JPS61117195A - Vapor phase growth method - Google Patents

Vapor phase growth method

Info

Publication number
JPS61117195A
JPS61117195A JP23595584A JP23595584A JPS61117195A JP S61117195 A JPS61117195 A JP S61117195A JP 23595584 A JP23595584 A JP 23595584A JP 23595584 A JP23595584 A JP 23595584A JP S61117195 A JPS61117195 A JP S61117195A
Authority
JP
Japan
Prior art keywords
substrate
susceptor
reactive gas
phase growth
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23595584A
Other languages
Japanese (ja)
Inventor
Kenya Nakai
中井 建弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP23595584A priority Critical patent/JPS61117195A/en
Publication of JPS61117195A publication Critical patent/JPS61117195A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Abstract

PURPOSE:To form a crystal growth film having uniform and good quality on a substrate fixed to a susceptor in tight contact therewith by disposing the substrate in such a manner that the fluid layer of the reactive gas flows on the bottom surface of the substrate and executing the thermal decomposition and vapor phase growth of an org. metal. CONSTITUTION:A spacer 33 is subjected to vacuum evacuation through a discharge hole 35 of a vacuum chuck from the susceptor 32 and the substrate 8 is held to the susceptor 32 by a vacuum chuck. The susceptor 32 is heated by a high-frequency heater 36 from the outside and on the other hand the wall of a reaction tube 31 is cooled by cooling air. The reactive gaseous flow passes through a reactive gas supply hole 3 as shown by an arrow and grows the crystal by bringing the surface of the substrate 8 into reaction from the lower side. Since the passage of the reactive gas is formed to approximately a specified cross section, there is no disturbance of the reactive gas and the growth on the substrate is executed by the reactive gas having the relatively constant concn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機金属熱分解気相成長方法(MO−CVD
)により、基板に結晶成長を行う方法であり、特に有機
金属熱分解気相成長装置内に配置された基板を、サセプ
タに設けた真空チャック方式で密着させて固定できるよ
うにすると共に、降温になった反応ガスが上昇気流にな
る性質を考慮して、基板を反応ガス気流の流体面に対し
て上面側に配置し、且つその基板の配置角度を、水平か
ら60度の角度で傾斜させてサセプタに取りつけること
により、安定な有機金属熱分解気相成長を行う方法を提
供するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a metal organic pyrolysis vapor phase growth method (MO-CVD).
) is a method of growing crystals on a substrate by using a vacuum chuck system installed on a susceptor, and in particular, it allows the substrate placed in an organometallic pyrolysis vapor phase growth apparatus to be tightly fixed in place using a vacuum chuck system installed on a susceptor, and also to prevent temperature drop. Considering the tendency of the reactant gas to form an upward airflow, the substrate was placed above the fluid surface of the reactant gas flow, and the substrate was placed at an angle of 60 degrees from the horizontal. The present invention provides a method for performing stable organometallic pyrolysis vapor phase growth by attaching it to a susceptor.

有機金属熱分解気相成長法は、反応管内に配置された基
板を、電気抵抗加熱法、高周波加熱法、又は光照射法等
により加熱しながら、反応管内に所定の反応ガスを流入
させて、基板上に結晶を成長させるものであって、生成
された結晶積層間での不純物の分布が急峻であり、又電
気易動度が優れている等の多くの利点があり、例えば発
光特性の良好な多層化合物半導体を形成する場合等には
極めて通した方法であって、−例としてガリウム砒素(
GaAs)を主体とした化合物半導体を形成する際に屡
々利用されている。
In the organometallic pyrolysis vapor phase growth method, a predetermined reaction gas is flowed into the reaction tube while heating the substrate placed in the reaction tube using an electric resistance heating method, a high frequency heating method, a light irradiation method, etc. This method grows crystals on a substrate, and has many advantages such as a steep distribution of impurities between the resulting crystal layers and excellent electrical mobility.For example, it has good light-emitting properties. This is an extremely popular method for forming multilayer compound semiconductors, for example, gallium arsenide (
It is often used when forming compound semiconductors mainly composed of (GaAs).

