JPS61117117A - Synthesis of m3o4 type compound and solid solution - Google Patents

Synthesis of m3o4 type compound and solid solution

Info

Publication number
JPS61117117A
JPS61117117A JP23896284A JP23896284A JPS61117117A JP S61117117 A JPS61117117 A JP S61117117A JP 23896284 A JP23896284 A JP 23896284A JP 23896284 A JP23896284 A JP 23896284A JP S61117117 A JPS61117117 A JP S61117117A
Authority
JP
Japan
Prior art keywords
oxidation
solid solution
metal
reaction
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23896284A
Other languages
Japanese (ja)
Other versions
JPH06654B2 (en
Inventor
Yoshiharu Ozaki
尾崎 義治
Mitsushi Wadasako
三志 和田迫
Seiji Yamanaka
山中 清二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENTAN KAKO KIKAI GIJUTSU SHINKO KYOKAI
Original Assignee
SENTAN KAKO KIKAI GIJUTSU SHINKO KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENTAN KAKO KIKAI GIJUTSU SHINKO KYOKAI filed Critical SENTAN KAKO KIKAI GIJUTSU SHINKO KYOKAI
Priority to JP59238962A priority Critical patent/JPH06654B2/en
Publication of JPS61117117A publication Critical patent/JPS61117117A/en
Publication of JPH06654B2 publication Critical patent/JPH06654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To provide a method for prepg. an M3O4 type compd. having high purity consisting of fine paticles having a molecular dimension wherein the prepn. is possible by a reaction at a low temp. in the liquid phase without requiring any large apparatus for the reaction. CONSTITUTION:Alkoxide(s) of at least one kind of divalent metal M is (are) formed in an atmosphere contg. no oxygen. Then, a hydroxide of one kind of the metal or a solid soln. of hydroxides of >= two kinds of the metals is prepd. by hydrolyzing the alkoxid(s) in the oxygenfree atmosphere. An M3O4 type compd. of one kind of the metal, or a solid soln. comprising >= two kinds of M3O4 type compd. is obtd. by oxidizing the hydrolyzate. Suitable metals for said M3O4 type compds. are di- or tervalent metals such as Fe, Mn, Co, etc. Suitable alcohols for said alkoxides are methanol, ethanol, butanol, etc. The synthetic process is illustrated by an appendant figure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、はぼM2O3(ただしMは金属)で表わされ
る一種の金属でなる化合物および同じ組成にて表わされ
る該金属と他の金属との固溶体(特にフェライト)の合
成方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a compound consisting of a kind of metal represented by M2O3 (where M is a metal), and a compound consisting of a metal and another metal having the same composition. This invention relates to a method for synthesizing a solid solution (especially ferrite).

(従来の技術) 従来のフェライトの製造方法は、2価の金属の酸化物と
3価の鉄の酸化物を粉末状態で混合して、例えば13O
0℃〜1500℃に加熱して反応させることによるもの
であった。しかしこのような方法では、固体粒子の混合
物を反応させてフェライトを得ているので木質的に組成
が不均一となり、また、高温反応であるためにフェライ
トの粒子径が大きく、かつ粒度分布も大きいために、高
性能、高信頼性の微細加工の可能な高寸法精度の材料を
製造することができなかった。また、従来方法によると
、原料となる酸化物を混合して高温で反応させた時に、
粒子どうしが接触している表面間の反応、拡散でしかフ
ェライト層が形成されず、粒子の深部は元のままである
ので、均一性の高いフェライトを得るには、加熱反応と
粉砕の作業を繰り返さなければならない。このため、製
造に長時間を要する上、大がかりな粉砕装置が必要であ
り、かつ高温を保持するために大型の炉が必要となる。
(Prior Art) A conventional method for producing ferrite involves mixing an oxide of a divalent metal and an oxide of trivalent iron in a powder state, for example, 13O
This was done by heating the reaction to 0°C to 1500°C. However, in this method, ferrite is obtained by reacting a mixture of solid particles, so the wood composition is non-uniform, and the high temperature reaction results in large ferrite particles and a wide particle size distribution. Therefore, it has not been possible to produce materials with high dimensional accuracy that allow for high-performance, high-reliability microfabrication. In addition, according to the conventional method, when the raw material oxides are mixed and reacted at high temperature,
A ferrite layer is formed only by reaction and diffusion between the surfaces where particles are in contact with each other, and the deep part of the particles remains intact, so heating reaction and pulverization are necessary to obtain highly uniform ferrite. Must be repeated. Therefore, it takes a long time to manufacture, requires a large-scale crushing device, and requires a large furnace to maintain high temperatures.

さらに、粉砕と加熱を繰り返すため、異物混入が避けら
れず、高純度のものを得にくいという欠点があった。
Furthermore, since pulverization and heating are repeated, contamination with foreign matter is inevitable, making it difficult to obtain a product of high purity.

(発明が解決しようとする問題点) 本発明は、このような欠点に鑑み、液相における低温反
応によって製造可能であって、反応に大がかりな装置を
要せず、分子サイズの微粒子で高純度のN3O4化合物
およびその固溶体を得る方法を提供しようとするもので
ある。
(Problems to be Solved by the Invention) In view of these drawbacks, the present invention aims to produce high-purity particles of molecular size, which can be produced by low-temperature reaction in a liquid phase, and does not require large-scale equipment for the reaction. The present invention aims to provide a method for obtaining the N3O4 compound and its solid solution.

