JPH0343215B2 - - Google Patents

Info

Publication number
JPH0343215B2
JPH0343215B2 JP58161726A JP16172683A JPH0343215B2 JP H0343215 B2 JPH0343215 B2 JP H0343215B2 JP 58161726 A JP58161726 A JP 58161726A JP 16172683 A JP16172683 A JP 16172683A JP H0343215 B2 JPH0343215 B2 JP H0343215B2
Authority
JP
Japan
Prior art keywords
ferrite
iron
magnetoplumbite
composite alkoxide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58161726A
Other languages
Japanese (ja)
Other versions
JPS6054925A (en
Inventor
Yoshiharu Ozaki
Yoshinori Shinohara
Kunio Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENTAN KAKO KIKAI GIJUTSU SHINKO KYOKAI
Original Assignee
SENTAN KAKO KIKAI GIJUTSU SHINKO KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENTAN KAKO KIKAI GIJUTSU SHINKO KYOKAI filed Critical SENTAN KAKO KIKAI GIJUTSU SHINKO KYOKAI
Priority to JP58161726A priority Critical patent/JPS6054925A/en
Publication of JPS6054925A publication Critical patent/JPS6054925A/en
Publication of JPH0343215B2 publication Critical patent/JPH0343215B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、マグネトプランバイト型フエライト
の製造方法に係り、特にその微粉末を得る方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnetoplumbite-type ferrite, and particularly to a method for obtaining fine powder thereof.

マグネトプランバイト型フエライトは、永久磁
石材料として用いられ、MFe12O19(ただし、M=
Ba,Pb,Sr)で表わされる磁性酸化物であり、
マグネトプランバイト鉱に基づいて命名されたも
のである。このようなフエライトは、従来、2価
の金属の酸化物と3価の鉄の酸化物を粉末状態で
混合して、例えば1300℃〜1500℃に加熱して反応
させることによるものであつた。しかしこのよう
な方法では、固体粒子の混合物を反応させてフエ
ライトを得ているので本質的に組成が不均一とな
り、また、高温反応であるためにフエライトの粒
子径が大きく、かつ粒度分布も大きいために、高
性能、高信頼性の微細加工の可能な高寸法精度の
材料を製造することができなかつた。また、従来
方法によると、原料となる酸化物を混合して高温
で反応させた時に、粒子どうしが接触している表
面間の反応、拡散でしかフエライト層が形成され
ず、粒子の深部は元のままであるので、均一性の
高いフエライトを得るには、加熱反応と粉砕の作
業を繰り返さなければならない。このため、製造
に長時間を要する上、大がかりな粉砕装置が必要
であり、かつ高温を保持するために大型の炉が必
要となる。さらに、粉砕と加熱を繰り返すため、
異物混入が避けられず、高純度のものを得にくい
という欠点があつた。
Magnetoplumbite ferrite is used as a permanent magnet material, and has MFe 12 O 19 (where M=
It is a magnetic oxide represented by Ba, Pb, Sr),
It is named after magnetoplumbite. Conventionally, such ferrite has been produced by mixing a divalent metal oxide and a trivalent iron oxide in powder form and heating the mixture to, for example, 1300° C. to 1500° C. to cause a reaction. However, in this method, ferrite is obtained by reacting a mixture of solid particles, so the composition is essentially non-uniform, and the high temperature reaction results in large ferrite particles and a wide particle size distribution. Therefore, it has not been possible to manufacture materials with high dimensional accuracy that can be microfabricated with high performance and reliability. In addition, according to the conventional method, when the raw material oxides are mixed and reacted at high temperature, the ferrite layer is only formed by reaction and diffusion between the surfaces where the particles are in contact with each other, and the deep part of the particles is Therefore, in order to obtain highly uniform ferrite, the heating reaction and crushing operations must be repeated. Therefore, it takes a long time to manufacture, requires a large-scale crushing device, and requires a large furnace to maintain high temperatures. Furthermore, because the grinding and heating are repeated,
The drawback was that contamination with foreign substances was unavoidable and it was difficult to obtain highly pure products.

本発明者は、液相における低温反応による製造
が可能で、微粒子で高純度のマグネトプランバイ
ト型フエライトを得る方法として、鉄のアルコキ
シドと、鉄とマグネトプランバイト型フエライト
を構成する他の金属、即ち前記Pb、Ba、あるい
はSrのアルコシドを混合し、加水分解を行なう
ことにより、鉄と前記Pb、Ba、あるいはSrとで
なるフエライトを得ることを試みたが、この方法
によれば、Pbについてはマグネトプランバイト
型フエライトが得られたものの、BaとSrについ
ては、該フエライトが得られなかつた。
The present inventor proposed a method for obtaining fine-grained, highly pure magnetoplumbite ferrite that can be produced by low-temperature reaction in a liquid phase. That is, an attempt was made to obtain a ferrite consisting of iron and Pb, Ba, or Sr by mixing the alkosides of Pb, Ba, or Sr and performing hydrolysis. Although magnetoplumbite-type ferrite was obtained for Ba and Sr, such ferrite could not be obtained for Ba and Sr.

