JPS61128185A - Core for nuclear reactor - Google Patents

Core for nuclear reactor

Info

Publication number
JPS61128185A
JPS61128185A JP59249585A JP24958584A JPS61128185A JP S61128185 A JPS61128185 A JP S61128185A JP 59249585 A JP59249585 A JP 59249585A JP 24958584 A JP24958584 A JP 24958584A JP S61128185 A JPS61128185 A JP S61128185A
Authority
JP
Japan
Prior art keywords
core
fuel
fuel assemblies
cycle
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59249585A
Other languages
Japanese (ja)
Inventor
持田 貴顕
小沢 通裕
光也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59249585A priority Critical patent/JPS61128185A/en
Publication of JPS61128185A publication Critical patent/JPS61128185A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は原子力発電所に設置される沸騰水型原子炉の初
装荷炉心の構成に係り、燃f:j8度の増大と平衡炉心
への速やかな4行を同時に可能とするのに好適な原子炉
炉lシ・に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to the configuration of the initial loading core of a boiling water reactor installed in a nuclear power plant. The present invention relates to a nuclear reactor suitable for allowing four lines to operate at the same time.

〔発明の背景〕[Background of the invention]

S騰水型原子炉の炉心は第2図に示すように、1本の制
御棒とそれを囲む4本の燃料集合体からなるセルを複数
個配置することにより構成される。
As shown in FIG. 2, the core of an S-water reactor is constructed by arranging a plurality of cells each consisting of one control rod and four fuel assemblies surrounding it.

一般に、沸騰水型原子炉では、最初の運転時の炉心、い
わゆる初装荷炉心に装荷される燃料集合体の平均a11
ii!i度は同一で一種類であった。ところで、原子炉
では1サイクル毎に全数の約1/3〜1/4の燃料集合
体を取出し、新燃料と交換するが、初装荷炉心用燃料集
合体の平均濃縮度は2〜3サイクル炉心内で燃焼が可能
なように設定されているため、初装荷炉心用燃料集合体
を用いる運転サイクル(以下「第1サイクル」と称し、
それ以後に部分的に燃料を交換し引続き運転するサイク
ルを「第2サイクル」、「第3サイクル」・・・と称す
る。)終了時の燃料交換で11、まだ充分に燃焼の進ん
でなく、ウラン235残留量の高い燃料集合体を炉心か
ら取り出すことになり不経済でろつた。
In general, in a boiling water reactor, the average a11 of the fuel assemblies loaded in the reactor core during initial operation, the so-called initial loading core, is
ii! The i degrees were the same and one type. By the way, in a nuclear reactor, about 1/3 to 1/4 of the total number of fuel assemblies are taken out and replaced with new fuel every cycle, but the average enrichment of the fuel assemblies for the initially loaded core is 2 to 3 cycles. Since the setting is such that combustion is possible within the core, the operation cycle using the initially loaded core fuel assembly (hereinafter referred to as the "first cycle")
The cycles in which the fuel is partially exchanged and continued operation thereafter are referred to as a "second cycle", a "third cycle", and so on. ) During the fuel exchange at the end of 11, combustion had not yet progressed sufficiently and the fuel assembly with a high residual amount of uranium-235 had to be removed from the reactor core, which was uneconomical and uneconomical.

このため、沸騰水型原子炉において、平均濃縮度の異な
る多種類の燃料集合体全組み合せて初装荷炉心を構成し
、1サイクル毎に?−縮度の低い燃料集合体から取出し
、これを新燃料集合体と交換することに:す、初装荷燃
料集合体の平均均取出燃焼度を増大させるとともに、次
サイクルへの移行を速やかにする試みがなされている。
For this reason, in a boiling water reactor, the initial loading core is composed of all combinations of many types of fuel assemblies with different average enrichments, and each cycle is... - Taking out fuel assemblies with a low degree of contraction and replacing them with new fuel assemblies: This increases the average equalized burnup of the initially loaded fuel assemblies and speeds up the transition to the next cycle. Attempts are being made.

第2サイクル以後の初めに装荷される新燃料集合体は取
替燃料集合体と呼ばれ、第1サイクル以後、数サイクル
にわたり継続的に取替燃料集合体を装荷した炉心は、炉
内全体の燃料成分がほとんど一定の状態に達したサイク
ルで、その前のサイクルおよび次のサイクルとのPA特
性が変らず安定したサイクルとなり、これは平衡サイク
ルと呼ばれ、平衡サイクルとなった炉心を平衡サイクル
という。
The new fuel assembly that is loaded at the beginning of the second cycle is called a replacement fuel assembly, and after the first cycle, the core that is continuously loaded with replacement fuel assemblies for several cycles is This is a cycle in which the fuel components have reached an almost constant state, and the PA characteristics of the previous cycle and the next cycle remain unchanged and are stable. This is called an equilibrium cycle, and the core that has become an equilibrium cycle is called an equilibrium cycle. That's what it means.

