JPH0193404A - Production of raw material powder of compound having garnet structure - Google Patents

Production of raw material powder of compound having garnet structure

Info

Publication number
JPH0193404A
JPH0193404A JP62248957A JP24895787A JPH0193404A JP H0193404 A JPH0193404 A JP H0193404A JP 62248957 A JP62248957 A JP 62248957A JP 24895787 A JP24895787 A JP 24895787A JP H0193404 A JPH0193404 A JP H0193404A
Authority
JP
Japan
Prior art keywords
compound
metals
garnet structure
raw material
precipitates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62248957A
Other languages
Japanese (ja)
Other versions
JPH0446884B2 (en
Inventor
Hajime Haneda
肇 羽田
Shinichi Shirasaki
信一 白崎
Akio Watanabe
明男 渡辺
Takakimi Yanagiya
高公 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP62248957A priority Critical patent/JPH0193404A/en
Publication of JPH0193404A publication Critical patent/JPH0193404A/en
Publication of JPH0446884B2 publication Critical patent/JPH0446884B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To readily obtain the title homogeneous powder, having high sinterability and reactivity and useful as magnetic substances, sensors, etc., by adding urea to a specific aqueous solution, heating the solution, forming precipitates of insoluble metals, drying the resultant precipitates and calcining the dried precipitates. CONSTITUTION:A sulfate, etc., are added to a mixed acidic aqueous solution containing both metallic elements (A) and (B) (e.g., La or Al) of a compound, expressed by the formula (A is one or more of metals having oxygen at the octa-coordinated position; B is one or metals having oxygen at the hexa- and tetra-coordinated positions) to prepare a solution. Urea in a molar amount of 2-10 times based on the acid in the solution is added and heated to provide pH 7-8 and form precipitates of insoluble metals. The resultant precipitates are then recovered, dried and calcined at 500-1,300 deg.C to produce the aimed raw material powder of the compound having the garnet structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガーネット構造を持つ化合物の原料粉末の製造
方法に関する。更に詳しくは易反応性。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing raw material powder of a compound having a garnet structure. More specifically, easy reactivity.

易焼結性、均一性を備えたガーネット構造を持つ化合物
の原料粉末の製造方法に関する。
The present invention relates to a method for producing raw material powder of a compound having a garnet structure that is easily sinterable and has uniformity.

ガーネット構造を持つ化合物は磁性体、レーザーホスト
材料、センサー等の機能を有し、広範囲に利用されてい
る。最近では、その製造にセラミックス製造法を利用し
た製造法が進展し、そのため、易反応性、易焼結性、均
一性を備えた原料粉末が要望されている。
Compounds with a garnet structure have functions such as magnetic substances, laser host materials, and sensors, and are widely used. Recently, manufacturing methods using ceramic manufacturing methods have been developed, and there is therefore a demand for raw material powders that are easily reactive, easily sinterable, and uniform.

従来技術 従来、ガーネット構造を持つ化合物の原料粉末の製造方
法としては、乾式法、湿式法および塩の直接分解法が知
られている。
BACKGROUND ART Conventionally, dry methods, wet methods, and direct salt decomposition methods are known as methods for producing raw material powders of compounds having a garnet structure.

乾式法は構成原料化合物を乾式で混合し、これを仮焼す
る方法である。しかし、この方法では均一組成あるいは
単一化合物原料粉末が得難いため、優れた機能を持つガ
ーネット構造を持つ化合物を作りがたく、またその焼結
性は十分でない欠点があった。
The dry method is a method in which constituent raw material compounds are mixed in a dry method and this is calcined. However, this method has the disadvantage that it is difficult to obtain a uniform composition or a single compound raw material powder, making it difficult to produce a compound with a garnet structure that has excellent functionality, and that its sinterability is insufficient.

