) 1984-11-14 1984-11-14 Method of exchanging fuel for boiling water type reactor

Country Status (1)

Country Link
JP (1) JPS61117481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108885909A (en) * 2016-03-29 2018-11-23 纽斯高动力有限责任公司 Intermodule fuel exchange

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108885909A (en) * 2016-03-29 2018-11-23 纽斯高动力有限责任公司 Intermodule fuel exchange
CN108885909B (en) * 2016-03-29 2023-11-10 纽斯高动力有限责任公司 Inter-module fuel switching

Similar Documents

Publication Publication Date Title
JP2915200B2 (en) Fuel loading method and reactor core
JPH07140286A (en) Fast reactor core
JPS623916B2 (en)
JPS61117481A (en) Method of exchanging fuel for boiling water type reactor
JP2510612B2 (en) Reactor core and initial reactor core
JPS5858036B2 (en) Light water reactor and its operation method
JPS63121789A (en) Nuclear reactor initial charging core
JPH01277798A (en) Nuclear reactor fuel assembly
JPS6131991A (en) Method of exchanging fuel for boiling-water type reactor
JPS61128185A (en) Core for nuclear reactor
JPS60262090A (en) Nuclear reactor
JPS6280585A (en) Initial loading core for nuclear reactor
JPS6013283A (en) Boiling water reactor
JPS6316292A (en) Method of charging fuel to nuclear reactor
JPH041593A (en) Fuel assembly
JPS61254887A (en) Fuel aggregate for pressure tube type reactor
JPS58178286A (en) Bwr type reactor
JPS5979178A (en) Reactor
JPH07318674A (en) Fuel assembly
JPH06118188A (en) Fuel assembly and core for boiling water reactor
JPS60216296A (en) Method of charging fuel in fast breeder reactor
JPS60205283A (en) Fast breeder reactor
JPS6176982A (en) Method of arranging fuel into fuel aggregate
JPS5965290A (en) Method of operating reactor
JPS6244683A (en) Fuel aggregate for boiling water type reactor