このよりな原子炉においては、第1サイクルから平衡サ
イクルへ移行する中間のサイクル(以後「移行サイクル
」という。)での熱特性およびサイクル増分燃焼度が平
衡サイクルのそれらと同程度あるいは、速やかにそれら
に収束するのが好ましい。しかしながら、従来の初装荷
炉心のように集合体平均濃縮度が一種類の場合には、平
衡サイクルへの移行も長くかかり、移行サイクルでの燃
料取替体数の変動も大きく必ずしも満足々ものではなか
った。
In this type of reactor, the thermal characteristics and cycle incremental burnup in the intermediate cycle (hereinafter referred to as the "transition cycle") transitioning from the first cycle to the equilibrium cycle are comparable to those in the equilibrium cycle, or are It is preferable to converge on them. However, when the aggregate average enrichment is one type as in the conventional initial loading core, the transition to the equilibrium cycle takes a long time, and the number of refueling bodies fluctuates in the transition cycle, which is not always satisfactory. There wasn't.

また、第1サイクルでは原子炉の営業運転に先だっての
起動試験があるため1サイクル終了までの期間が長くな
り、第1サイクルの燃焼度は、それ以後のサイクルでの
燃焼度より約2000MW、dZtはど長・ぐしなけれ
ばな3らない。これは、初装荷た。
In addition, in the first cycle, there is a start-up test prior to commercial operation of the reactor, so the period until the end of the first cycle is longer, and the burnup in the first cycle is approximately 2000 MW, dZt lower than the burnup in subsequent cycles. Hadocho・gusimusashi 3nai. This was the first loading.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、平衡サイクルへの移行が速やかに行わ
れ、かつ初装荷燃料集合体の取出燃焼度を増大するのに
適する初装荷炉心を有する凍子炉f心を提倶することに
ある。
An object of the present invention is to provide a cryogenic reactor core having an initial loading core that allows a rapid transition to an equilibrium cycle and is suitable for increasing the extraction burnup of an initial loading fuel assembly. .

〔発明の概要〕[Summary of the invention]

本発明者く、初装荷炉心を平均濃縮度の異なる複数の燃
料集合体により構成し、これら燃料集合体の?4縮度、
体数、及び取出博期t−特定することにニレ、上記発明
の目的を達成できること見出した。その発明の概略は次
の7点で特徴づけられる。
The present inventor constructed an initial loading reactor core with a plurality of fuel assemblies having different average enrichments, and the... 4 degree of contraction,
It has been found that the above object of the invention can be achieved by specifying the number of plants and the expiration period of elm. The outline of the invention can be characterized by the following seven points.

■ 集合体平均濃縮度の異なる2種類以上(例えば3種
類)の燃料集合体により初装荷炉心を構成する。
(2) The initial loading core is configured by two or more types (for example, three types) of fuel assemblies with different average enrichments of the assemblies.

■ 第1サイクル後のに料取替割合を1/Nとすると、
上記燃料集合体の種類も約Nとする。
■ If the charge exchange ratio after the first cycle is 1/N, then
The type of fuel assembly mentioned above is also approximately N.

■ 炉心最外周部には、上記燃料集合体のうち最もz峻
縮度の低い燃料集合体(これを低濃縮度燃料集合体と呼
ぶ。)を配置する。
(2) A fuel assembly with the lowest z-shrinkage among the fuel assemblies described above (this is referred to as a low enrichment fuel assembly) is arranged at the outermost portion of the core.

■ 低濃縮度燃料集合体は、炉心最外周部に配置される
燃料集合体L1と、炉心内部に配置される燃料集合体L
2に分類され、燃料集合体L2の7:!1.は、鴻1サ
イクル終了後取出される燃料集合体の数に等しく、燃料
集合体L2は@1サイクル終了後にすべて取出さ几、燃
料集合体L1け、炉心最外周部に2サイクル滞在しfC
後、すなわち第2サイクル終了後取出される。
■ The low enrichment fuel assemblies include fuel assembly L1 located at the outermost periphery of the core and fuel assembly L located inside the core.
2, and 7 of fuel assembly L2:! 1. is equal to the number of fuel assemblies taken out after the completion of one cycle, fuel assembly L2 is all taken out after the completion of one cycle, fuel assembly L1 stays in the outermost part of the core for two cycles, and fC
After that, that is, after the end of the second cycle.

■ 出力運転中に炉心に挿入される制御棒を囲む4体の
燃料集合体は、低濃縮度燃料集合体L1によね構成され
る。
(4) The four fuel assemblies surrounding the control rods inserted into the reactor core during power operation are composed of a low enrichment fuel assembly L1.

■ 上記の低濃縮度燃料集合体の濃縮度は約1.0重量
S〜1.5重景チの範囲である。
(2) The enrichment of the above-mentioned low enrichment fuel assembly is in the range of about 1.0 weight S to 1.5 weight weight S.

■ 初装荷炉心を構成する燃料集合体のうち、濃@M度
が最も高い燃料集合体(これを高濃縮度燃料集合体と呼
ぶ)の濃縮度は、取替燃料集合体の!!’1度と等しい
■ Among the fuel assemblies that make up the initial loading core, the enrichment of the fuel assembly with the highest M degree (this is called a high enrichment fuel assembly) is the same as that of the replacement fuel assembly! ! 'Equal to 1 degree.

