JPS61117112A - Preparation of fluorochlorosilane - Google Patents

Preparation of fluorochlorosilane

Info

Publication number
JPS61117112A
JPS61117112A JP23823684A JP23823684A JPS61117112A JP S61117112 A JPS61117112 A JP S61117112A JP 23823684 A JP23823684 A JP 23823684A JP 23823684 A JP23823684 A JP 23823684A JP S61117112 A JPS61117112 A JP S61117112A
Authority
JP
Japan
Prior art keywords
gas
silicon
raw material
reaction
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23823684A
Other languages
Japanese (ja)
Other versions
JPH0328371B2 (en
Inventor
Koji Aono
青野 浩二
Chiharu Okada
岡田 千春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP23823684A priority Critical patent/JPS61117112A/en
Publication of JPS61117112A publication Critical patent/JPS61117112A/en
Publication of JPH0328371B2 publication Critical patent/JPH0328371B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To prepare fluorochlorosilane with high energy efficiency and easy control of the amt. of introduced raw material resulting as a whole extremely high advantage as commercial preparation by allowing gaseous chlorine and gaseous SiF4 to react with metallic Si or Si alloy. CONSTITUTION:Metallic Si or Si alloy is used as a raw material. Suitable metallic Si is one obtd. by reducing generally available siliceous stone with carbon or one obtd. by crushing the above-described product from the siliceous stone and removing impurities deposited on the grain boundary by treating with an acid. Suitable Si alloy is generally available ferrosilicon, calcium silicon, or magnesium silicon, etc. Fluorochlorosilanes SiFnCl4-n (n=1,2,3) is obtd. by allowing gaseous chlorine and ¦SiF4 gas to react with the above described siliceous raw material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は珪素化合物の中間原料として有用なフルオロク
ロロシラン類81.F’nC14−n(n = 1 、
2 、3 )の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides fluorochlorosilanes 81. useful as intermediate raw materials for silicon compounds. F'nC14-n (n = 1,
2, 3) Regarding the manufacturing method.

〔従来技術〕[Prior art]

フルオロクロロシラン類の製造法としては次の各法が公
知である。
The following methods are known as methods for producing fluorochlorosilanes.

■ 四塩化珪素を三弗化アンチモンを用いて部分弗素化
する方法。例えばH,8,Booth et al。
■ A method of partially fluorinating silicon tetrachloride using antimony trifluoride. For example, H, 8, Booth et al.

(、T、A、O,8,54−4750(1932) )
がある。
(, T.A.O., 8, 54-4750 (1932))
There is.

■ ヘキサフルオロクシ2ノ(131,F’・)と塩素
ガスとの反応による方法。例えばW、0.13chum
bat al、 (J、ム、O,8,54−3943(
1932) )がある。
■ A method based on the reaction of hexafluoroxy2(131,F'.) with chlorine gas. For example, W, 0.13chum
bat al, (J, Mu, O, 8, 54-3943 (
1932)).

■ 四塩化珪素と四弗化珪素との再分配反応(Redi
atribution ) icよる方法。例えばLL
Anderaon (J、A、O,572−2091(
1950) ) ;I)るいはUSF2,395,82
6などがある。
■ Redistribution reaction between silicon tetrachloride and silicon tetrafluoride
attribution) IC method. For example, LL
Anderaon (J, A, O, 572-2091 (
1950) ;I) or USF2,395,82
6 etc.