(問題点を解決するための手段) 本発明によるN3O4化 の合成方法は、2価の金属M (n)の一種または2種
以上のもののアルコキシドを無酸素雰囲気にて作り,そ
の後無酸素雰囲気にて加水分解を行うことにより一種の
金属の水酸化物または2種の金属の水酸化物の固溶体を
作り、該加水分解生成物を酸化することにより、一種の
金属のN3O4化属の固溶体を得ることを特徴とする。
(Means for Solving the Problems) The synthesis method of N3O4 according to the present invention is to produce an alkoxide of one or more divalent metals M (n) in an oxygen-free atmosphere, and then to create an alkoxide in an oxygen-free atmosphere. A solid solution of one type of metal hydroxide or two types of metal hydroxides is created by hydrolysis, and a solid solution of one type of metal N3O4 is obtained by oxidizing the hydrolysis product. It is characterized by

本発明の方法の対象となる金属は、例えば、Fe,Mn
.Coのように2価と3価がとれる金属である。また、
アルコキシドを作るアルコールとしては、メタノール、
エタノール(Et)、ブタノール等が用いられる。
The metals targeted by the method of the present invention include, for example, Fe, Mn
.. It is a metal that can be divalent or trivalent like Co. Also,
Alcohols for making alkoxides include methanol,
Ethanol (Et), butanol, etc. are used.

(実施例−1):Fe3O4(7)合成出発原料として
FeCl2 ・nH2 0を200℃で2時間真空乾燥
して無水塩化物FeC見2としたものを用いた.第1図
の工程図に示すように、まずこの無水塩化物の0.04
モルをEtに1時間、N2ガスを0 、 2 1 /w
inの流量で通じながら溶解した0次に化学量論比の金
属Na(なおこの代わりにNa0Etを用いてもよい)
を加わえ,還流(加熱により生じた溶媒の蒸気を冷却し
液化し、溶液中に戻す処理)を行なうことにより、下記
の反応によりFe(OEt)2を生成させた。
(Example 1): As a starting material for the synthesis of Fe3O4(7), FeCl2.nH20 was vacuum-dried at 200°C for 2 hours to form anhydrous chloride FeC2. As shown in the process diagram of Figure 1, first, 0.04% of this anhydrous chloride
Mol in Et for 1 hour, N2 gas at 0, 2 1 /w
Metallic Na at the zero-order stoichiometric ratio is dissolved while flowing at a flow rate of in (Na0Et may be used instead)
was added and refluxed (processing to cool and liquefy the solvent vapor generated by heating and return it to the solution) to generate Fe(OEt)2 by the following reaction.

FeCJL2 +2NaOEt 一F e  (OE t)2  +2NaC!;L・−
( 1)なお、この反応をN2ガスの雰囲気で行なうの
は、Fe(OEt)2やFe(OH)2は非常に酸化さ
れやすく、一般溶媒(E t OHやベンゼン)に不溶
なFe(OEt)2は酸化されて暗褐色のFe (OE
t)3になり、前記一般溶媒に可溶な物質へと変化し、
尾端らの検討では、固体と溶液になったアルコキシドの
混合物では最終生成物が得られないことが分っているの
で、後述の加水分解の操作まではなるべく空気との接触
を避ける必要があるからである。従って無酸素雰囲気を
形成できるのであれば、N2ガス以外の他の不活性ガス
を用いることができる。また、Naはアルコシキシドを
生成させる反応を速く進行させるために用いるもので、
この代わりにLiやKを用いることもできる。
FeCJL2 +2NaOEt 1F e (OEt)2 +2NaC! ;L・-
(1) This reaction is carried out in an N2 gas atmosphere because Fe(OEt)2 and Fe(OH)2 are very easily oxidized, and Fe(OEt)2 is insoluble in general solvents (EtOH and benzene). )2 is oxidized to dark brown Fe (OE
t) becomes 3 and changes into a substance soluble in the general solvent,
Obata et al.'s study revealed that the final product cannot be obtained from a mixture of solid and solution alkoxides, so it is necessary to avoid contact with air as much as possible until the hydrolysis procedure described below. It is from. Therefore, inert gases other than N2 gas can be used as long as an oxygen-free atmosphere can be formed. In addition, Na is used to speed up the reaction that produces alkoxides,
Li or K can also be used instead.

次に100m1の煮浦水を加え、1時間還流することに
より加水分解を行なった後.N2の注入を中止、代わり
に空気を0.21〜2Jl/winの流量で加水分解生
成物の懸濁液に注入し,空気酸化を行なった。また、時
間当たりの空気注入量を一定にし、酸化時間を変化させ
てその影響を検討した.なお、これらの操作において還
流温度は、65〜70℃に保持して行ない、酸化時の温
度は70〜80℃とした.得られた沈澱は室温で真空乾
燥した後、熱分析、X線分析および電子顕微鏡により調
べた。
Next, 100ml of Niura water was added and refluxed for 1 hour to perform hydrolysis. The injection of N2 was stopped, and air was instead injected into the suspension of the hydrolysis product at a flow rate of 0.21 to 2 Jl/win to perform air oxidation. We also examined the effects of varying the oxidation time while keeping the air injection amount per hour constant. In these operations, the reflux temperature was maintained at 65 to 70°C, and the temperature during oxidation was 70 to 80°C. The obtained precipitate was vacuum dried at room temperature and then examined by thermal analysis, X-ray analysis and electron microscopy.