やかにするとともに、■で述べる燃料の取出し方の限定
により、取出燃焼度の増大に寄与する。
In addition to increasing the fuel output speed, the limitation on the method of fuel extraction described in (2) contributes to an increase in the extraction burnup.

この技術は、例えば特開昭57−8486、特開昭58
−63887等に述べられているが、これだけでは、本
発明の目的を充分に達成するものではなく、さらに次に
述べる技術が必要であった。
This technology is known, for example, in Japanese Patent Application Laid-open No. 57-8486 and Japanese Patent Laid-open No. 58
-63887, etc., but this alone cannot sufficiently achieve the object of the present invention, and the following technology is required.

■によると、第1サイクル末期での初装荷燃料の種類は
、平衡炉心でのバッチ数とは/?E’等しくなるので、
初装荷炉心から平衡炉心への移行がスムーズとなる。
According to ■, the type of fuel initially loaded at the end of the first cycle is the number of batches in the equilibrium core/? E' is equal, so
The transition from the initial loading core to the equilibrium core will be smooth.

全燃料装荷体数をN4、取替体数をN8とするとバッチ
数(これは取替体数割合の逆数で定義される。)は、 N。
Assuming that the total number of fuel loaded bodies is N4 and the number of replacement bodies is N8, the number of batches (this is defined as the reciprocal of the ratio of the number of replacement bodies) is N.

R で示されるので、■に示すように、初装荷燃料の濃ia
度種類n′t−、バッチ数とほぼ等しくするためには、
nf: となる整数に選べばよい。則ち、取替体数N翼と、濃i
a度徨類nの間には、 の関係が成り立つ。
As shown in ■, the concentration of the initially loaded fuel is
In order to make the degree type n't- approximately equal to the number of batches,
nf: It is sufficient to choose an integer that satisfies the following. In other words, the number of replacement wings is N, and the number of replacement parts is N.
The following relationship holds between a-degree class n.

■によると、炉心からの中性子の濁−rLを小さくする
ことができ、燃焼度を向上することができる。
According to (2), the turbidity -rL of neutrons from the core can be reduced, and the burnup can be improved.

これは炉心から外へもれて失われる中性子の大部分は炉
心最外周部の燃料集合体から発生したもので、−列以上
内側の燃料集合体で発生した中性子は炉心外へもれるこ
とがないため、発生中性子数の少ない低反応度燃料集合
体だけで炉心最外周部を構成する場合には、炉心から外
へもれる中性子を減少することができ、燃焼度が向上す
るからである。取替燃料を装荷した、移行サイクル炉心
や平衡サイクル炉心では、低反応度燃料集合体として燃
料の進んだ燃料集合体、すなわち次サイクル伺、特開昭
59−15888にに、初装荷用燃料集合体の濃縮度を
多種類とし、炉心最外周部を高濃縮度燃料で構成する例
が記述されているが、本特許では、炉心最外周部を低濃
縮度燃集を配置していることが特徴であるため、これと
は全く別のアイデアである。特開昭59−15888で
は、出力分布の平坦化のために炉心外周部に高濃縮度燃
料を配置しているが、炉心からの中性子のもれが大きく
なるので、反応度が損失する。この反応度損失を補うた
めには濃縮度を高くする必要があるため、同一の取出燃
焼度を得るのに必要な濃縮度は、特開昭59−1588
8記載の例のほうが、本発明よりも高く、燃料経済性は
本発明のほうが浸れている。
This is because most of the neutrons that leak out from the core and are lost are generated from the fuel assemblies at the outermost periphery of the core, while neutrons generated in fuel assemblies located at or above the innermost part of the core can leak out of the core. Therefore, if the outermost part of the core is made up of only low-reactivity fuel assemblies that generate a small number of neutrons, it is possible to reduce the number of neutrons leaking out of the core and improve the burnup. In transition cycle cores and equilibrium cycle cores loaded with replacement fuel, fuel assemblies with advanced fuel are used as low-reactivity fuel assemblies, i.e., fuel assemblies for the first loading are used for the next cycle. This patent describes an example in which the outermost part of the core is composed of high enrichment fuel with various enrichment levels, but this patent describes the arrangement of low enrichment fuel in the outermost part of the core. Since this is a feature, it is a completely different idea. In JP-A-59-15888, highly enriched fuel is placed around the outer periphery of the core in order to flatten the power distribution, but this increases the leakage of neutrons from the core, resulting in loss of reactivity. In order to compensate for this reactivity loss, it is necessary to increase the enrichment level, so the enrichment level required to obtain the same extraction burnup is
The example described in No. 8 is higher than the present invention, and the present invention has better fuel economy.