しかしながら■の方法では弗素化剤である三弗化アンチ
モンの吸湿性が強いことおよび三弗化アンチモンの純度
を良くするために昇華による精製が必要であることなど
取扱いが煩雑となる欠点を有している。■の方法ではへ
キサフルオロジシランと塩素ガスとのマイルドな爆発反
応であシ、工業的規模の製造には不向きであ、る。また
原料へキサフルオロジシランの入手も難かしく、好まし
い方法とは言えない。■の四塩化珪素と四弗化珪素とを
600〜700℃で再分配反応させる方法が三つの方法
のうちでは工業的規模の製造に適していると考えられる
However, the method (2) has the drawbacks that the fluorinating agent, antimony trifluoride, has strong hygroscopicity and that it requires purification by sublimation to improve the purity of the antimony trifluoride, making it complicated to handle. ing. Method (2) involves a mild explosive reaction between hexafluorodisilane and chlorine gas, and is unsuitable for industrial scale production. Furthermore, it is difficult to obtain the raw material hexafluorodisilane, so this method cannot be said to be preferable. Among the three methods, method (2) in which silicon tetrachloride and silicon tetrafluoride are subjected to a redistribution reaction at 600 to 700° C. is considered to be suitable for industrial scale production.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、一方の原料である四塩化珪素は一般的に
は珪素合金に塩素ガスを約400℃で作用させて得られ
るものであシ、塩素化反応のために相当量の熱エネルギ
ーが必要である。この四塩化珪素原料を製造するための
熱エネルギーと前記600〜700℃で再分配反応をお
こなわせるための熱エネルギーが二重に必要となシ、熱
エネルギーの損失は大となる欠点を有している。
However, silicon tetrachloride, one of the raw materials, is generally obtained by applying chlorine gas to a silicon alloy at about 400°C, and a considerable amount of thermal energy is required for the chlorination reaction. . Thermal energy for manufacturing this silicon tetrachloride raw material and thermal energy for carrying out the redistribution reaction at 600 to 700°C are required twice, and the loss of thermal energy is large. ing.

また再分配反応時の四塩化珪素の流量の制御は液体のま
までも、気化させ九気体状でも精度が得にくいと言う欠
点を有する。
In addition, it is difficult to control the flow rate of silicon tetrachloride during the redistribution reaction, whether it is in a liquid state or in a gaseous state after being vaporized.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは前記■の方法の欠点を排除するため鋭意検
討した結果、四塩化珪素合成反応と同時に、再分配反応
をおこなわせる方法を見出し、本発明に到ったものであ
る。すなわち本発明は金属珪素あるいは珪素合金に塩素
ガスと四弗化珪素ガスを作用させることを特徴とするフ
ルオロクロロシラン類の製造法である。
The inventors of the present invention have made intensive studies to eliminate the disadvantage of the method (2), and have found a method of carrying out a redistribution reaction at the same time as the silicon tetrachloride synthesis reaction, resulting in the present invention. That is, the present invention is a method for producing fluorochlorosilanes, which is characterized by causing chlorine gas and silicon tetrafluoride gas to act on metallic silicon or a silicon alloy.

本発明の方法によればフルオロクロロシラン類の製造時
にのみ熱エネルギーを加えればよく、前記熱エネルギー
損失の欠点が排除できる。また塩素ガスおよび四弗化珪
素ガスの流量制御はどちらも常温ではガス体であるため
非常に容易となるばかシでなく、精度も著しく向上させ
ることができる。
According to the method of the present invention, it is only necessary to apply thermal energy during the production of fluorochlorosilanes, thereby eliminating the disadvantage of thermal energy loss. Furthermore, since both chlorine gas and silicon tetrafluoride gas are gaseous at room temperature, it is not difficult to control the flow rates, and the accuracy can be significantly improved.

以下、本発明をさらに詳しく説明する。The present invention will be explained in more detail below.

フルオロクロロシラン類製造のS1原料としては金属珪
素あるいは珪素合金を使用する。金属珪素としては一般
的な珪石の炭素還元で得られるものあるいはこれを粉砕
した後、酸処理して粒界に析出した不純物を除いたもの
などを使用する。珪素合金としては一般的な7エロシリ
コン(Fe−81)、カルシウムシリコン(Oa−8i
)、マグネシウムシリコン(Mg−81)などが使用で
きる。
Metallic silicon or a silicon alloy is used as the S1 raw material for producing fluorochlorosilanes. As the metal silicon, one obtained by carbon reduction of general silica stone, or one obtained by crushing it and treating it with an acid to remove impurities precipitated at grain boundaries, etc. is used. Common silicon alloys include 7erosilicon (Fe-81) and calcium silicon (Oa-8i).
), magnesium silicon (Mg-81), etc. can be used.

反応の形式としては固定床、流動層、移動層などいずれ
を採用しても良い。
As for the reaction format, any of fixed bed, fluidized bed, moving bed, etc. may be employed.