その結果は次のとおりである.Fe (n)のアルコキ
シドFe(OEt)2の加水分解により、Fe (OH
)2がエタノール溶媒中に濃緑色固体として得られた.
これを濾過した後、酸化されないように、すみやかにX
線ガラスホルダに載せ、セロハンテープで覆い、X線回
析を行なった.また前記空気による酸化時間を変化させ
てX線回折を行なった.その結果を第2図に示す。第2
図に示すように、Fe(OH)2は1時間の酸化でマグ
ネタイト(FezOa)のするどい回折線ピークが現わ
れ、また、酸化水和物(FeOOH)のピークも若干認
められるが,3時間以上の酸化ではマグネタイトの単−
相となり、ピークも大きくなる。ただし、ピークは酸化
時間と共に高角側にシフトしている。マグネタイトは立
方晶系であるので、格子定数面を求め、酸化時間に対応
した変化を求めた。その結果を第3図に示す。酸化1〜
4時間でマグネタイトの格子定数8.3967にほぼ等
しい値が得られているが、5時間以上の酸化で格子定数
面は徐々に減少した。さらに酸化を続けるとマグネタイ
トがγ−Fe3O4の酸化にまで進むとされているので
、γ−Fe2O3がマグネタイトに固溶した形゛で格子
定数面が減少しているものと思われる。
The results are as follows. Hydrolysis of the alkoxide Fe(OEt)2 of Fe(n) produces Fe(OH
) 2 was obtained as a dark green solid in ethanol solvent.
After filtering this, immediately remove the
It was placed on an X-ray glass holder, covered with cellophane tape, and subjected to X-ray diffraction. X-ray diffraction was also performed by varying the oxidation time with air. The results are shown in FIG. Second
As shown in the figure, when Fe(OH)2 is oxidized for 1 hour, a sharp diffraction peak of magnetite (FezOa) appears, and a slight peak of oxide hydrate (FeOOH) is also observed. In oxidation, the mono-
phase, and the peak becomes larger. However, the peak shifts to higher angles with increasing oxidation time. Since magnetite is a cubic crystal system, the lattice constant plane was determined and the change corresponding to the oxidation time was determined. The results are shown in FIG. Oxidation 1~
After 4 hours, a value almost equal to the lattice constant of magnetite, 8.3967, was obtained, but after oxidation for 5 hours or more, the lattice constant gradually decreased. It is said that if the oxidation continues, the magnetite progresses to the point where γ-Fe3O4 is oxidized, so it is thought that the lattice constant plane decreases due to the solid solution of γ-Fe2O3 in magnetite.

第4図に5時間の空気酸化による生成物の熱分析結果を
示す、第4図において、TG曲線には200℃付近にF
e3O4の酸化によるy−Fe203の生成に伴なう発
熱ピークの重量増があり、510℃にはα−Fe203
への相転移による発熱ピークが認められる。Fe (O
H)2からFe3O4に変化する場合の重量増は理論的
には3.46%あるが、今回の合成物では、酸化時間2
.3,5.20時間でそれぞれ2.0%、2゜4%、1
.8%、1.5%であった。従って、Fe3O4組成よ
りも多い3価鉄を含むことになるが、前述したように、
格子定数は理論値に近いので、この時点での余分の3価
鉄はα−FeOOHなどの酸化水利物によるものである
と考えられる。
Figure 4 shows the thermal analysis results of the product after 5 hours of air oxidation.
There is an increase in the weight of the exothermic peak due to the formation of y-Fe203 due to the oxidation of e3O4, and at 510°C there is an increase in the weight of α-Fe203.
An exothermic peak due to phase transition is observed. Fe (O
Theoretically, the weight increase when changing from H)2 to Fe3O4 is 3.46%, but in this case, the oxidation time 2
.. 3, 5. 2.0%, 2°4%, 1 at 20 hours, respectively
.. They were 8% and 1.5%. Therefore, it contains more trivalent iron than the Fe3O4 composition, but as mentioned above,
Since the lattice constant is close to the theoretical value, it is considered that the excess trivalent iron at this point is due to oxidized aqueducts such as α-FeOOH.

第5図に前記空気酸化生成物をそれぞれ200’0.4
00℃、600℃、aOO℃および1000℃で2時間
仮焼した試料のX線回析結果を示す、第5図において、
200℃、400℃の仮焼において、Fe3O4のピー
クは高角側にシフトし、それぞれの格子定数は8.36
4−.8.352となった。この結果、Fe3O4は酸
化されてy−Fe203  (8,350)になったこ
とが分かる。また、400℃からはa−Fe203も見
られ、y−Fe203から(X−F e203 ヘ17
)転移が認められる。
Figure 5 shows the air oxidation products at 200'0.4
In Figure 5, which shows the X-ray diffraction results of samples calcined for 2 hours at 00°C, 600°C, aOO°C and 1000°C,
During calcination at 200℃ and 400℃, the peak of Fe3O4 shifts to the high angle side, and the lattice constant of each is 8.36.
4-. It became 8.352. The results show that Fe3O4 was oxidized to y-Fe203 (8,350). In addition, a-Fe203 is also seen from 400℃, and from y-Fe203 (X-F e203 to 17
) Metastasis is observed.

また、電子顕微鏡により酸化時間20時間の各試料(乾
燥物、200℃、400℃、600℃の各仮焼物)を観
察した所、キュービック状をなす一辺が0.14m程度
の微細粒子が観察され、吸熱による粒成長は起こらなか
った。
In addition, when each sample (dried material, calcined product at 200°C, 400°C, and 600°C) was observed using an electron microscope after oxidation for 20 hours, cubic-shaped fine particles with a side of about 0.14 m were observed. , no endothermic grain growth occurred.

(実施例−2):Mn3O4の合成 前記FeCl2の代わりにM n Cl 2を用い、前
記と同様に溶媒としてEt、アルカリ金属としてNaを
用い、前記と同様のN2ガス雰囲気での還流、空気酸化
の操作でMn3O4を得た。
(Example-2): Synthesis of Mn3O4 Using MnCl2 instead of FeCl2, using Et as the solvent and Na as the alkali metal in the same manner as above, refluxing and air oxidation in the same N2 gas atmosphere as above. Mn3O4 was obtained by this operation.