■は低濃縮度燃料の燃焼度を増大する上で特に重要とな
る。炉心外周部は中性子のもれにより出力が小さいので
、炉心中央部に比べて半分程度しか燃焼が進まない。第
1表は、同一濃縮度の燃料るが、炉心内部の燃料集合体
平均濃縮度は約110Wd/lでちるのに対し、炉心号
外部の燃料集合体平均燃焼度は約5QWd/lで、K2
2サイクル末で約10()Wd/lとなり、炉心内部で
の第1サイクル末での燃焼度と等しくなる。このため、
炉心最外周部の燃料集合体を第1サイクル末に取り出す
と充分に−りしないうちに取出すこと第1表 になり、不経済である。このため、初装荷時に炉心最外
周部に配置した燃料は少なくも2サイクル以上炉心に滞
在させる必要がア敷 このような燃料集合体が低濃縮度
燃料集合体である場合には、炉心に3サイクル滞在させ
ると反応度損失が大きいので、炉内滞在する期間は2サ
イクルがi&適である。また、第一サイクル末期に取出
される燃料は低濃縮度燃料だけであることが取出燃焼度
を増大すち上で重要となるので、取替体数と等しい数の
低濃縮度燃料が中心内部に配置され、これが第1サイク
ル終了時に炉心から取出され交換される。
(2) is particularly important in increasing the burnup of low enrichment fuel. Because the output at the outer periphery of the core is low due to neutron leakage, combustion progresses only about half as much as at the center of the core. Table 1 shows that for fuels with the same enrichment, the average enrichment of the fuel assemblies inside the core is approximately 110 Wd/l, while the average burnup of the fuel assemblies outside the core is approximately 5 QWd/l. K2
The burnup becomes approximately 10() Wd/l at the end of the second cycle, which is equal to the burnup inside the core at the end of the first cycle. For this reason,
If the fuel assembly at the outermost periphery of the core is removed at the end of the first cycle, it will be removed before it is fully depleted, as shown in Table 1, which is uneconomical. For this reason, it is necessary that the fuel placed at the outermost periphery of the core at the time of initial loading stay in the core for at least two cycles. Since the reactivity loss is large when the reactor is allowed to stay in the furnace, two cycles is suitable for the period of stay in the reactor. In addition, it is important that the fuel removed at the end of the first cycle is only low-enrichment fuel in order to increase the removal burnup, so a number of low-enrichment fuels equal to the number of replacement bodies are It is removed from the core and replaced at the end of the first cycle.

これによると第1b群の燃料集合体数N 1 bは取替
体数とNmと等しいので(2)式よりの関係が成り立つ
According to this, the number of fuel assemblies N 1 b in the 1b group is equal to the number of replacement bodies and Nm, so the relationship according to equation (2) holds true.

■け、特開昭56−1386に記載されるように、運転
中に炉心に挿入される制御棒を限定し、制御棒のパター
ン交換を不要とした運転するために必要でおる。このよ
うな運転を行なうためには、運転中に炉心に挿入される
制御棒を囲む4体の燃料集合体を低反応度燃料集合体で
構成する必要がらり、本発明では低反応度燃料集合体と
して、濃縮度の低い燃料集合体を採用していることが特
徴で第1サイクルの燃焼度は、現在9〜12ケ月の運転
期間に起動時間を加えただけ必要でろり、1100MW
e 級原子炉で約100Wd/lである。
(1) As described in Japanese Patent Application Laid-Open No. 56-1386, it is necessary to limit the number of control rods inserted into the reactor core during operation so as to eliminate the need for pattern exchange of control rods. In order to perform such an operation, it is necessary to configure the four fuel assemblies surrounding the control rods inserted into the reactor core during operation with low-reactivity fuel assemblies, and in the present invention, low-reactivity fuel assemblies It is characterized by the adoption of a fuel assembly with a low enrichment degree, and the burnup of the first cycle is 1100 MW, which currently requires only 9 to 12 months of operation period plus start-up time.
It is approximately 100 Wd/l in an e-class reactor.

取替燃料集合体は濃縮度3重f&チで約300Wd/l
だけ燃えるので、濃a度lit慢につき約10GWd/
lの割合で燃えることになる。これに対して、従来まで
の初装荷燃料集合体では、第1サイクル終了時に取出さ
れる燃料集合体は、初期濃縮度が約2t、11−チでち
るのに対し、燃焼度が約100Wd/lでおるため充分
に燃えているとくいえず、不経済の原因であった。この
ため、第1サイクル終了時に取出される低濃縮度燃料集
合体の一一度が約100Wd/lであることから考える
と、その濃縮度は約1.0重量%にするのがよい。さら
に今後予定される運転期間の長期化により、第1サイク
ルの燃焼度も約15GWd/lまで増加すると考えられ
るので、低濃縮度燃料の濃縮度は約1.0重tチ〜1.
5重!壬とするのが最適である。
The replacement fuel assembly has a triple enrichment of F&CH and is approximately 300Wd/l.
10 GWd/ per concentration
It will burn at a rate of l. In contrast, with conventional initially loaded fuel assemblies, the fuel assemblies taken out at the end of the first cycle have an initial enrichment of about 2t and 11-chi, but a burnup of about 100Wd/1. Since the fuel was still burning at a low temperature, it was difficult to tell if it was burning sufficiently, which caused uneconomical results. Therefore, considering that the concentration of the low enrichment fuel assembly taken out at the end of the first cycle is about 100 Wd/l, it is preferable that the enrichment is about 1.0% by weight. Furthermore, due to the expected longer operating period, the burnup of the first cycle is expected to increase to about 15 GWd/l, so the enrichment of low enrichment fuel will be about 1.0 to 1.0 GWd/l.
Five layers! It is best to set it as 壬.