S1原料の使用に際しては反応の形式に合致した適当な
粒度範囲のものに調整して用いる。例えば固定床の場合
にはlX1m511〜1oxlofi程度の範囲が好ま
しい。一方、塩素ガスおよび四弗化珪素ガスは市販のも
のがそのまま使用できる。また精製前の粗製ガスを使用
しても良いが塩素ガスは充分脱水して使用する必要が6
る。
When using the S1 raw material, it is adjusted to an appropriate particle size range that matches the type of reaction. For example, in the case of a fixed bed, a range of about 1×1 m511 to 1 oxlofi is preferable. On the other hand, commercially available chlorine gas and silicon tetrafluoride gas can be used as they are. Also, crude gas before purification may be used, but chlorine gas must be thoroughly dehydrated before use6.
Ru.

また、必要に応じて反応系に窒素、ヘリウム、アルゴン
などの不活性な希釈ガスを流しても良い。また、塩素ガ
スと四弗化珪素ガスは混合して反応系に導入してもよい
し、別々に導入してもよく、塩素化ゾーンと再分配反応
ゾーンに分けてもよい。
Furthermore, an inert diluent gas such as nitrogen, helium, or argon may be flowed into the reaction system if necessary. Further, chlorine gas and silicon tetrafluoride gas may be introduced into the reaction system as a mixture, or may be introduced separately, or may be divided into a chlorination zone and a redistribution reaction zone.

金属珪素t−8i原料とする場合には四弗化珪素ガスと
塩素ガスノモル比MR(MR=SiF41014 )は
0.05〜5の範囲から選らばれる。
In the case of using metallic silicon t-8i as a raw material, the nominal molar ratio MR of silicon tetrafluoride gas and chlorine gas (MR=SiF41014) is selected from the range of 0.05 to 5.

フルオロクロロシラン類Si FnO14−nにはモノ
フルオロトリクロロシラン 5iFn3  (n=1)
  沸点 12.2℃シフにオロジクooシラ7   
5iF2012 (n=2)   # −32,2tr
トリフルオロモノクロロシラン 5iF3(1(n=3
)   p −70,Opの三種がおるが、MRを大き
くすると191F’、のリッチの混合ガスが、またMR
i小さくするとSiF’C!1.リッチな混合ガスが得
られる。臘が0.05以下あるいは5以上の場合、いず
れも反応の収率の低下をまねくので好ましくない。
Fluorochlorosilane Si FnO14-n is monofluorotrichlorosilane 5iFn3 (n=1)
Boiling point: 12.2℃
5iF2012 (n=2) #-32,2tr
Trifluoromonochlorosilane 5iF3 (1 (n=3
) There are three types of p -70 and Op, but when the MR is increased, a rich mixed gas of 191F' is produced, and the MR
If i is made smaller, SiF'C! 1. A rich gas mixture is obtained. If the value is less than 0.05 or more than 5, it is not preferable because the yield of the reaction decreases.

珪素合金をS1原料とする場合、例えば7エロシリコン
ではFe01gが副生ずるので反応系にチャージする四
弗化珪素ガスと塩素ガスのモル比MRは当然のことなが
ら金属珪素の場合よシは小さくする必要がある。
When using a silicon alloy as the S1 raw material, for example, in the case of 7-erosilicon, Fe01g is produced as a by-product, so the molar ratio MR of silicon tetrafluoride gas and chlorine gas charged to the reaction system should naturally be smaller than in the case of metallic silicon. There is a need.

塩素ガスと四弗化珪素ガスの流量は反応形式により異な
るがS1原料と充分なる接触時間を与えなければならな
い。反応温度としてはS1原料の塩素化反応が進行する
180〜1000℃の温度範囲が好ましく、よシ好適に
は350〜800℃の範囲が選ばれる。180℃以下で
はS1原料の塩素化速度が遅すぎるし、また1000℃
以上にしても高温にすることによる特別な利益は得られ
ない。
Although the flow rates of chlorine gas and silicon tetrafluoride gas vary depending on the type of reaction, they must be allowed sufficient contact time with the S1 raw material. The reaction temperature is preferably in the range of 180 to 1000°C, at which the chlorination reaction of the S1 raw material proceeds, and more preferably in the range of 350 to 800°C. Below 180℃, the chlorination rate of S1 raw material is too slow, and below 100℃
Even if the temperature is higher than that, no special benefit can be obtained by increasing the temperature.