第6図はMn(OH)zの空気酸化生成物のX線回析結
果を示すもので、Mn(OH)2の酸化では1時間後に
ハウスマナイト(Mn3O+)の回折ビークが認められ
、酸化時間の増加と共にその回折ピークが大きくなる。
Figure 6 shows the X-ray diffraction results of the air oxidation product of Mn(OH)z. In the oxidation of Mn(OH)2, a diffraction peak of hausmannite (Mn3O+) was observed after 1 hour, indicating that the oxidation The diffraction peak becomes larger as time increases.

 M n (OH) 2は酸化3時間程度迄残存してい
るのが認められた。第7図はMn(OH)2の空気酸化
生成物のDTA−TG曲線であり、このMn3O4の場
合も2発熱ピークが見られるが、β−M n 00 H
などの酸化水和物の分解によると思われる。また、60
0°CにはMn3O4のa−Mn203への発熱ピーク
と重量増が、1000℃にはα Mn3O4のMn3O
4への還元による吸熱ピークと重量減が認められる。1
200℃の吸熱ピークは、M n 3O4のM n O
への還元反応によるものであろう。
It was observed that M n (OH) 2 remained for about 3 hours after oxidation. Figure 7 shows the DTA-TG curve of the air oxidation product of Mn(OH)2, and in the case of Mn3O4, two exothermic peaks are also seen, but β-M n 00 H
This is thought to be due to the decomposition of oxidized hydrates such as Also, 60
At 0°C, there is an exothermic peak and weight increase of Mn3O4 to a-Mn203, and at 1000°C, α Mn3O4 to Mn3O
An endothermic peak and weight loss due to reduction to 4 are observed. 1
The endothermic peak at 200°C is the M n O of M n 3O4
This is probably due to the reduction reaction to .

第8図はMn(OH)2の空気酸化物の各温度での仮焼
生成物のX線回折図であり、Feの場合とよく一致して
いる。
FIG. 8 is an X-ray diffraction pattern of the calcined product of Mn(OH)2 air oxide at various temperatures, which agrees well with the case of Fe.

(実施例−3):Co3O4の合成 実施例−1のFeC12(7)代わりにCoCl2を使
用し、前記と同様の操作によりCOのフルコキシド(G
 O(OE t) 2はエタノール、ベンゼン等の溶媒
に不溶な青白色固体)を得、これを加水分解して得たも
のはCo00Hであった。この熱分析の結果を第9図に
示す。第9図において、110℃、160℃付近に脱水
による吸熱ピークがあり、220℃にCo0OHの分解
による発熱ピーク、そして400℃付近にCo2O3か
らCo3O4への還元による重量減を伴なった吸熱ピー
クが認められた。Co2O3は安定相としては存在せず
、COO1+X、CO3O44の侵入型固溶体として存
在することが知られており、本実験でも200°C〜3
O0℃の仮焼の結果Co3O4と同様のスピネル構造を
取った。
(Example-3): Synthesis of Co3O4 Using CoCl2 instead of FeC12(7) in Example-1, CO flucoxide (G
O(OE t) 2 was obtained as a bluish-white solid insoluble in solvents such as ethanol and benzene, and the product obtained by hydrolyzing this was Co00H. The results of this thermal analysis are shown in FIG. In Figure 9, there are endothermic peaks due to dehydration near 110°C and 160°C, an exothermic peak due to decomposition of Co0OH at 220°C, and an endothermic peak accompanied by weight loss due to reduction of Co2O3 to Co3O4 near 400°C. Admitted. It is known that Co2O3 does not exist as a stable phase, but as an interstitial solid solution of COO1+X and CO3O44, and in this experiment, the
As a result of calcination at 00°C, a spinel structure similar to Co3O4 was obtained.

(実施例−4): Fee1o4−c03 o4の合成
実施例1におけるFeC9,2の代わりに、FeCl2
とCoCJL2の混合物を用い、その混合比をCo/F
e=1/3.1/2.1/]  、3/1に変化させ、
空気酸化および瀘別迄実施例と同様の操作を行なった。
(Example-4): Synthesis of Feelo4-c03 o4 Instead of FeC9,2 in Example 1, FeCl2
and CoCJL2, and the mixing ratio was set to Co/F
e=1/3.1/2.1/], changed to 3/1,
The same operations as in the example were performed up to air oxidation and filtration.

なお、空気酸化の時間を15時間とした。第10図はF
e3O4−Co3O4系の加熱による結晶相の変化を示
す。これによると、鉄分の多い組成領域では、真空乾燥
した時点でスピネル相が存在していた。コバルト分が多
くなると、Co00H,!=FeOOHcr+固溶体が
得られた。
Note that the air oxidation time was 15 hours. Figure 10 is F
The figure shows the change in the crystal phase of the e3O4-Co3O4 system due to heating. According to this, in the composition region with a high iron content, a spinel phase was present at the time of vacuum drying. When the cobalt content increases, Co00H,! =FeOOHcr+solid solution was obtained.

Co/Fe=I/3では、600℃の仮焼でスピネル相
とへマタイト相の2相に分離した。Co/F e = 
3/1では600℃の仮焼でスピネル相が2相析出した
Co/Fe=I/3 was separated into two phases, a spinel phase and a hematite phase, by calcination at 600°C. Co/F e =
In 3/1, two spinel phases precipitated during calcination at 600°C.

第11図は各種混合比における1000℃で仮焼した場
合のX線回折パターンを示し、第12図は混合比の変化
に対する格子定数の変化を示す。
FIG. 11 shows X-ray diffraction patterns when calcined at 1000° C. at various mixing ratios, and FIG. 12 shows changes in the lattice constant with respect to changes in the mixing ratio.