■に述べたように、高濃縮度燃料の濃縮度を取ので、平
衡炉心への移行が速やかKなる。
As mentioned in (2), since the enrichment of high-enrichment fuel is removed, the transition to an equilibrium core quickly reaches K.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を説明する。第1図は1100
 MWe級沸騰水墓原子炉の炉心の1/4を模式的に示
した平面図でらる。図中、41.42は制御棒を示し、
その周囲には4体の燃料集合体が装荷され、この制御棒
1体と燃料集合体4体で単位セルを構成し、この単位セ
ルを複数個配置して炉心が構成される。制御棒は、通常
運転時に炉心に挿入され炉心の反応度を調整することを
目的とした制御棒41と、通常は炉心から引抜かれ炉心
停止時のみ炉心に挿入される制御棒42に分類される。
An embodiment of the present invention will be described below. Figure 1 is 1100
This is a plan view schematically showing 1/4 of the core of an MWe-class boiling water grave reactor. In the figure, 41.42 indicates the control rod,
Four fuel assemblies are loaded around it, one control rod and four fuel assemblies constitute a unit cell, and a reactor core is constructed by arranging a plurality of these unit cells. Control rods are classified into control rods 41, which are inserted into the reactor core during normal operation and for the purpose of adjusting the reactivity of the reactor core, and control rods 42, which are normally withdrawn from the reactor core and inserted into the reactor core only when the reactor is stopped. .

燃料集合体はその平均濃縮度について2種類以上に分類
され、第1図に示した例では3種類に分類される。本実
施例は全燃料装荷体数は764体で、目標とする平衡炉
心の平均取替体数を212体でおり、前記(1)式によ
れば濃縮度の種類は、764/212=16t−超えな
い最大の整数とし取替燃料集合体と同一で約3.0重量
%、体数は248体である。燃料集合体2は、中濃縮度
燃料集合体で濃縮度は約12重量%、体数は212体で
ある。
Fuel assemblies are classified into two or more types with respect to their average enrichment, and in the example shown in FIG. 1, are classified into three types. In this example, the total number of fuel loaded bodies is 764 bodies, the target average number of replacement bodies in the equilibrium core is 212 bodies, and according to the above formula (1), the type of enrichment is 764/212 = 16t. - The largest integer that does not exceed the same as the replacement fuel assembly, approximately 3.0% by weight, and the number of fuel assemblies is 248. The fuel assembly 2 is a medium enrichment fuel assembly with an enrichment level of approximately 12% by weight and a total of 212 fuel assemblies.

残りの燃料集合体は、濃縮度約1,4重i−チの低濃縮
度燃料集合体で、31は炉心最外周部に配置され、32
は制観穆41のまわhに配電され、3汀、炉心内部に配
置されるその他の低濃縮度燃料集合体である。炉心内部
に配置される低濃縮度燃料集合体3.32の合計体数F
1212体で、これは第1サイクル末には取出される。
The remaining fuel assemblies are low-enrichment fuel assemblies with an enrichment of about 1.4 times I-1, with 31 being placed at the outermost periphery of the core and 32 being low-enrichment fuel assemblies.
is the other low enrichment fuel assembly arranged inside the reactor core. Total number F of low enrichment fuel assemblies 3.32 arranged inside the core
1212 bodies, which are removed at the end of the first cycle.

また低濃縮度燃料集合体310体数は92体でおる。The number of 310 low enrichment fuel assemblies is 92.

このような燃料集合体で構成された炉心は以下のよって
作用する。まず、第1サイクルの運転が終了すると、3
2.3で示される炉心内部に配置した低濃縮度燃料集合
体212体取出し、代すに衡炉心への移行を速やかに行
なうことを目的として実施する。この時に、炉心最外周
部に配置した低濃縮度燃料集合体を取り出さない理由は
、前述した一部やで、この方法により炉心最外周部に配
置した燃料集合体の燃焼度増大させることができる。
A reactor core composed of such fuel assemblies operates as follows. First, when the first cycle of operation is completed, 3
This is carried out for the purpose of removing the 212 low enrichment fuel assemblies placed inside the reactor core as shown in 2.3 and quickly transferring them to the balanced core instead. The reason why the low enrichment fuel assemblies placed at the outermost periphery of the core are not removed at this time is partly due to the above-mentioned reason.This method can increase the burnup of the fuel assemblies placed at the outermost periphery of the core. .

従って、第1サイクル終了時に取出される燃料集合体に
、常にウラン235の残留量が少々いものである。
Therefore, the fuel assembly taken out at the end of the first cycle always has a small amount of residual uranium-235.