従来は、このMO−CVD装置におけるサセプタ上に基
板を配置する方法は、単に基板をサセプタ上に搭載する
のみなので、両者間に間隙が生じ、基板の温度がサセプ
タの温度よりも低温度になることが多い。
Conventionally, the method of placing a substrate on a susceptor in this MO-CVD apparatus is simply mounting the substrate on the susceptor, so a gap is created between the two, and the temperature of the substrate becomes lower than that of the susceptor. There are many things.

特に、GaAs化合物半導体が基板の場合には、基板の
温度の温度上昇が外部からの輻射熱によるよりも、サセ
プタからの熱伝導によるのが支配的であるために、サセ
プタと基板との密着性が重要であるが、従来の装置では
この点の配慮が成されていない。
In particular, when the substrate is a GaAs compound semiconductor, the temperature of the substrate rises primarily due to heat conduction from the susceptor rather than due to radiant heat from the outside, so the adhesion between the susceptor and the substrate is poor. Although important, conventional devices do not take this point into consideration.

又、通常基板がサセプタの上に配置されているので、反
応ガスは基板の上面がら供給されることになり、MO−
CVD法では冷壁面形反応管が用いられているために、
サセプタ近傍に上昇気流を生じ、これと反応ガスの流れ
との競合関係で、反応ガスの流れが乱流になったり、反
応ガスの密度に粗密が生じ、そのために結晶成長層の品
質や均一性に問題があり改善する必要があった。
In addition, since the substrate is normally placed on top of the susceptor, the reaction gas is supplied from the top surface of the substrate, and the MO-
Because the CVD method uses a cold-walled reaction tube,
An updraft is generated near the susceptor, and this competition with the flow of the reactant gas causes the flow of the reactant gas to become turbulent and the density of the reactant gas to be uneven, resulting in poor quality and uniformity of the crystal growth layer. There was a problem and it needed to be improved.

〔従来の技術〕[Conventional technology]

第4図は、従来の有機金属熱分解気相成長方法を説明す
るための模式側面図であるが、1は反応管であり、2は
サセプタ、3は高周波加熱装置、4はサセプタの温度を
検知する熱電対、5は基板である。
FIG. 4 is a schematic side view for explaining the conventional metal-organic pyrolysis vapor phase growth method, in which 1 is a reaction tube, 2 is a susceptor, 3 is a high-frequency heating device, and 4 is a temperature control device for the susceptor. Thermocouple to detect, 5 is a substrate.

反応ガスは矢印のように流れるが、矢印aのようにスム
ーズに流れる気流と、サセプタ2の周辺の反応ガスは矢
印すのように、反応ガスの乱流があり反応ガスの導入と
排出が円滑ではなく、そのために基板に成長される結晶
は均一な成長が不可能になる。
The reactant gas flows as shown by the arrow, but there is a smooth airflow as shown by arrow a, and a turbulent flow of the reactant gas around the susceptor 2 as shown by the arrow a, allowing for smooth introduction and discharge of the reactant gas. However, this makes it impossible for the crystals grown on the substrate to grow uniformly.