スピネルTはCo / F e = O〜1/2では格
子定数に変化は無く、Co/Fe=1/2〜1/1で緩
やかに減少、Co/Fe=1/1〜I10 テまた一定
となった。これにより、Co/Fe=1/2〜l/1 
テは、CoFe2O4にCo3O4が固溶しているもの
と考えられる。Co/Fe=3/lのスピネルIIは、
Fe3O4  (ao=8.3967)とCo3O4(
ao=8.084)を結ぶ直線上ニ存在スルことから、
Co3O4にFe3O4が固溶しているものと考えられ
る。
The lattice constant of spinel T does not change when Co/Fe=O~1/2, decreases gradually when Co/Fe=1/2~1/1, and remains constant when Co/Fe=1/1~I10. became. As a result, Co/Fe=1/2~l/1
It is thought that Co3O4 is dissolved in CoFe2O4. Spinel II with Co/Fe=3/l is
Fe3O4 (ao=8.3967) and Co3O4 (
Since there are two existing on the straight line connecting ao=8.084),
It is thought that Fe3O4 is dissolved in Co3O4.

(実施例−5)i Fe3O4−Mnz o、(7)合
成実施例1におけるFeCl2の代わりに、FeCfL
2とM n Ci2の混合物を用い、その混合割合M 
n / F eを種々に変化させ、空気酸化および瀘別
迄実施例と同様の操作を行なった。ここで。
(Example-5) i Fe3O4-Mnz o, (7) Instead of FeCl2 in Synthesis Example 1, FeCfL
2 and M n Ci2, the mixing ratio M
The same operations as in the example were carried out, including air oxidation and filtration, while varying n/Fe. here.

Mnの含有率をXモル%とすると、固溶体は。If the content of Mn is X mol%, then the solid solution is.

(Mnx F e+<) 3O< テ表わされ、xt−
0;0.084.0.16.0.275;0.333;
0.40;0.50;0.667;および1゜0とした
が、x=0と1.OOの場合については前記実施例で述
べた。試料は20時間までの空気酸化時間の経過と共に
数回にわたって採取し、X線回折を行なった。
(Mnx Fe+<) 3O< Te is expressed, xt-
0;0.084.0.16.0.275;0.333;
0.40; 0.50; 0.667; and 1°0, but x=0 and 1. The case of OO was described in the previous embodiment. Samples were taken several times over an air oxidation period of up to 20 hours and subjected to X-ray diffraction.

fiSl 3図は代表例としてx=0.333すなわち
MnFe2O4の場合の酸化生成物の結果を示す。第1
3図に示すように、加水酸化物はMn(OH)2とFe
(OH)2の固溶体で得られる。空気酸化1時間でM 
n F e204の回折線ピークと若干量の(Fe 、
Mn)OOHの回折線ピークが見られ、3時間以上の酸
化でM n F e 204のピークのみとなる。また
、マグネタイトの場合と同様に、MnFe2O4のピー
クは酸化時間の経過と共に高角側にシフトした。X=0
からx=0.333まではほぼ同様の回折線であり、い
ずれも明瞭なスピネルの回折パターンが得られるが、x
=0.40ではスピネルの回折ピークは少なくなり、酸
化時間が長くなっても、(Fe。
Figure fiSl 3 shows the results of oxidation products for x=0.333, ie MnFe2O4, as a representative example. 1st
As shown in Figure 3, the hydroxides are Mn(OH)2 and Fe
Obtained as a solid solution of (OH)2. M in air oxidation for 1 hour
The diffraction line peak of nFe204 and a small amount of (Fe,
A diffraction line peak of Mn)OOH is observed, and after oxidation for 3 hours or more, only the peak of M n Fe 204 becomes visible. Furthermore, as in the case of magnetite, the peak of MnFe2O4 shifted to the higher angle side with the passage of oxidation time. X=0
The diffraction lines from x=0.333 are almost the same, and clear spinel diffraction patterns are obtained in all cases,
= 0.40, the diffraction peak of spinel decreases, and even if the oxidation time becomes long, (Fe.

Mn)OOHは残存する。x=o、50;0.667で
はスピネル相は明瞭でなくなり、x=1.0では前述の
通りMn3O4となる。また、得られたスピネル相のピ
ークは、Mn含有量が増す程低角側にシフトした。第1
4図は酸化時間5時間の場合について1以上の結果をま
とめたものである。
Mn)OOH remains. When x=o, 50; 0.667, the spinel phase is no longer clear, and when x=1.0, it becomes Mn3O4 as described above. Moreover, the peak of the obtained spinel phase shifted to the lower angle side as the Mn content increased. 1st
Figure 4 summarizes one or more results for the case of oxidation time of 5 hours.

第15図は種々のMn混合量について、酸化時間に対す
る格子定数の変化を示したものである。
FIG. 15 shows the change in lattice constant with respect to oxidation time for various Mn mixing amounts.