湿式法は構成成分の混合酸性溶液にアンモニア水等のア
ルカリ沈殿剤を添加して共沈させ、この沈殿物を乾燥、
仮焼する方法である。この方法によると瞬時にpnが変
化し反応するため、溶液の過飽和度が大きくなり、多く
の核が形成し、互いに接触してゼリー状沈殿を生成し、
その中に塩化アンモニウム塩の副生成物を吸蔵する。ゼ
リー状沈殿であるため、洗浄は容易でなく、副生成物の
完全除去が極めて困難である。この副生成物は仮焼段階
で一次粒子の成長を促し、結果的に得られる粉体の活性
が失われる欠点があった。
In the wet method, an alkaline precipitant such as aqueous ammonia is added to a mixed acidic solution of the constituent components to cause coprecipitation, and this precipitate is dried.
This is a method of calcining. According to this method, the pn changes instantaneously and the reaction occurs, so the degree of supersaturation of the solution increases, many nuclei are formed, and they come into contact with each other to form a jelly-like precipitate.
It stores ammonium chloride salt by-products therein. Since it is a jelly-like precipitate, it is not easy to wash, and it is extremely difficult to completely remove by-products. This by-product promotes the growth of primary particles during the calcination stage, resulting in a loss of activity in the resulting powder.

また、塩直接分解法はその分解によりガーネット構造を
持つ化合物形成時に多量の有害ガスを発生する欠点があ
る。
In addition, the direct salt decomposition method has the disadvantage that a large amount of harmful gas is generated when a compound having a garnet structure is formed by the decomposition.

発明の目的 本発明は前記従来法における欠点がないガーネット構造
を持つ化合物の原料粉末の製造方法を提供するにある。
OBJECTS OF THE INVENTION The present invention provides a method for producing raw material powder of a compound having a garnet structure, which does not have the drawbacks of the conventional methods.

発明の構成 本発明者は前記目的を達成すべく鋭意研究の結果、ガー
ネット構造を持つ化合物の構成金属元素を含んだ混合酸
性水溶液を作り、これに酸に対しモル比で2〜10倍量
の尿素を加え加熱すると、ptiが8となる間に不溶性
金属塩が徐々に形成する。
Structure of the Invention As a result of intensive research to achieve the above object, the present inventor prepared a mixed acidic aqueous solution containing the constituent metal elements of a compound having a garnet structure, and added 2 to 10 times the molar amount of the acid to the mixed acidic aqueous solution. When urea is added and heated, an insoluble metal salt is gradually formed while the pti reaches 8.

得られた沈殿物を乾燥後仮焼すると、従来法の湿式法に
おける欠点を解消し得られ、かつ有害ガスの発生もなく
、易反応性、易焼結性の原料粉末が得られることを究明
し得た。この知見に基づいて本発明を完成した。
It was discovered that by drying and then calcining the obtained precipitate, the drawbacks of the conventional wet method could be overcome, and a raw material powder with high reactivity and sinterability could be obtained without generating harmful gases. I was able to do it. The present invention was completed based on this knowledge.

本発明の要旨は、 一般式AsBs0+z (ただし、Aは酸素8配位位置をしめる金属の1種また
は2種以上を、Bは酸素6配位および4配位位置をしめ
る金属の1種または2種以上を表わす。) で示されるガーネット構造を持つ化合物の原料粉末の製
造において、A成分とB成分の両金属元素を含んだ混合
酸性水溶液を作り、これに酸に対しモル比で2〜10倍
量の尿素を加え加熱して不溶性金属の沈殿を形成させ、
得られた沈殿物を乾燥後500“ひ〜1300°Cで仮
焼することを特徴とするガーネット構造を持つ化合物の
原料粉末の製造方法、にある。
The gist of the present invention is the general formula AsBs0+z (where A is one or more metals that occupy the 8-coordination position of oxygen, and B represents one or more metals that occupy the 6-coordination and 4-coordination positions of oxygen. In the production of raw material powder of a compound having a garnet structure shown in Double the amount of urea is added and heated to form a precipitate of insoluble metals,
A method for producing a raw material powder of a compound having a garnet structure, characterized in that the obtained precipitate is dried and then calcined at 500°C to 1300°C.