第5図は、従来の他の有機金属熱分解気相成長方法を説
明するための模式側面図であるが、1は反応管であり、
2はサセプタ、3は高周波加熱装置、4はサセプタの温
度を検知する熱電対、5は基板であるが、サセプタ2の
基板配置部分が傾斜していて反応ガスが上昇気流になっ
ていることに対応して基板を傾斜したものであるが、第
3図と同様に反応ガスの気流が矢印のように乱気流にな
ることは避けられない。
FIG. 5 is a schematic side view for explaining another conventional organometallic pyrolysis vapor phase growth method, in which 1 is a reaction tube;
2 is a susceptor, 3 is a high-frequency heating device, 4 is a thermocouple that detects the temperature of the susceptor, and 5 is a substrate.The fact that the substrate placement part of susceptor 2 is tilted causes the reaction gas to flow upward. Although the substrate is tilted correspondingly, it is inevitable that the airflow of the reaction gas becomes turbulent as shown by the arrows, as in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の構成の有機金属熱分解気相成長方法では、基板が
サセプタに密着性が良(ない為に、基板の温度制御が不
十分になるのと、反応管内を流れる間に加熱される反応
ガスが上昇気流になって反応管の上側の密度を高くなる
のが問題点であり、この問題点をサセプタの構造と、サ
セプタと基板との相対位置を考慮して対処するものであ
る。
In the organometallic pyrolysis vapor phase growth method with the above configuration, the substrate does not have good adhesion to the susceptor, so the temperature control of the substrate is insufficient, and the reaction gas is heated while flowing in the reaction tube. The problem is that the susceptor becomes an updraft and increases the density on the upper side of the reaction tube, and this problem can be solved by considering the structure of the susceptor and the relative position between the susceptor and the substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解消した有機金属熱分解気相成
長方法を提供するもので、その手段は、有機金属熱分解
気相成長装置のサセプタの基板取りつけ部に複数の吸気
孔を設けて基板を密着固定し、該基板の下面を反応ガス
の流体層が流れるように配置して有機金属熱分解気相成
長をするようにしたことを特徴とする気相成長方法によ
って達成できる。
The present invention provides a metal-organic pyrolytic vapor phase growth method that solves the above-mentioned problems. This can be achieved by a vapor phase growth method characterized in that the substrate is closely fixed and arranged so that a fluid layer of a reactive gas flows through the lower surface of the substrate to perform organometallic pyrolysis vapor phase growth.

〔作用〕[Effect]

本発明は、有機金属熱分解気相成長装置の基板が配置さ
れるサセプタの領域に、真空チャックを設けて基板とサ
セプタが密着して固定するようにして、サセプタの温度
が基板の温度とほぼ同温度になることで基板の温度制御
が容易になり、又真空チャックによって基板がサセプタ
の下側に取りつけられても重力で落下することがないの
で、反応管内の反応ガスの上昇気流に対応して、基板を
反応管の上側に水平又は傾斜をつけて配置し、基板が下
側から反応ガスによって結晶成長を行なわれるように考
慮したものである。
The present invention provides a vacuum chuck in the region of the susceptor in which the substrate of the metal-organic pyrolysis vapor phase growth apparatus is placed, so that the substrate and the susceptor are closely fixed, so that the temperature of the susceptor is almost the same as that of the substrate. Having the same temperature makes it easier to control the temperature of the substrate, and even if the substrate is attached to the bottom of the susceptor using a vacuum chuck, it will not fall due to gravity, so it can cope with the rising airflow of the reaction gas in the reaction tube. The substrate is arranged horizontally or inclined above the reaction tube, so that crystal growth is performed on the substrate from the bottom by the reaction gas.

〔実施例〕〔Example〕

第1図(alは本発明の詳細な説明するためのサセプタ
の模式斜視図である。
FIG. 1 (al is a schematic perspective view of a susceptor for explaining the present invention in detail.

11はカーボン本体に石英壁面でカバーされたサセプタ
であり、12は基板配置部分であって、この部分には基
板を吸着するために多数の細孔13が設けてあり、多数
の細孔13が真空チャック機能を有するように、カーボ
ン本体に設けられた真空排気孔14によって排気され、
又サセプタの温度を検知するために熱電対15がある。
Reference numeral 11 denotes a susceptor having a carbon body covered with a quartz wall surface, and 12 is a substrate placement portion, in which a large number of pores 13 are provided to adsorb the substrate; It is evacuated by a vacuum exhaust hole 14 provided in the carbon body so as to have a vacuum chuck function,
There is also a thermocouple 15 to detect the temperature of the susceptor.

第1図(b)は、本発明の詳細な説明するためのサセプ
タの模式断面図である。
FIG. 1(b) is a schematic cross-sectional view of a susceptor for explaining the present invention in detail.