第2サイクル運転終了時には、前述の炉心最外周部に配
置された低濃縮度燃料集合体31.92体と中濃縮度燃
料集合体の一部、120体が取出され、この時にも合計
212体の燃料集合体が濃縮度約3チの取替燃料集合体
と交換される。同様に、第3サイクル運転終了時には、
残りの中濃縮度燃料集合体92体と、高濃縮度燃料集合
体120体、合計212体が濃1a度約3チの取替燃料
集合体と交換される。このようにして構成された第3サ
イクル炉心は、毎年212体ずつ燃料を交換し続けた第
4サイクル以後と炉心購成が同じとなるため、平衡炉心
となっている。
At the end of the second cycle operation, 31.92 low-enrichment fuel assemblies and some of the medium-enrichment fuel assemblies, 120 of which were placed at the outermost part of the core, were removed, for a total of 212 fuel assemblies. of fuel assemblies are replaced with replacement fuel assemblies having an enrichment of approximately 3. Similarly, at the end of the third cycle operation,
The remaining 92 medium enrichment fuel assemblies and 120 high enrichment fuel assemblies, 212 in total, will be replaced with replacement fuel assemblies with a concentration of about 1a and 3ch. The third cycle core configured in this manner is an equilibrium core because the core purchase is the same as in the fourth cycle and subsequent cycles, in which fuel was continued to be replaced by 212 cores every year.

ル末での取替体数は212体で一定でちる。このように
して燃料集合体の交換を行なった場合には、常にウラン
235残留量の少ない燃料集合体から取出されるので、
従来の初装荷炉心のようにウラン235の残留量が高く
、充分に燃焼していない燃料を取出すことはなくなるの
で、ウランを有効に利可することができ、燃料経済性が
向上する。
The number of replacement bodies at the end of the series remains constant at 212. When replacing fuel assemblies in this way, the fuel assemblies with the least amount of uranium-235 remaining are always taken out.
Unlike the conventional initial loading core, fuel with a high residual amount of uranium-235 and not sufficiently burned is no longer removed, so uranium can be used effectively and fuel economy is improved.

第2表 第3図は、各サイクルでの余剰反応度の燃焼度変化を比
較したものであり、第1サイクルだけは起動試験期間の
分だけサイクル増分燃焼度は多いが、各サイクル間の余
剰反応度変化は少なく、第3サイクル以後の余剰反応度
の燃焼度変化は同一となり、?心は平衡になっていると
いってよい。
Figure 3 of Table 2 compares the change in burnup of surplus reactivity in each cycle.Only in the first cycle, the cycle incremental burnup is large due to the startup test period, but the surplus between each cycle The change in reactivity is small, and the change in burnup of excess reactivity after the 3rd cycle is the same, ? It can be said that the mind is in equilibrium.

このように、速やかに平衡炉心に収束するのは、第2表
に示したように、第1サイクル以後の燃料取替体数が同
一となっているためである。
As shown in Table 2, the reason why the core quickly converges to the equilibrium core is that the number of refueling bodies after the first cycle is the same.

第4図は、従来からの燃料集合体濃縮度を一種類とした
場合の移行サイクルの余剰反応度の燃焼度変化を比較し
たものであるが、各サイクル毎の余剰反応度の変化が大
きく、平衡になるのが難しくなっている。また、第4図
に余剰反応度を示した従来からの初装荷炉心では、その
平均取出燃焼度が約17GWd/lでらったのに対し、
本実施例では、同一の初期炉心平均濃縮度で、平均取出
燃焼度は約210Wd/lと奇妙、約23チ増加する。
Figure 4 compares the change in burnup of excess reactivity in the transition cycle when conventional fuel assembly enrichment is set to one type. Equilibrium is becoming difficult to achieve. In addition, in the conventional initially loaded core, which showed excess reactivity in Figure 4, the average extracted burnup was about 17 GWd/l, whereas
In this example, with the same initial core average enrichment, the average extracted burnup is about 210 Wd/l, which is a strange increase of about 23 inches.

さらに、本実施例では、第4図に示したように各サイク
ルとも、余剰反応度の燃焼変化が少なく平坦でるるため
、イ氏濃縮度燃料4体に囲まれた制御棒41だけを利用
して、制御棒パターン交換を不要とした、単一パターン
運転が、第1サイクルから可能となる。
Furthermore, in this embodiment, only the control rod 41 surrounded by the four Lee-enrichment fuels is used because the combustion change in excess reactivity is small and flat in each cycle as shown in FIG. Therefore, single pattern operation without the need for control rod pattern exchange is possible from the first cycle.

特に本炉心では、余剰j反応度が1.3チΔに喝度なの
で、町81櫟1tの制御能力が約0.1壬Δにであるこ
とより、運転中に炉心に挿入される制御棒41は13本
とiす、4体の低濃縮度燃料集合体32で構成されるセ
ルの数も13となる。
In particular, in this reactor core, the surplus J reactivity is as high as 1.3 Δ, and the control capacity of 1 ton of town 81 is approximately 0.1 Δ. 41 is 13, and the number of cells constituted by the four low enrichment fuel assemblies 32 is also 13.