従来の四塩化珪素と四弗化珪素の再分配反応では十分な
収率を得るためには比較的高温での反応が1必要であっ
たが、本発明方法では、その理由は明確ではないが、よ
り低温で十分な収率を得ることができる。反応系から排
出する生成ガス甲には上記三種のフルオロクロロ7ラン
類とともに少量の四塩化珪素ガスと未反応の四弗化珪素
ガスを含有する。フルオロクロロシラン類だけを捕集す
るためにはまず高沸点の四塩化珪素ガス(沸点57℃)
を除去するため0〜−20℃の冷却トラップを通す。次
に−80〜−110℃の冷却トラップを通してフルオロ
クロロシラン類を捕集する。最後に低沸点の四弗化珪素
ガス(沸点−95℃)を−196℃の冷却トラップで捕
集する。
In the conventional redistribution reaction of silicon tetrachloride and silicon tetrafluoride, one reaction at a relatively high temperature was necessary to obtain a sufficient yield, but in the method of the present invention, although the reason is not clear, , sufficient yields can be obtained at lower temperatures. The generated gas A discharged from the reaction system contains a small amount of silicon tetrachloride gas and unreacted silicon tetrafluoride gas as well as the above three types of fluorochloroheptanaranes. In order to collect only fluorochlorosilanes, first use high boiling point silicon tetrachloride gas (boiling point 57°C).
Pass through a cold trap at 0 to -20°C to remove. Next, the fluorochlorosilanes are collected through a cold trap at -80 to -110°C. Finally, low boiling point silicon tetrafluoride gas (boiling point -95°C) is collected in a -196°C cold trap.

補集したフルオロクロロ7ラン類は低温蒸留あるいは加
圧蒸留などの蒸留操作によF) 5iFC1s、5iy
IC1!並びに5iFsC1に単離できる。
The collected fluorochloro7ranes are subjected to distillation operations such as low temperature distillation or pressure distillation F) 5iFC1s, 5iy
IC1! It can be isolated as well as 5iFsC1.

塩素化と再分配の同時反応の反応式の例としては 81+ 201!+  5iF4− 28iF、(ユ1
 (すf31 + 2012+3SiF、 −481F
、01  (2)3Si+601.+ 5iF4−4S
iFO1,(31が考えらnる。
An example of a reaction formula for simultaneous chlorination and redistribution reaction is 81+201! + 5iF4- 28iF, (U1
(Sf31 + 2012+3SiF, -481F
, 01 (2)3Si+601. +5iF4-4S
iFO1, (31 can be considered.

矢に本発明を実施例で示す。The present invention is illustrated by examples in the arrows.

実施例1 内径34φ、長さ550mの石英管に粒度2×2■〜5
×5W程度の金属珪素を反応に充分な量450F充てん
した。この石英管を管状炉にセットし、入口側よシヘリ
ウムを流しながら昇温し、管内の空気、水分をほぼ完全
にパージしたのち管状炉の温度を700 ℃に設定した
。次に原料ガスとして乾燥塩素ガス8000/min 
、四弗化珪素ガス40 Co/min  および希釈用
としてヘリウム20007ffdnの混合ガスを入口側
エフチャージし、塩素化反応と再分配反応を同時におこ
なった。(MR−8iF4101.=0,5に相当)石
英管出口ガスのうち四塩化珪素ガスは−lO℃のトラッ
プで捕集し、フルオロクロロシラン類は−100℃のト
ラップで捕集した。未反応の四弗化珪素ガスは一196
℃のトラップで捕集した。反応時間は2時間とし、原料
ガスのチャージを停止したのち、石英管内に残存するガ
スを充分にトラップするため、ヘリウムを100 QC
/In1nで2時間流した。反応終了後、 −100℃
のトラップ内に捕集したフルオロクロロシラン類を別の
真空容器に気化させ、生成したフルオロクロロ7ラン類
を測定したところ43.07とな9、原料ガスの四弗化
珪素量と塩素ガス量を四塩化珪素に換算した量との合計
量をペースとした収率は80%であった。また、気化さ
せた混合ガスをガスクロマトグラフィーで分析した結果
、平均的な組成は SiF4      trace であった。
Example 1 Particle size 2 x 2 - 5 in a quartz tube with an inner diameter of 34φ and a length of 550 m
A sufficient amount of metal silicon of approximately 5W was filled at 450F for the reaction. This quartz tube was set in a tube furnace, and the temperature was raised while flowing Sihelium from the inlet side, and after almost completely purging air and moisture inside the tube, the temperature of the tube furnace was set at 700°C. Next, dry chlorine gas 8000/min as raw material gas
A mixed gas of 40 Co/min of silicon tetrafluoride gas and 20007 ffdn of helium for dilution was e-charged on the inlet side, and chlorination reaction and redistribution reaction were performed simultaneously. (Corresponding to MR-8iF4101.=0.5) Of the quartz tube outlet gas, silicon tetrachloride gas was collected in a trap at -10°C, and fluorochlorosilanes were collected in a trap at -100°C. Unreacted silicon tetrafluoride gas is 1196
It was collected in a trap at ℃. The reaction time was 2 hours, and after stopping the charging of the raw material gas, helium was added at 100 QC to sufficiently trap the gas remaining in the quartz tube.
/In1n for 2 hours. After the reaction, -100℃
The fluorochlorosilanes collected in the trap were vaporized in a separate vacuum container, and the resulting fluorochlorosilanes were measured to be 43.07.9 The amount of silicon tetrafluoride and chlorine gas in the raw material gas was The yield based on the total amount including the amount converted to silicon tetrachloride was 80%. Further, as a result of analyzing the vaporized mixed gas by gas chromatography, the average composition was found to be SiF4 trace.