前記一般式のA成分の酸素8配位位置をしめる金属とし
ては、例えばY、La等の希土類元素およびCa、 B
iが挙げられる。またB成分の酸素6配位および4配位
位置をしめる金属としては、例えばAI、 Fe、 G
a、 Scが挙げられる。
Examples of metals that occupy the 8-coordination position of oxygen in component A in the general formula include rare earth elements such as Y and La, and Ca, B
i is mentioned. In addition, the metals that occupy the oxygen 6-coordination and 4-coordination positions of component B include, for example, AI, Fe, G
a, Sc.

ガーネット構造を持つ化合物は、A成分に不足の正電荷
を持つものにたいしては、過剰の電荷を持った元素で補
償し得る。また陽イオンあるいは陰イオンの欠陥で補償
することもできる0本発明においては、これらのガーネ
ット構造を持つ化合物も含む。
In a compound having a garnet structure, the lack of positive charge in the A component can be compensated for with an element having an excess charge. Furthermore, the present invention also includes compounds having these garnet structures, which can be compensated for by defects in cations or anions.

ガーネット構造を持つ化合物の構成成分AとBの酸性水
溶液を作る際の塩としては、硫酸塩、塩化物、硝酸塩何
れでもよい。また、成分A、Bを鉱酸に溶解させたもの
でもよい、沈殿形成剤として尿素を用いるが、これは酸
に対しモル比で2〜10倍量添加する。2倍量未満では
沈殿が定量的に得られない、また10倍量を超えると尿
素が無駄となり副生成物も混入しはじめる。この溶液を
尿素の分解温度に加熱する。この加熱により尿素は徐々
に分解してCO,とNH4011になり、生成するN)
140HによりpHは徐々に上昇し沈殿を形成する。p
Hを7〜8にすることによって全部のA、Bの沈殿が生
成する。このように徐々に沈殿を形成するため、過飽和
度が小さく核の数を抑えることができ大きな沈殿となり
、ゼリー状にならない。このため、副生成物の吸蔵が少
なく、且つ一個一個の沈殿粒子が大きいため、洗浄によ
り容易に副生成物を除去し得られる。
The salt used in preparing the acidic aqueous solution of constituent components A and B of the compound having a garnet structure may be any of sulfates, chlorides, and nitrates. Further, components A and B may be dissolved in a mineral acid, and urea is used as a precipitate forming agent, and this is added in an amount of 2 to 10 times the acid in terms of molar ratio. If the amount is less than 2 times, the precipitate cannot be quantitatively obtained, and if the amount exceeds 10 times, urea is wasted and by-products start to be mixed in. This solution is heated to the decomposition temperature of urea. Due to this heating, urea gradually decomposes into CO, and NH4011, and N)
140H causes the pH to gradually rise and form a precipitate. p
By setting H to 7 to 8, all A and B precipitates are formed. Since the precipitate is formed gradually in this way, the degree of supersaturation is low and the number of nuclei can be suppressed, resulting in a large precipitate that does not become jelly-like. Therefore, the amount of by-products stored is small and each precipitated particle is large, so by-products can be easily removed by washing.

得られた沈殿物を乾燥し、500″C〜1300℃で仮
焼する。これにより均一でかつ易焼結性、易反応性のガ
ーネット構造を持つ化合物の原料粉末が得られる。仮焼
温度が500℃未満では沈殿物の脱水や熱分解が不十分
で、また1300℃を超えると粉末が粗粒化し反応性が
低下するので、500℃〜1300°Cであることが適
当である。
The obtained precipitate is dried and calcined at 500"C to 1300C. This yields a uniform raw material powder of a compound having a garnet structure that is easily sintered and easily reacted. The calcination temperature is If it is less than 500°C, dehydration and thermal decomposition of the precipitate will be insufficient, and if it exceeds 1300°C, the powder will become coarse and the reactivity will be reduced, so a temperature of 500°C to 1300°C is suitable.