本発明は、このような点に鑑み、Pb、Ba、あ
るいはSrのいずれについても、比較的低温の処
理によつて製造可能であつて、反応に大がかりな
装置を要せず、分子サイズの微粒子で高純度のマ
グネトプランバイト型フエライトを製造する方法
を提供することを目的としてなされたものであ
る。
In view of these points, the present invention aims to produce molecular-sized fine particles of Pb, Ba, or Sr, which can be produced by processing at relatively low temperatures, does not require large-scale equipment for the reaction, and is capable of producing fine particles of molecular size. The purpose of this study was to provide a method for producing high-purity magnetoplumbite-type ferrite.

本発明のマグネトプランバイト型フエライトの
製造方法は、鉄とアルカリ金属との複合アルコキ
シドを作り、該複合アルコキシドと、鉄とマグネ
トプランバイト型フエライトを構成する他の金属
の塩化物とを混合し、溶媒中で加熱し置換反応を
行なわせることにより、鉄と前記他の金属との複
合アルコキシドを作り、該複合アルコキシドの加
水分解を行ない、該加水分解物を400℃を越える
温度で熱処理することにより、鉄と前記他の金属
とのフエライトを得ることを特徴とする。
The method for producing magnetoplumbite-type ferrite of the present invention includes making a composite alkoxide of iron and an alkali metal, mixing the composite alkoxide with a chloride of iron and other metals constituting the magnetoplumbite-type ferrite, By heating in a solvent to cause a substitution reaction, a composite alkoxide of iron and the other metals is produced, hydrolyzing the composite alkoxide, and heat-treating the hydrolyzate at a temperature exceeding 400°C. , characterized in that a ferrite of iron and the other metal is obtained.

本発明において、アルコールとしては、メタノ
ール、エタノール、ブタノール、プロパノール等
が用いられる。また、アルカリ金属として、ナト
リウム、リチウム、カリウムが用いられる。
In the present invention, methanol, ethanol, butanol, propanol, etc. are used as the alcohol. Moreover, sodium, lithium, and potassium are used as alkali metals.

以下本発明の実施例を、MCl2とNaFe(OR)4
(ただし、MはBaまたはSr Rはエチル基または
イソプロピル基)を出発原料とするMFe12O19
合成について説明する。
Examples of the present invention are as follows: MCl 2 and NaFe(OR) 4
(However, M is Ba or Sr and R is an ethyl group or an isopropyl group) as starting materials. Synthesis of MFe 12 O 19 will be explained.

(1) Fe(OR)3の合成 無水のFeCl315gをエタノール(またはイソ
プロパノール)150mlとベンゼン100mlの混合溶
媒に溶解し、乾燥アンモニアガスを下記の反応
が終了するまで約70℃で約1時間通じた。
(1) Synthesis of Fe(OR) 3 Dissolve 15 g of anhydrous FeCl 3 in a mixed solvent of 150 ml of ethanol (or isopropanol) and 100 ml of benzene, and add dry ammonia gas at about 70°C for about 1 hour until the following reaction is completed. got through.

FeCl3+3ROH+3NH3→ Fe(OR)3+3NH4Cl……(1) その後、溶媒をベンゼン250mlに置換し、
不溶なNH4Clを瀘別し、純粋なFe(OR)3
溶解しているベンゼン溶液にした。
FeCl 3 +3ROH + 3NH 3 → Fe(OR) 3 +3NH 4 Cl...(1) Then, the solvent was replaced with 250ml of benzene,
Insoluble NH 4 Cl was filtered out to create a benzene solution containing pure Fe(OR) 3 dissolved therein.

(2) NaORの合成 金属Na0.1モルをエタノール(またはイソプ
ロパノール)100mlに加えて約70℃で約1時間
還流(溶液を加熱し、加熱により生じた蒸気を
冷却し液化して溶液中に戻す処理)し、これに
より、NaORを生成させた。
(2) Synthesis of NaOR Add 0.1 mol of metallic Na to 100 ml of ethanol (or isopropanol) and reflux at about 70°C for about 1 hour (heat the solution, cool and liquefy the vapor generated by heating, and return it to the solution. treatment), thereby generating NaOR.

(3) NaFe(OR)4の合成 前記Fe(OR)3に、化学量論比ないしはその
5倍の量のNbORを加えてNaFe(OR)4の複合
アルコキシドを調整した。
(3) Synthesis of NaFe(OR) 4 A complex alkoxide of NaFe(OR) 4 was prepared by adding NbOR in a stoichiometric ratio or five times the stoichiometric amount to the Fe(OR) 3 described above.