酸化時間に対する格子定数の変化はマグネタイト(x=
O)の場合とほぼ同様で、2〜3時間で最も高い値が得
られ、以後体々に減少する。これはマグネタイトの場合
と同様に過度の酸化による変化と思われ、2価の原子価
で居るべきMn(II)とFe(II)が酸化され、そ
れぞれMn(In)とFe(DI)になっているためで
ある。
The change in lattice constant with respect to oxidation time is that of magnetite (x=
Almost the same as in case O), the highest value is obtained in 2 to 3 hours, and then it gradually decreases. This is thought to be a change due to excessive oxidation, as in the case of magnetite, and Mn(II) and Fe(II), which should be divalent, are oxidized and become Mn(In) and Fe(DI), respectively. This is because

第16図には各組成における熱分析結果を示しており、
第17図にはそれぞれ200℃、400’O,600℃
、800℃、1000℃での仮焼物のX線回折図を示す
、第16図から、x=0.333の組成までは200℃
付近に発熱に伴なう重量増が認められる。また、Mnを
含有すると、400℃の仮焼でもスピネル相が残存する
が、X=0.084.0.16では200℃ですでにα
−Fe203が認められるようになる。マグネタイトと
同様に、200℃付近では酸化水和物の分解の発熱は有
るけれども、主としてFe(II)のFe([)への酸
化反応によるものと思われる。
Figure 16 shows the thermal analysis results for each composition.
Figure 17 shows temperatures of 200℃, 400'O, and 600℃, respectively.
, 800°C, and 1000°C.
An increase in weight due to heat generation is observed in the vicinity. Furthermore, when Mn is contained, the spinel phase remains even after calcination at 400°C, but when X=0.084.0.16, α is already present at 200°C
-Fe203 is now recognized. As with magnetite, although there is heat generated by the decomposition of oxide hydrates at around 200°C, this is thought to be mainly due to the oxidation reaction of Fe(II) to Fe([).

さらに600℃〜700℃にかけてするどい発熱ピーク
と重量増が見られるが、これはMn(H)のMn(II
f)への酸化反応によるものと思われる。仮焼結果では
、600℃からα−Fe203が、800℃からa−M
nzO3が、明瞭に認められるようになる。Fe、Mn
のそれぞれの単体の場合よりもかなり結晶化温度が高く
なったといえる。
Furthermore, a sharp exothermic peak and weight increase are observed from 600°C to 700°C, which is due to the Mn(II) of Mn(H).
This is thought to be due to the oxidation reaction to f). The calcination results show that α-Fe203 is heated at 600°C, and a-M is heated at 800°C.
nzO3 becomes clearly visible. Fe, Mn
It can be said that the crystallization temperature was considerably higher than that of each alone.

X≧0.40になると、熱分析結果は今までと変化が異
なって来る。23O℃付近の発熱ピークは(Mn 、F
e)OOHの分解反応によるものと思われ、620℃に
吸熱ピークを伴なう重量減が認められる。これは、 M n O2→a −M n 203 で知られる還元反応によるものと思われる。これ以上の
温度での変化は前述の場合と同様であるが、x=o、4
0;0.50ではスピネル相がかなり安定に認められる
ようになった。
When X≧0.40, the thermal analysis results begin to change differently than before. The exothermic peak near 230°C is (Mn, F
e) Weight loss accompanied by an endothermic peak at 620°C is observed, probably due to the decomposition reaction of OOH. This seems to be due to the reduction reaction known as M n O2→a −M n 203 . The changes at temperatures higher than this are the same as in the previous case, but x=o, 4
At 0:0.50, the spinel phase was observed quite stably.

第18図はFe3O4とMn3O+(7)各組成に対し
て得られたスピネルの格子定数を示す。第18図から分
かるように、X≦0.40ではMnの含有率の低下と共
に空気酸化物の格子定数は直線的に変化し、Fe104
にMn2O3が相互固溶しているものと考えられる。ま
た、200℃、400℃の仮焼で残存するスピネル相の
格子定数も併せて記載したが、はぼ一様に格子定数は小
さくなり、最終的には7−Fe3O4の8.350に落
ち着くものと考えられる。
FIG. 18 shows the lattice constants of spinel obtained for each composition of Fe3O4 and Mn3O+(7). As can be seen from Fig. 18, when X≦0.40, the lattice constant of air oxide changes linearly as the Mn content decreases, and Fe104
It is thought that Mn2O3 is mutually dissolved in solid solution. In addition, the lattice constant of the spinel phase remaining after calcination at 200℃ and 400℃ is also described, but the lattice constant decreases uniformly and finally settles on 8.350 of 7-Fe3O4. it is conceivable that.

Mn3O4−Fe3O4固溶系のサンプルの電子顕微鏡
による観察によれば、粒径はFe3O4よりかなり小さ
くなっており、0,01〜0.02ルm程度であった。
According to an electron microscope observation of a sample of the Mn3O4-Fe3O4 solid solution system, the particle size was considerably smaller than that of Fe3O4, and was about 0.01 to 0.02 lm.

(実施例−6): Fez o、−Ni3Oa (7)
合成実施例4におけるcoC12の代わりに、N1Cf
Lzを用い、FeCJL2とN1CfL2の混合比を、
Ni/Fe=1/3 .1/2 .1/l  、3/1
に変化させ、空気酸化および瀘別迄同様の操作を行なっ
た。
(Example-6): Fezo, -Ni3Oa (7)
Instead of coC12 in Synthesis Example 4, N1Cf
Using Lz, the mixing ratio of FeCJL2 and N1CfL2 is
Ni/Fe=1/3. 1/2. 1/l, 3/1
The same operation was performed up to air oxidation and filtration.

第19図は、 1ooo℃で仮焼した粉末のX線回折パ
ターンを示す、そして組成分析の結果、前記実施例4の
Co−Fe系と同様端成分程ばらついており、その他の
点でも同様な結果が得られた。
FIG. 19 shows the X-ray diffraction pattern of the powder calcined at 100°C, and as a result of compositional analysis, it was found that the end components were dispersed similarly to the Co-Fe system of Example 4, and were similar in other respects. The results were obtained.