尚、特開昭58−223092には、初装荷燃料集合体
を濃縮度についてN群に分数し、第1群(1≦i<N−
1)に属する燃料集合体を第1サイクルに取出す内容の
発明が記載されているが、この場合には、各群の燃料集
合体数と、各サイクル末での取出体数の関係は、上記公
報の実施例によると第3表のようなものであ抄、i群の
燃料集合体数と第1サイクル末の取出し体数が一致する
ので、鴻2表に示した本発明とは全く別のものであるこ
とは明らかである。また、上記公報記載の実施例では、
第1サイクルと第2サイクルでの取替体数が異なってい
るので、平衡炉心へ速やかに移行するのが難しいが、本
発明では各サイクル毎の取替体数を同一にすることによ
抄平衡炉心へ速やかに移行できるようにしている。
Furthermore, in JP-A-58-223092, the initially loaded fuel assembly is divided into N groups with respect to enrichment, and the first group (1≦i<N-
An invention is described in which fuel assemblies belonging to 1) are taken out in the first cycle, but in this case, the relationship between the number of fuel assemblies in each group and the number of taken out at the end of each cycle is as described above. According to the example in the publication, as shown in Table 3, the number of fuel assemblies in group i and the number of removed assemblies at the end of the first cycle are the same, so this invention is completely different from the present invention shown in Table 2. It is clear that it belongs to In addition, in the example described in the above publication,
Since the number of bodies to be replaced in the first cycle and the second cycle is different, it is difficult to quickly shift to an equilibrium core. However, in the present invention, by making the number of bodies to be replaced in each cycle the same, This allows for a prompt transition to an equilibrium core.

第3表 〔発明の効果〕 本発明によれば、初装荷燃料集合体の平均取出燃焼度を
約20%増加することができ、燃料経済性が増す。また
、初装荷炉心から平衡炉心への移行が速やかになり、第
3サイクル以後は平衡サイクルと同じ運転が可能となる
Table 3 [Effects of the Invention] According to the present invention, the average discharge burnup of the initially loaded fuel assembly can be increased by about 20%, increasing fuel economy. Further, the transition from the initially loaded reactor to the equilibrium core becomes rapid, and from the third cycle onward, the same operation as in the equilibrium cycle becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

寓1図は本発明の一実施例t−原子炉炉心の構成図、第
2図は原子炉炉心を構成する単位格子セルを示す図、第
3図は本発明に基づく第1サイクルと移行サイクルを示
す図の余剰反応度の燃焼変化を示す図、第4図は従来型
初装荷炉心による第1サイクルと移行サイクルの余剰反
応度の燃焼変化を示す図でおる。 1・・・高濃縮度燃料集合体、2・・・中濃縮度燃料集
合体、3・・・低濃縮度燃料集合体(P心円部配置用)
、31・・・低濃縮度燃料集合体(炉心最外周部配置用
:32・・・低濃縮度燃料集合体(制御セル用)、41
・・・運転中に炉心に挿入される制御棒、42・・・プ
!転中に炉心に挿入されない制御棒。
Figure 1 is a configuration diagram of a nuclear reactor core according to an embodiment of the present invention, Figure 2 is a diagram showing unit lattice cells constituting the reactor core, and Figure 3 is a diagram showing the first cycle and transition cycle based on the present invention. FIG. 4 is a diagram showing combustion changes in surplus reactivity in the first cycle and transition cycle in a conventional initial loading core. 1...High enrichment fuel assembly, 2...Medium enrichment fuel assembly, 3...Low enrichment fuel assembly (for P central circle arrangement)
, 31...Low enrichment fuel assembly (for placement at the outermost periphery of the core: 32...Low enrichment fuel assembly (for control cell), 41
...Control rods inserted into the reactor core during operation, 42...p! Control rods that are not inserted into the reactor core during conversion.

Claims (1)

【特許請求の範囲】 1、燃料集合体と制御棒より成る原子炉炉心において、
装荷される燃料集合体は、集合体平均濃縮度について複
数群に分類され、各群の燃料集合体平均濃縮度を第1群
、第2群、・・・第n群の順に高くし、最も濃縮度の低
い第1群に属する燃料集合体は、さらに炉心最外周部に
配置される第1a群と、炉心最外周部を除く炉心内部に
配置される第1b群に分類され、炉心最外周部には第1
a群に属する燃料集合体だけが配置され、第1b群に属
する燃料集合体の数N_i_bは、全燃料装荷体数をN
_tとした時にN_t/(n+1)<N_i_b≦N_
t/nとなることを特徴とする原子炉炉心。 2、前記、第1b群に属する燃料集合体だけが第1サイ
クル終了時に取り出されることを特徴とする特許請求の
範囲第1項記載の原子炉炉心。 3、出力運転中に炉心に挿入されて出力調整用に使用さ
れる制御棒に隣接する4本の燃料集合体は全て、前記第
1b群に属する燃料集合体であることを特徴とする特許
請求の範囲第1項又は第2項記載の原子炉炉心。 4、前記第1群に属する燃料集合体の集合体平均濃縮度
が1.0重量%〜1.5重量%の範囲にあることを特徴
とする特許請求の範囲第1項、第2項又は第3項記載の
原子炉炉心。 5、前記第n群に属する燃料集合体の集合体平均濃縮度
が取替燃料集合体の集合体平均濃縮度と等しいことを特
徴とする特許請求の範囲第1項〜第4項記載の原子炉炉
心。 6、第1サイクルから平衡サイクルまでの毎サイクル終
了時における燃料集合体取替体数が前記第1b群の燃料
集合体体数N_i_bにほぼ等しく一定であることを特
徴とする特許請求の範囲第1項〜第5項の原子炉炉心。
[Claims] 1. In a nuclear reactor core consisting of a fuel assembly and a control rod,
The fuel assemblies to be loaded are classified into a plurality of groups based on the average enrichment of the fuel assemblies, and the average enrichment of the fuel assemblies of each group is increased in the order of the first group, the second group, ... the nth group, and the highest The fuel assemblies belonging to the first group with low enrichment are further classified into group 1a, which is arranged at the outermost periphery of the core, and group 1b, which is arranged inside the core except for the outermost periphery of the core. Part 1
Only fuel assemblies belonging to group a are arranged, and the number N_i_b of fuel assemblies belonging to group 1b is the total number of fuel loaded bodies N
When _t, N_t/(n+1)<N_i_b≦N_
A nuclear reactor core characterized by being t/n. 2. The nuclear reactor core according to claim 1, wherein only the fuel assemblies belonging to group 1b are taken out at the end of the first cycle. 3. A patent claim characterized in that all four fuel assemblies adjacent to the control rods inserted into the reactor core during power operation and used for power adjustment are fuel assemblies belonging to the group 1b. A nuclear reactor core according to item 1 or 2. 4. Claims 1 and 2, characterized in that the average enrichment of the fuel assemblies belonging to the first group is in the range of 1.0% to 1.5% by weight, or The nuclear reactor core described in paragraph 3. 5. The atoms according to claims 1 to 4, wherein the average enrichment of the fuel assembly belonging to the n-th group is equal to the average enrichment of the replacement fuel assembly. Furnace core. 6. The number of fuel assemblies to be replaced at the end of each cycle from the first cycle to the equilibrium cycle is constant and approximately equal to the number of fuel assemblies N_i_b of the 1b group. Nuclear reactor core of Items 1 to 5.
JP59249585A 1984-11-28 1984-11-28 Core for nuclear reactor Pending JPS61128185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249585A JPS61128185A (en) 1984-11-28 1984-11-28 Core for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249585A JPS61128185A (en) 1984-11-28 1984-11-28 Core for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS61128185A true JPS61128185A (en) 1986-06-16