カーボン本体16は石英カバー17で被覆され、真空チ
ャックとして設けられた細孔13の配孔管18は、中央
部の真空排気孔14に接続されていて、基板8を吸着し
ている。
The carbon body 16 is covered with a quartz cover 17, and the piping 18 of the small hole 13 provided as a vacuum chuck is connected to the vacuum exhaust hole 14 in the center, and attracts the substrate 8.

第2図は、本発明の有機金属熱分解気相成長装置の反応
管の一実施例を説明するための模式断面図である。
FIG. 2 is a schematic cross-sectional view for explaining one embodiment of the reaction tube of the organometallic pyrolysis vapor phase growth apparatus of the present invention.

21は反応管であり、サセプタ22があって、このサセ
プタはスペーサ23と、スペーサ24によって支持され
ている。
A reaction tube 21 includes a susceptor 22, which is supported by a spacer 23 and a spacer 24.

スペーサ24には、サセプタ22からの真空チャックの
孔25の排気孔26により真空排気がなされ、基板8が
真空チャックによってサセプタに保持されている。
The spacer 24 is evacuated from the susceptor 22 through the exhaust hole 26 of the hole 25 of the vacuum chuck, and the substrate 8 is held on the susceptor by the vacuum chuck.

サセプタは外部から高周波加熱装置27によって加熱さ
れるが、一方反応管の管壁は矢印pの方向から冷却空気
によって冷却されている。
The susceptor is heated from the outside by a high-frequency heating device 27, while the tube wall of the reaction tube is cooled by cooling air from the direction of arrow p.

反応ガス気流は矢印qのように流れて、基板8の表面は
下側に向けて取りつけられ、反応ガスと反応して結晶成
長が行われる。
The reactive gas airflow flows as indicated by arrow q, and the surface of the substrate 8 is attached facing downward, reacting with the reactive gas to cause crystal growth.

第3図は、本発明の有機金属熱分解気相成長装置の反応
管の他の一実施例を説明するための模式断面図である。
FIG. 3 is a schematic cross-sectional view for explaining another embodiment of the reaction tube of the organometallic pyrolysis vapor phase growth apparatus of the present invention.

31は反応管であり、サセプタ32があって、このサセ
プタはスペーサ33によって支持されているが、この場
合の特徴としてサセプタが傾斜して配置されていて、同
様にサセプタに対向するスペーサ34もサセプタに平行
して傾斜した構造になっているために、反応ガスは一定
間隙を乱流がなく矢印のようにスムーズに通過するよう
になっている。
Reference numeral 31 denotes a reaction tube, and there is a susceptor 32, which is supported by a spacer 33. In this case, the susceptor is arranged at an angle, and similarly, the spacer 34 facing the susceptor is also supported by a spacer 33. Because the structure is inclined parallel to the , the reactant gas passes smoothly through a certain gap without turbulence, as shown by the arrow.

スペーサ33には、サセプタからの真空チャックの排気
孔35により真空排気がなされ、基板8が真空チャック
によってサセプタに保持されている。
The spacer 33 is evacuated from the susceptor through an exhaust hole 35 of a vacuum chuck, and the substrate 8 is held on the susceptor by the vacuum chuck.

サセプタは外部から高周波加熱装置36によって加熱さ
れ、一方反応管の管壁は冷却空気によって冷却されてい
る。
The susceptor is externally heated by a high frequency heating device 36, while the tube wall of the reaction tube is cooled by cooling air.

反応ガス気流は、反応ガス供給孔37から矢印のように
流れて、基板8の表面を下側から反応して結晶を成長さ
せるようになっていて、反応ガスの上昇気流と反応する
ようになっているが、反応ガスの通路がほぼ一定の断面
積になっているために、反応ガスの乱流がなく又比較的
一定濃度の反応ガスによって、基板上に結晶の成長がな
される。
The reactive gas airflow flows from the reactive gas supply hole 37 in the direction of the arrow, reacts with the surface of the substrate 8 from below to grow crystals, and reacts with the rising airflow of the reactive gas. However, since the reactant gas passage has a substantially constant cross-sectional area, there is no turbulence of the reactant gas, and crystals are grown on the substrate by the reactant gas having a relatively constant concentration.