実施例1゜ 酸化鉄2.793g及び酸化イッテルビウム4.137
g(YbzFesOtz として0.007mol)を
25ccの濃塩酸に溶解し、更に水を加えて12とした
。これに尿素を175g (酸に対して10倍量)加え
溶解させた後、約95°Cで30分間加熱した。その後
21の水を加え尿素の分解を止め、沈殿物を洗浄が過乾
燥した。
Example 1゜2.793g of iron oxide and 4.137g of ytterbium oxide
g (0.007 mol as YbzFesOtz) was dissolved in 25 cc of concentrated hydrochloric acid, and water was further added to make 12. After adding and dissolving 175 g of urea (10 times the amount of acid), the mixture was heated at about 95°C for 30 minutes. Thereafter, water from step 21 was added to stop the decomposition of urea, and the precipitate was washed and overdried.

得られた乾燥物を1200°C1空気中で4時間仮焼し
てYb:+Fe50+z−相のガーネット構造を持つ化
合のものが得られた。
The obtained dried product was calcined in air at 1200° C. for 4 hours to obtain a compound having a garnet structure of Yb:+Fe50+z-phase.

実施例2゜ 硝酸イツトリウム1.07mol溶液を2ORI 1、
硝酸アルミニウム0.939 mol 溶液を37.9
8 ml(Y3AlsO+tとして0.007 mol
 )の混合液に水を加えてIIlとした。ついで尿素5
1.4gを加え溶解させた後、約95°Cに加熱し5時
間保持した。その後21の水を加えて尿素の分解を止め
、沈殿物を洗浄、濾過乾燥し、1100°Cで空気中3
時間仮焼した。粉末X線回折によるとYiAlsO+□
ガーネット構造の化合物の一相のものであった。
Example 2 1.07 mol solution of yttrium nitrate was added to 2 ORI 1,
Aluminum nitrate 0.939 mol solution 37.9
8 ml (0.007 mol as Y3AlsO+t
) was added with water to make IIl. Then urea 5
After adding and dissolving 1.4 g, it was heated to about 95°C and held for 5 hours. After that, 21 water was added to stop the decomposition of urea, the precipitate was washed, filtered and dried, and 3
Calcined for an hour. According to powder X-ray diffraction, YiAlsO+□
It was one phase of a compound with a garnet structure.

/どθθ0Cて1 これ槍鉢結すると、焼結密度が理論値の95%以上のも
のが得られた。
/doθθ0Cte1 When this was sintered, a sintered density of 95% or more of the theoretical value was obtained.

比較例1゜ 市販のY2O2、Al2O2の各粉末をY、AI、O,
オの組成になるように配合し、ボールミル混合後、11
00°Cで空気中24時間仮焼し、再びボールミル混合
して粉末を得た。この粉末はAtto、、 Y、03゜
Y、^tSO1等の混合物であった。これを更に150
0″Cで空気中12時間熱処理したが、Y3A1501
5ガーネあった。
Comparative Example 1゜ Commercially available powders of Y2O2 and Al2O2 were mixed with Y, AI, O,
After mixing in a ball mill, 11
The mixture was calcined in air at 00°C for 24 hours and mixed again in a ball mill to obtain a powder. This powder was a mixture of Atto, Y, 03°Y, ^tSO1, etc. Add this to another 150
Although heat treated in air at 0″C for 12 hours, Y3A1501
There were 5 garnes.

比較例2゜ 塩化アルミニウムと塩化イツトリウムをモル比で5:3
の割合で含む0.51IIol水溶液の200 ccに
、p117になるように0.5 molアンモニア水を
加えた。
Comparative Example 2゜Molar ratio of aluminum chloride and yttrium chloride is 5:3
0.5 mol ammonia water was added to 200 cc of a 0.51 IIol aqueous solution containing a ratio of 0.5 mol to p117.

生成した沈殿は瞬時にゼリー状となり、濾過することが
できなかった。そこで、6000rpn+で遠心分離デ
カンテーションをすることにより沈殿物を洗浄して粉末
を得た。
The generated precipitate instantly became jelly-like and could not be filtered. Therefore, the precipitate was washed by centrifugation and decantation at 6000 rpm+ to obtain a powder.