(発明の効果) 以上述べたように、本発明の方法は、加水分解と従来よ
りも低温における酸化によって酸化物を得る方法であっ
て、前述のように微細で均一な組成の粒子を得ることが
できる。また本発明によれば、粉砕や高温加熱が不要と
なることから、これらの大がかりな装置が不要になり、
しかも作業の繰返しが不要になるので、製造時間が短縮
される。また本発明によれば、生成物の粒子径が小さく
なるので、高性能、高信頼性の微細加工の可能な高寸法
精度の材料を製造することができ、さらに焼成プロセス
を用いなくとも結晶質の酸化物を得ることも可能となる
ので、高分子材料との複合化によって焼成プロセス(炉
)を使わずに製品を得ることも可能となる。
(Effects of the Invention) As described above, the method of the present invention is a method for obtaining oxides by hydrolysis and oxidation at a lower temperature than conventional methods, and it is possible to obtain fine particles with a uniform composition as described above. I can do it. Furthermore, according to the present invention, there is no need for pulverization or high-temperature heating, so these large-scale devices are no longer necessary.
Moreover, since there is no need to repeat operations, manufacturing time is shortened. Further, according to the present invention, since the particle size of the product is small, it is possible to produce a material with high dimensional accuracy that allows for high performance and reliable microfabrication, and furthermore, it is possible to produce a material with high dimensional accuracy that can be processed into a crystalline material without using a sintering process. Since it is also possible to obtain oxides of , it is also possible to obtain products without using a firing process (furnace) by combining with polymeric materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による操作の流れの一例を示すフローチ
ャート、第2図はFe(OH)2の空気酸化生成物のX
線回折図、第3図はFe3O4の酸化時間に対する格子
定数の変化を示す図、第4図はFe(OH)2の空気酸
化生成物のDTA−TG曲線図、第5図はFe(OH)
2の空気酸化生成物の各温度での仮焼生成物のX線回折
図、第6図はMn(OH)2の空気酸化生成物のX線回
折図、第7図はM n (OH) 2の空気酸化生成物
(7)DTA−TG曲線図、第8図はFe(OH)2の
空気酸化生成物の各温度での仮焼生成物のX線回折図、
第9図はGo(OEt)2の加水分解により得られた生
成物のDTA−TG曲線図、第1O図はF e 3Oa
 −Mn3O4系生成物の温度に対する相変化を示す図
、第11図はFe3O4−Mn3Oa系生成物の100
0℃加熱試料のX線回折図、第12図はFe3O4−M
n3 o4系生成物の組成に対する格子定数の変化を示
す図、第13図は(Mn 、Fe)(OH)2の空気酸
化生酸物のX線回折図、第14図は、 (M nx F e 1−X) 3O4 ノ種h c7
) M n含有率ニオけるX線回折図、第15図は(M
 nx F e I−X) 3O4の種々のMn含有率
における格子定数を示す図、第14図は(M nx F
 e +−x) 3O4の種々のMn含有率におけるD
TA−TG曲線図、第17図は(Mn):FeH)3O
4の種々のMn含有率における種々の温度でのX線回折
図、第18図はFe3O4−Mn3O4系の組成に対す
る種々の温度での格子定数の変化を示す図、第19図は
、Fe3O4−N13O4の種#のNi含有率における
X線回折図である。
FIG. 1 is a flowchart showing an example of the operation flow according to the present invention, and FIG. 2 shows
Line diffraction diagram, Figure 3 is a diagram showing the change in lattice constant with respect to oxidation time of Fe3O4, Figure 4 is a DTA-TG curve diagram of air oxidation product of Fe(OH)2, Figure 5 is Fe(OH)
Figure 6 is the X-ray diffraction diagram of the air oxidation product of Mn(OH)2 at various temperatures, Figure 7 is the X-ray diffraction diagram of the air oxidation product of Mn(OH)2. 2. Air oxidation product (7) DTA-TG curve diagram, Figure 8 is an X-ray diffraction diagram of the calcined product at each temperature of the air oxidation product of Fe(OH)2,
Figure 9 is a DTA-TG curve diagram of the product obtained by hydrolysis of Go(OEt)2, and Figure 1O is a diagram of the product obtained by hydrolysis of Go(OEt)2.
A diagram showing the phase change with respect to temperature of the -Mn3O4-based product.
X-ray diffraction diagram of sample heated to 0℃, Figure 12 shows Fe3O4-M
A diagram showing the change in lattice constant with respect to the composition of n3 o4 type products. Figure 13 is an X-ray diffraction diagram of the air oxidizer of (Mn, Fe) (OH)2. Figure 14 is an X-ray diffraction diagram of (Mnx F). e 1-X) 3O4 species h c7
) Figure 15 shows the X-ray diffraction diagram of the M
Figure 14 is a diagram showing the lattice constants at various Mn contents of (Mnx F e I-X) 3O4.
e +−x) D at various Mn contents of 3O4
TA-TG curve diagram, Figure 17 is (Mn):FeH)3O
4 at various temperatures at various Mn contents, FIG. 18 is a diagram showing changes in lattice constant at various temperatures for the composition of the Fe3O4-Mn3O4 system, and FIG. It is an X-ray diffraction diagram at the Ni content of seed #.