実施例で得た結果として、縦3cn+、横4.5cm 
、高さ500 p mのGaAs基板上に、10III
IIのGaAsを結晶成長させ、厚みの均一度を従来結
果と比較すると、反応ガスの流れに対し上流側にある基
板の成長厚みt゛と反応ガスの流れに対し下流側にある
基板の成長厚みt”との差を、t゛で除して比率を取る
と、従来結果では約10%程度であるが、本発明の場合
には(t ”−t ”) /l ”が僅かに3%であっ
て、且つ反応ガスの流量を従来の量の約273を使用す
るだけで、結晶を成長させることができた。
As the results obtained in the example, the length is 3cn+ and the width is 4.5cm.
, 10III on a GaAs substrate with a height of 500 p m
Comparing the thickness uniformity of crystal growth of GaAs II with conventional results, it is found that the growth thickness t' of the substrate on the upstream side with respect to the flow of reaction gas and the growth thickness of the substrate on the downstream side with respect to the flow of reaction gas. If you take the ratio by dividing the difference from t'' by t'', the conventional result is about 10%, but in the case of the present invention, (t''-t'')/l'' is only 3%. Moreover, the crystal could be grown only by using the conventional flow rate of the reactant gas of about 273 ml.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明の有機金属熱分解気相
成長方法を採用することにより、基板上に均一°で良質
の結晶成長膜を形成することが可能であり、効果大なる
ものがある。
As explained in detail above, by employing the metal-organic pyrolysis vapor phase growth method of the present invention, it is possible to form a uniform, high-quality crystal growth film on a substrate, which is highly effective. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の有機金属熱分解気相成長装置の
反応管の実施例を説明するためのサセプタの模式斜視図
、 第1図山)は、本発明の有機金属熱分解気相成長装置の
反応管実施例を説明するためのサセプタの模式断面図、 第2図は、本発明の有機金属熱分解気相成長装置の反応
管の一実施例を説明するための模式断面図、 第3図は、本発明の有機金属熱分解気相成長装置の反応
管の他の一実施例を説明するための模式第4図は、従来
の有機金属熱分解気相成長方法を説明するための模式側
面図、 第5図は、従来の他の有機金属熱分解気相成長方法を説
明するための模式側面図である。 図において、11はサセプタ、12は基板配置部分、1
3は細孔、14は真空排気孔、15は熱電対、16はカ
ーボン本体、17は石英カバー、18は配孔管、21は
反応管、22はサセプタ、23.24はスペーサ、25
は真空チャックの孔、26は排気孔、27は高周波加熱
装置、31は反応管、32はサセプタ、33.34はス
ペーサ、35は排気孔、36は高周波加熱装置、37は
反応ガス供給孔をそれぞれ示す。 出願人 工業技術院長 等々力 達 第4図 第5図
FIG. 1(a) is a schematic perspective view of a susceptor for explaining an embodiment of the reaction tube of the metal-organic pyrolysis vapor phase growth apparatus of the present invention. FIG. 2 is a schematic cross-sectional view of a susceptor for explaining an embodiment of a reaction tube of a phase growth apparatus; FIG. , FIG. 3 is a schematic diagram for explaining another embodiment of the reaction tube of the metal-organic pyrolytic vapor phase growth apparatus of the present invention. FIG. 4 is a schematic diagram for explaining a conventional metal-organic pyrolytic vapor-phase growth method. FIG. 5 is a schematic side view for explaining another conventional organometallic pyrolysis vapor phase growth method. In the figure, 11 is a susceptor, 12 is a substrate placement part, 1
3 is a pore, 14 is a vacuum exhaust hole, 15 is a thermocouple, 16 is a carbon body, 17 is a quartz cover, 18 is a piping tube, 21 is a reaction tube, 22 is a susceptor, 23.24 is a spacer, 25
26 is the hole of the vacuum chuck, 26 is the exhaust hole, 27 is the high frequency heating device, 31 is the reaction tube, 32 is the susceptor, 33, 34 is the spacer, 35 is the exhaust hole, 36 is the high frequency heating device, 37 is the reaction gas supply hole Each is shown below. Applicant: Director of the Agency of Industrial Science and Technology Tatsu Todoroki Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims]  有機金属熱分解気相成長装置のサセプタの基板取りつ
け部に複数の吸気孔を設けて基板を密着固定し、該基板
の下面を反応ガスの流体層が流れるように配置して有機
金属熱分解気相成長をするようにしたことを特徴とする
気相成長方法。
A plurality of intake holes are provided in the substrate attachment part of the susceptor of the metal-organic pyrolysis vapor phase growth apparatus, and the substrate is tightly fixed. A vapor phase growth method characterized by phase growth.
JP23595584A 1984-11-10 1984-11-10 Vapor phase growth method Pending JPS61117195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23595584A JPS61117195A (en) 1984-11-10 1984-11-10 Vapor phase growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23595584A JPS61117195A (en) 1984-11-10 1984-11-10 Vapor phase growth method