1回だけの洗浄の粉末中には20重景%以上の塩素化合
物を含み、これを除くには7回以上の洗浄を必要とした
。この洗浄時間は1日以上を必要とする。これを110
0°Cで仮焼した物はガーネット構造を持った化合物の
単相であったが、−次粒子径であった。
The powder that was washed only once contained more than 20% of chlorine compounds, which required more than seven washings to remove them. This cleaning time requires one day or more. This is 110
The material calcined at 0°C had a single phase of a compound having a garnet structure, but had a -order particle size.

発明の効果 本発明の方法によると、沈殿形成剤として尿素大きな沈
殿物となり、ゼリー状となることがない。
Effects of the Invention According to the method of the present invention, urea as a precipitate forming agent does not form a large precipitate or become jelly-like.

従って、沈殿物の洗浄は容易で副生酸物含有のない粉末
が容易に得られ、かつ仮焼時における一次粒子の成長も
な(、均一、易焼結性、易反応性の原料が得られる。こ
れにより従来の湿式法における欠点をなくし得る。また
固相法に比し易反応性。
Therefore, it is easy to wash the precipitate, it is easy to obtain a powder that does not contain by-product oxides, and there is no growth of primary particles during calcination (uniform, easily sinterable, and easily reactive raw materials are obtained). This eliminates the drawbacks of conventional wet methods.Also, it is more reactive than solid phase methods.

易焼結性でガーネット構造を持つ化合物の単相のものが
得られると共に塩直接分解法におけるような有害ガスの
発生もない優れた効果を有する。
A single-phase compound with a garnet structure that is easily sintered can be obtained, and it has an excellent effect of not generating harmful gases unlike the direct salt decomposition method.

特許出願人 科学技術庁無機材質研究崩長瀬   高 
  信   血
Patent applicant: Taka Nagase, Research Institute for Inorganic Materials, Science and Technology Agency
faith blood

Claims (1)

【特許請求の範囲】 一般式A_3B_5O_1_2 (ただし、Aは酸素8配位位置をしめる金属の1種また
は2種以上を、Bは酸素6配位および4配位位置をしめ
る金属の1種または2種以上を表わす。) で示されるガーネット構造を持つ化合物の原料粉末の製
造において、A成分とB成分の両金属元素を含んだ混合
酸性水溶液を作り、これに酸に対しモル比で2〜10倍
量の尿素を加え加熱して不溶性金属の沈殿を形成させ、
得られた沈殿物を乾燥後500℃〜1300℃で仮焼す
ることを特徴とするガーネット構造を持つ化合物の原料
粉末の製造方法。
[Claims] General formula A_3B_5O_1_2 (where A is one or more metals that have an 8-coordination position of oxygen, and B represents one or two metals that have a 6-coordination position and a 4-coordination position of oxygen). In the production of raw material powder of a compound having a garnet structure shown in Double the amount of urea is added and heated to form a precipitate of insoluble metals,
A method for producing a raw material powder of a compound having a garnet structure, which comprises drying the obtained precipitate and then calcining it at 500°C to 1300°C.
JP62248957A 1987-10-01 1987-10-01 Production of raw material powder of compound having garnet structure Granted JPH0193404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62248957A JPH0193404A (en) 1987-10-01 1987-10-01 Production of raw material powder of compound having garnet structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62248957A JPH0193404A (en) 1987-10-01 1987-10-01 Production of raw material powder of compound having garnet structure

Publications (2)

Publication Number Publication Date
JPH0193404A true JPH0193404A (en) 1989-04-12
JPH0446884B2 JPH0446884B2 (en) 1992-07-31

Family

ID=17185918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248957A Granted JPH0193404A (en) 1987-10-01 1987-10-01 Production of raw material powder of compound having garnet structure

Country Status (1)