Family

ID=17195198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249585A Pending JPS61128185A (en) 1984-11-28 1984-11-28 Core for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS61128185A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575232A (en) * 1993-05-11 1996-11-19 Hiroharu Kato Method and device for reducing friction on a navigating vehicle
US6145459A (en) * 1997-12-19 2000-11-14 Ishikawajima-Harima Heavy Industries Co., Ltd. Friction-reducing ship and method for reducing skin friction
US6748891B2 (en) 1999-06-08 2004-06-15 Ishikawajima-Harima Heavy Industries Co., Ltd. Frictional resistance reducing method, and ship with reduced frictional resistance
WO2014090143A1 (en) * 2012-12-14 2014-06-19 中国核动力研究设计院 Long-term fuel management method for reactor core of pressurized water reactor
US9293228B2 (en) 2004-10-15 2016-03-22 Westinghouse Electric Company Llc Advanced first core fuel assembly configuration and method of implementing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575232A (en) * 1993-05-11 1996-11-19 Hiroharu Kato Method and device for reducing friction on a navigating vehicle
US6145459A (en) * 1997-12-19 2000-11-14 Ishikawajima-Harima Heavy Industries Co., Ltd. Friction-reducing ship and method for reducing skin friction
US6748891B2 (en) 1999-06-08 2004-06-15 Ishikawajima-Harima Heavy Industries Co., Ltd. Frictional resistance reducing method, and ship with reduced frictional resistance
US9293228B2 (en) 2004-10-15 2016-03-22 Westinghouse Electric Company Llc Advanced first core fuel assembly configuration and method of implementing the same
US9984779B2 (en) 2004-10-15 2018-05-29 Westinghouse Electric Company Llc Advanced first core fuel assembly configuration
WO2014090143A1 (en) * 2012-12-14 2014-06-19 中国核动力研究设计院 Long-term fuel management method for reactor core of pressurized water reactor

Similar Documents

Publication Publication Date Title
JP2915200B2 (en) Fuel loading method and reactor core
KR20060050547A (en) Advanced first core fuel assembly configuration and method of implementing the same
US5787139A (en) Fuel loading method
JPS623916B2 (en)
JPS61128185A (en) Core for nuclear reactor
US4631166A (en) High utilization fuel assembly
JP3482560B2 (en) Fuel operation method of pressurized water reactor and pressurized water reactor core
JP3080663B2 (en) Operation method of the first loading core
JPS61207985A (en) Core structure of boiling water type reactor and method of charging fuel
JPH05249270A (en) Core of nuclear reactor
JP3175996B2 (en) First loading core of boiling water reactor
JPS61165682A (en) Core for nuclear reactor
JPS6013283A (en) Boiling water reactor
JP3960572B2 (en) Reactor core and its operating method
JP3828690B2 (en) Initial loading core of boiling water reactor and its fuel change method
JP3318193B2 (en) Fuel loading method
JPS63121789A (en) Nuclear reactor initial charging core
JPH0527075B2 (en)
JPH102982A (en) Core for nuclear reactor and its operating method
JPS5965290A (en) Method of operating reactor
JP3596831B2 (en) Boiling water reactor core
JPS6280585A (en) Initial loading core for nuclear reactor
JPH0432355B2 (en)
JPS6158789B2 (en)
JPH03251794A (en) Initially charged core of nuclear reactor