Publications (1)

Publication Number Publication Date
JPS61117195A true JPS61117195A (en) 1986-06-04

Family

ID=16993684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23595584A Pending JPS61117195A (en) 1984-11-10 1984-11-10 Vapor phase growth method

Country Status (1)

Country Link
JP (1) JPS61117195A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123628A (en) * 2005-10-28 2007-05-17 Mitsubishi Electric Corp Semiconductor manufacturing method and satellite
JP2011020860A (en) * 2009-07-13 2011-02-03 Nippon Steel Corp Crucible for producing silicon carbide single crystal and method for producing silicon carbide single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142173A (en) * 1977-05-18 1978-12-11 Kokusai Electric Co Ltd Method of growing reduced pressure gaseous phase
JPS59111997A (en) * 1982-12-14 1984-06-28 Kyushu Denshi Kinzoku Kk Device for epitaxial growth

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142173A (en) * 1977-05-18 1978-12-11 Kokusai Electric Co Ltd Method of growing reduced pressure gaseous phase
JPS59111997A (en) * 1982-12-14 1984-06-28 Kyushu Denshi Kinzoku Kk Device for epitaxial growth

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123628A (en) * 2005-10-28 2007-05-17 Mitsubishi Electric Corp Semiconductor manufacturing method and satellite
JP2011020860A (en) * 2009-07-13 2011-02-03 Nippon Steel Corp Crucible for producing silicon carbide single crystal and method for producing silicon carbide single crystal

Similar Documents

Publication Publication Date Title
WO2007072855A1 (en) Apparatus for manufacturing semiconductor thin film
JP4058364B2 (en) Semiconductor manufacturing equipment
JPS61117195A (en) Vapor phase growth method
JP2004072054A (en) Vapor phase deposition equipment and method
JPS6112880B2 (en)
JP2570873B2 (en) Vapor phase growth equipment
JPS61186288A (en) Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor
JP4216541B2 (en) Vapor growth equipment
JP2001284269A (en) Vapor phase growth apparatus and method
JP2733535B2 (en) Semiconductor thin film vapor deposition equipment
JPH0577934U (en) Horizontal vapor phase growth equipment
JPS61186286A (en) Apparatus for vapor-phase epitaxial growth of silicon carbide compound semiconductor
JPS61177713A (en) Apparatus for vapor phase epitaxial growth of silicon carbide compound semiconductor
JPS62119919A (en) Device for crystal growth of compound semiconductor
WO2013075390A1 (en) Hydride vapor phase epitaxy device
JP3052414B2 (en) Chemical vapor deposition equipment
JPS63216332A (en) Vapor growth device
Smith Design and development of a silicon carbide chemical vapor deposition reactor
JPS63318733A (en) Vapor-growth reaction pipe
JPS6285425A (en) Vapor growth apparatus
JPS60165714A (en) Vapor growth method and apparatus thereof
JPH0366121A (en) Vapor growth device and vapor growth
JPH0529637B2 (en)
JPS60109222A (en) Device for vapor growth of compound semiconductor of iii-v group
JPS62291021A (en) Vapor growth device