Claims (1)

【特許請求の範囲】 1、2価の金属M(II)の一種または2種以上のものの
アルコキシドを無酸素雰囲気にて作り、その後無酸素雰
囲気にて加水分解を行うことにより一種の金属の水酸化
物または2種以上の金属の水酸化物の固溶体を作り、該
加水分解生成物を酸化することにより、一種の金属のM
_3O_4化合物もしくはM_3O_4の組成でなる2
種以上の金属の固溶体を得ることを特徴とするM_3O
_4化合物およびその固溶体の合成法。 2、前記酸化を、加水分解生成物の懸濁液に該生成物を
酸化するガスを吹き込むことにより行なうことを特徴と
する特許請求の範囲第1項記載のM_3O_4化合物お
よびその固溶体の合成法。
[Claims] The alkoxide of one or more mono- or divalent metals M(II) is produced in an oxygen-free atmosphere, and then hydrolyzed in an oxygen-free atmosphere to produce one kind of metal water. By making a solid solution of oxide or hydroxide of two or more metals and oxidizing the hydrolysis product, M of one metal can be
_3O_4 compound or 2 consisting of the composition of M_3O_4
M_3O characterized by obtaining a solid solution of more than one metal
_4 Synthesis method of compound and its solid solution. 2. The method for synthesizing M_3O_4 compounds and solid solutions thereof according to claim 1, wherein the oxidation is carried out by blowing into a suspension of the hydrolysis product a gas that oxidizes the product.
JP59238962A 1984-11-13 1984-11-13 M DOWN 3 ▼ O DOWN 4 ▼ Manufacturing method of powder Expired - Lifetime JPH06654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59238962A JPH06654B2 (en) 1984-11-13 1984-11-13 M DOWN 3 ▼ O DOWN 4 ▼ Manufacturing method of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59238962A JPH06654B2 (en) 1984-11-13 1984-11-13 M DOWN 3 ▼ O DOWN 4 ▼ Manufacturing method of powder

Publications (2)

Publication Number Publication Date
JPS61117117A true JPS61117117A (en) 1986-06-04
JPH06654B2 JPH06654B2 (en) 1994-01-05

Family

ID=17037883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59238962A Expired - Lifetime JPH06654B2 (en) 1984-11-13 1984-11-13 M DOWN 3 ▼ O DOWN 4 ▼ Manufacturing method of powder

Country Status (1)

Country Link
JP (1) JPH06654B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261219A (en) * 1985-05-16 1986-11-19 Mitsubishi Mining & Cement Co Ltd Production of iron oxide fine powder
JPS623020A (en) * 1985-06-25 1987-01-09 Sentan Kako Kikai Gijutsu Shinko Kyokai Production of ferrite
JP2001093527A (en) * 1999-09-22 2001-04-06 Matsushita Electric Ind Co Ltd Positive electrode activating material for nonaqueous electrolytic secondary battery and its manufacturing method
JP2003238163A (en) * 2002-02-15 2003-08-27 Mitsui Mining & Smelting Co Ltd Black compound oxide particle and its production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199506A (en) * 1983-04-28 1984-11-12 Hitachi Ltd Formation of coated film of oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199506A (en) * 1983-04-28 1984-11-12 Hitachi Ltd Formation of coated film of oxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261219A (en) * 1985-05-16 1986-11-19 Mitsubishi Mining & Cement Co Ltd Production of iron oxide fine powder
JPS623020A (en) * 1985-06-25 1987-01-09 Sentan Kako Kikai Gijutsu Shinko Kyokai Production of ferrite
JPH0371377B2 (en) * 1985-06-25 1991-11-13 Sentan Kako Kikai Gijutsu Shinko Kyokai
JP2001093527A (en) * 1999-09-22 2001-04-06 Matsushita Electric Ind Co Ltd Positive electrode activating material for nonaqueous electrolytic secondary battery and its manufacturing method
JP2003238163A (en) * 2002-02-15 2003-08-27 Mitsui Mining & Smelting Co Ltd Black compound oxide particle and its production method
JP4728556B2 (en) * 2002-02-15 2011-07-20 三井金属鉱業株式会社 Black complex oxide particles and method for producing the same

Also Published As

Publication number Publication date
JPH06654B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
Prabhakaran et al. Combustion synthesis and characterization of cobalt ferrite nanoparticles
JP5105503B2 (en) ε Iron oxide production method
Gabal et al. Effect of calcination temperature on Co (II) oxalate dihydrate–iron (II) oxalate dihydrate mixture: DTA–TG, XRD, Mössbauer, FT-IR and SEM studies (Part II)
Kaneko et al. The formation of the Cd-bearing ferrite by the air oxidation of an aqueous suspension.
Nguyen et al. Influence of the synthetic conditions on the crystal structure, magnetic and optical properties of holmium orthoferrite nanoparticles
KR20130075115A (en) Method for preparing znco2o4 nanoparticle by a reverse micelle process and znco2o4 nanoparticle prepared therefrom
EP0127427B1 (en) Production of microcrystralline ferrimagnetic spinels
Yi et al. Low temperature synthesis and magnetism of La0. 75Ca0. 25MnO3 nanoparticles
TWI732445B (en) Iron-based oxide magnetic powder and method for producing the same
Tang et al. Preparation of M-Ba-ferrite fine powders by sugar-nitrates process
US4486401A (en) Production of fine ferrimagnetic spinels
JPS61117117A (en) Synthesis of m3o4 type compound and solid solution
Qiu et al. Hydrothermal synthesis of perovskite bismuth ferrite crystallites with the help of NH4Cl
Srisombat et al. Chemical synthesis of magnesium niobate powders
KR100420276B1 (en) Preparation of ZnO Powder by Pyrophoric Synthesis Method
Tang et al. Composition and magnetic properties of M-Ba ferrite powders fabricated via sugar-nitrates process
JPH0361610B2 (en)
JPS60246225A (en) Ferric oxide particle powder and its production
JPS62171926A (en) Production of magnetite fine powder
WO2021200481A1 (en) Iron-based oxide magnetic powder and method for manufacturing same
WO2021200482A1 (en) Iron-based oxide magnetic powder, and powder compact and radio wave absorber using same
JPH0343215B2 (en)
JPS623020A (en) Production of ferrite
Hannoyer et al. Ferritization of Ni2+ ions in mixed hydroxide suspensions
JPH059375B2 (en)