(4) フエライトの合成 前記複合アルコキシドに無水のBaCl2または
SrCl2をプランバイト組成比で加え、約70℃で
1時間加熱還流して反応させた後、還流温度で
過剰のアンモニア水で加水分解を行なつた。
(4) Synthesis of ferrite Add anhydrous BaCl 2 or
SrCl 2 was added at a plumbite composition ratio, and the mixture was heated and refluxed at about 70° C. for 1 hour to react, and then hydrolyzed with excess aqueous ammonia at reflux temperature.

BaFe12O19の合成は、BaCl2とNaFe(OR)4
の反応時間を1時間から5時間の間で変化させ
て行なつた。また、加水分解生成により得た粉
末を、X線回折、示差熱重量分析、分析電子顕
微鏡で調べた。前記Na量が化学量論比からそ
の4倍までは5時間でも十分に反応が進行せ
ず、加水分解生成物は、400℃では無定形で、
600〜1000℃で目的のBaFe12O19の単一相とは
ならず、α―Fe2O3相が混在した。しかしNa
量を化学量論比の5倍で行なうと、1.5時間反
応させた後の加水分解生成物は、400℃以下で
無定形で、600〜1000℃でBaFe12O19の単一相
が得られた。
The synthesis of BaFe 12 O 19 was carried out by varying the reaction time of BaCl 2 and NaFe(OR) 4 from 1 hour to 5 hours. In addition, the powder obtained by hydrolysis was examined by X-ray diffraction, differential thermogravimetry, and analytical electron microscopy. When the amount of Na is from the stoichiometric ratio to four times the stoichiometric ratio, the reaction does not proceed sufficiently even after 5 hours, and the hydrolysis product is amorphous at 400°C.
At 600 to 1000°C, the desired single phase of BaFe 12 O 19 was not formed, but three α-Fe 2 O phases were mixed. But Na
When the amount is 5 times the stoichiometric ratio, the hydrolysis product after 1.5 hours of reaction is amorphous below 400℃, and a single phase of BaFe 12 O 19 is obtained between 600 and 1000℃. Ta.

SrFe12O19の合成は、化学量論比のNa量では
十分反応が進まなかつたが、Na量を化学量論
比の2倍とし、2時間以上還流、反応させた
後、過剰のアンモニア水で加水分解した生成物
は、400℃以下で無定形で、600〜1000℃で
SrFe12O19の単一相が得られた。加水分解反応
時間を1〜3時間の間で変化させたところ、加
水分解生成物の結晶化温度に相違が見られた。
すなわち、加水分解反応1時間で725℃、2時
間で580℃、3時間で540℃と、反応時間を長く
すると、SrFe12O19の結晶化温度が低くなる傾
向が見られた。
In the synthesis of SrFe 12 O 19 , the reaction did not proceed sufficiently with the stoichiometric amount of Na, but after increasing the amount of Na to twice the stoichiometric ratio and refluxing and reacting for more than 2 hours, excess ammonia water was added. The product hydrolyzed at
A single phase of SrFe 12 O 19 was obtained. When the hydrolysis reaction time was varied between 1 and 3 hours, a difference was observed in the crystallization temperature of the hydrolyzed product.
That is, as the hydrolysis reaction time was increased to 725°C for 1 hour, 580°C for 2 hours, and 540°C for 3 hours, the crystallization temperature of SrFe 12 O 19 tended to become lower.