Country Link
JP (1) JPH0193404A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004701A1 (en) * 1993-08-11 1995-02-16 Sumitomo Chemical Company, Limited Composite metal oxide powder and process for producing the same
JP2001158620A (en) * 1999-09-20 2001-06-12 Shin Etsu Chem Co Ltd Rare earth-aluminum-garnet fine powder, method for producing the same and sintered compact using the same powder
EP1338556A2 (en) * 2002-02-26 2003-08-27 Sumitomo Chemical Company, Limited Process for producing particles of a metal compound
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696728A (en) * 1979-11-09 1981-08-05 Rhone Poulenc Ind Manufacture of polycrystalline garnet containing at least one element selected from groups comprising aluminum and*or gallium and*or indium* rare earth element and yttrium and corresponding single cry
JPS5696727A (en) * 1979-11-09 1981-08-05 Rhone Poulenc Ind Manufacture of polycrystalline garnet and corresponding single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696728A (en) * 1979-11-09 1981-08-05 Rhone Poulenc Ind Manufacture of polycrystalline garnet containing at least one element selected from groups comprising aluminum and*or gallium and*or indium* rare earth element and yttrium and corresponding single cry
JPS5696727A (en) * 1979-11-09 1981-08-05 Rhone Poulenc Ind Manufacture of polycrystalline garnet and corresponding single crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004701A1 (en) * 1993-08-11 1995-02-16 Sumitomo Chemical Company, Limited Composite metal oxide powder and process for producing the same
JP2001158620A (en) * 1999-09-20 2001-06-12 Shin Etsu Chem Co Ltd Rare earth-aluminum-garnet fine powder, method for producing the same and sintered compact using the same powder
EP1338556A2 (en) * 2002-02-26 2003-08-27 Sumitomo Chemical Company, Limited Process for producing particles of a metal compound
EP1338556A3 (en) * 2002-02-26 2004-01-07 Sumitomo Chemical Company, Limited Process for producing particles of a metal compound
US7691765B2 (en) 2005-03-31 2010-04-06 Fujifilm Corporation Translucent material and manufacturing method of the same

Also Published As

Publication number Publication date
JPH0446884B2 (en) 1992-07-31

Similar Documents

Publication Publication Date Title
CA2470727C (en) Method for manufacturing stabilized zirconia
CN111908922A (en) Low-temperature synthesized rare earth hafnate high-entropy ceramic powder and preparation method thereof
JPH08109021A (en) Composite oxide having oxygen-absorbing and releasing ability and its production
JPH05262519A (en) Preparation of ammonium rare earth double oxalate and use thereof for production of rare earth oxide
JP3284413B2 (en) Method for producing hydrated zirconia sol and zirconia powder
CN104003697A (en) Preparation method of BSAS composite ceramic powder
JP3386594B2 (en) Process for producing composite oxides with oxygen absorption / release capability
JPH0193404A (en) Production of raw material powder of compound having garnet structure
CN108358624A (en) A kind of low bulk phosphate ceramic material and preparation method thereof
JP3250243B2 (en) Method for producing zirconia-based sol
CN112125281A (en) Method for preparing lanthanide oxide material by using coprecipitation combined with molten salt deposition method and application thereof
JPS62168544A (en) Zirconia carrier and its preparation
JPS5978928A (en) Manufacture of zirconia powder
JPH0238577B2 (en)
JPH05262518A (en) Preparation of ammonium pare earth double oxalate, use thereof for production of rare earth oxide, and obtained rare earth oxide
JPH0238527B2 (en)
CN1318304C (en) Process for preparing large-particle rare earth oxide
JPH0761802A (en) Production of raw material powder for garnet type compound
JPS63260819A (en) Production of superconductor
JP2882040B2 (en) Method for producing hydrated zirconia sol
JPH01230432A (en) Production of lithium zirconate powder
JP2616772B2 (en) Method for producing proton conductive ceramics
KR0167851B1 (en) Methdo of manufacturing y.i.g powder
JPH0416408B2 (en)
JPH0797211A (en) Production of rare earth element oxide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term