以上述べたように、本発明の方法は、鉄とアル
カリ金属との複合アルコキシドを作り、該複合ア
ルコキシドと、鉄とマグネトプランバイト型フエ
ライトを構成する他の金属の塩化物とを混合し、
溶媒中で加熱し置換反応を行わせることにより、
鉄と前記他の金属との複合アルコキシドを作り、
該複合アルコキシドの加水分解を行ない、該加水
分解物を400℃を越える温度で熱処理することに
より、鉄と前記他の金属とのフエライトを得る方
法であり、均一な組成の超微細粉粒を得ことがで
きる。従つて、本発明によれば、高純度、高性能
で高信頼性のマグネトプランバイト型フエライト
が得られる。また、本発明によれば、粉砕処理が
不要であり、また、従来より比較的低温で処理す
れば良いため、これらの大がかりな装置が不要に
なり、しかも作業の繰返しが不要になるので、製
造時間が短縮される。
As described above, the method of the present invention involves making a composite alkoxide of iron and an alkali metal, mixing the composite alkoxide with a chloride of iron and other metals constituting magnetoplumbite-type ferrite,
By heating in a solvent to carry out a substitution reaction,
Making a composite alkoxide of iron and the other metals,
This is a method of obtaining ferrite of iron and the other metals by hydrolyzing the composite alkoxide and heat-treating the hydrolyzate at a temperature exceeding 400°C, and obtains ultrafine powder particles with a uniform composition. be able to. Therefore, according to the present invention, a magnetoplumbite type ferrite with high purity, high performance, and high reliability can be obtained. In addition, according to the present invention, there is no need for pulverization, and the process can be performed at a relatively low temperature compared to conventional methods, which eliminates the need for these large-scale devices and eliminates the need for repeating operations. Time is reduced.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄とアルカリ金属との複合アルコキシドを作
り、該複合アルコキシドと、鉄とマグネトプラン
バイト型フエライトを構成する他の金属の塩化物
とを混合し、溶媒中で加熱し置換反応を行なわせ
ることにより、鉄と前記他の金属との複合アルコ
キシドを作り、該複合アルコキシドの加水分解を
行ない、該加水分解物を400℃を越える温度で熱
処理することにより、鉄と前記他の金属とのフエ
ライトを得ることを特徴とするマグネトプランバ
イト型フエライトの製造方法。
1. By making a composite alkoxide of iron and an alkali metal, mixing the composite alkoxide with chlorides of iron and other metals constituting magnetoplumbite ferrite, and heating in a solvent to cause a substitution reaction. , obtaining a ferrite of iron and the other metal by making a composite alkoxide of iron and the other metal, hydrolyzing the composite alkoxide, and heat-treating the hydrolyzate at a temperature exceeding 400°C. A method for producing magnetoplumbite-type ferrite characterized by the following.
JP58161726A 1983-09-02 1983-09-02 Production of magnetopumbite type ferrite Granted JPS6054925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58161726A JPS6054925A (en) 1983-09-02 1983-09-02 Production of magnetopumbite type ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58161726A JPS6054925A (en) 1983-09-02 1983-09-02 Production of magnetopumbite type ferrite

Publications (2)

Publication Number Publication Date
JPS6054925A JPS6054925A (en) 1985-03-29
JPH0343215B2 true JPH0343215B2 (en) 1991-07-01

Family

ID=15740713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58161726A Granted JPS6054925A (en) 1983-09-02 1983-09-02 Production of magnetopumbite type ferrite

Country Status (1)

Country Link
JP (1) JPS6054925A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261217A (en) * 1985-05-16 1986-11-19 Mitsubishi Mining & Cement Co Ltd Production of magnetoplumbite-type ferrite powder
FR2621162B1 (en) * 1987-09-29 1989-12-15 Kodak Pathe PREPARATION OF THIN FILMS BASED ON FERIII OXIDE FOR OPTICAL AND / OR MAGNETIC RECORDING
FR2621161B1 (en) * 1987-09-29 1989-12-15 Kodak Pathe PREPARATION OF THIN FILMS BASED ON FERIII OXIDE FOR OPTICAL AND / OR MAGNETIC RECORDING

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140270A (en) * 1983-01-31 1984-08-11 Inoue Japax Res Inc Radio wave shielding paint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140270A (en) * 1983-01-31 1984-08-11 Inoue Japax Res Inc Radio wave shielding paint

Also Published As

Publication number Publication date
JPS6054925A (en) 1985-03-29

Similar Documents

Publication Publication Date Title
Warren et al. A thermochemical study of iron aluminate-based materials: A preferred class for isothermal water splitting
JPH0343215B2 (en)
Gil et al. Crystal structure refinement and vibrational analysis of Y [Co (CN) 6]· 4H2O and its thermal decomposition products
CN108586765B (en) Manganese metal organic framework material and preparation method and application thereof
JPS62209039A (en) Aqueous solution of basic yttrium acetate and production thereof
JPH059375B2 (en)
JPH0244765B2 (en) KINZOKUFUKUSANKABUTSUNOSEIZOHOHO
Roesky From molecules to aggregates
JPS6086022A (en) Production of titanic acid salt
JPS6086026A (en) Production of composite perovskite compound
JPH06654B2 (en) M DOWN 3 ▼ O DOWN 4 ▼ Manufacturing method of powder
JPS6217005A (en) Preparation of mullite powder having high purity
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
JPH0621026B2 (en) Fluorine mica production method
JPH0361610B2 (en)
JPS6186422A (en) Preparation of compound arsenic oxide
JPS58199723A (en) Manufacture of lanthanide-iron double oxide
JPH0371377B2 (en)
JPS63260819A (en) Production of superconductor
JPH0193404A (en) Production of raw material powder of compound having garnet structure
JPS62171926A (en) Production of magnetite fine powder
Efimenko et al. Synthesis of BaFe 12 O 19 in the melts of inorganic salts
Maček et al. Thermal properties of hydrazido-carbonates of cobalt and nickel in an inert atmosphere
JPH0680610B2 (en) Ferrite manufacturing method
KR0167851B1 (en) Methdo of manufacturing y.i.g powder