実施例2 MR’i 0.35とし、管状炉の温度を500℃とし
た以外は実施例1と同様にして反応をおこなった。
Example 2 A reaction was carried out in the same manner as in Example 1 except that MR'i was 0.35 and the temperature of the tube furnace was 500°C.

すなわち原料ガスとして乾燥塩素ガス88.9蜂龜n1
四弗化珪素ガス31.Icc/In1n、ヘリウム20
 Cq/minの混合ガスを入口側よシチャージし、反
応させたところ生成したフルオロクロロ7ラン類は41
.3791となジ、前記収率は78チであった。また気
化させた混合ガスをガスクロマトグラフィーで分析した
結果、平均的な組成は SiF4         traceでおった。
That is, dry chlorine gas 88.9 honey n1 as raw material gas
Silicon tetrafluoride gas 31. Icc/In1n, Helium 20
When a mixed gas of Cq/min was charged to the inlet side and reacted, the fluorochloro 7-ranes produced were 41
.. 3791, the yield was 78. Further, as a result of analyzing the vaporized mixed gas by gas chromatography, the average composition was found to be SiF4 trace.

実施例3 粒度zxzm〜5X5■に調整した7エロシリコン(日
1;90%)を用い、乾燥塩素ガス800C/m1ns
四弗化珪素ガス3000/minとする以外は実施例1
と同様に反応をおこなった。その結果2時間反応後の収
率は82チでらった。また得られたガスt−カスクロマ
トグラフィーで分析した結果、平均的な組成は SiF4         traceであった。
Example 3 Using 7erosilicon (day 1; 90%) adjusted to particle size zxzm ~ 5X5■, dry chlorine gas 800C/m1ns
Example 1 except that the silicon tetrafluoride gas was used at 3000/min.
A similar reaction was carried out. As a result, the yield after 2 hours of reaction was 82 cm. Further, as a result of analysis by gas t-cass chromatography, the average composition was found to be SiF4 trace.

〔発明の効果〕〔Effect of the invention〕

本発明によれば金属珪素、珪素合金に塩素ガスと四弗化
珪素ガスを作用させることで容易にフルオロクロロ7ラ
ン類を得ることができ、エネルギー効率もよく、また原
料の導入量制御も容易であシ、極めて工業的に有利にフ
ルオロクロロシラン類を得ることができる。
According to the present invention, it is possible to easily obtain fluorochloroheptadranes by acting chlorine gas and silicon tetrafluoride gas on metallic silicon or a silicon alloy, and the energy efficiency is good, and the amount of raw materials introduced can be easily controlled. Therefore, fluorochlorosilanes can be obtained in a very industrially advantageous manner.

Claims (1)

【特許請求の範囲】[Claims] 金属珪素および/または珪素合金に塩素ガスと四弗化珪
素ガスを作用させ反応させることを特徴とするフルオロ
クロロシラン類SiFnCl_4_−_n(n=1、2
、3)の製造法。
Fluorochlorosilanes SiFnCl_4_-_n (n=1, 2
, 3) manufacturing method.
JP23823684A 1984-11-14 1984-11-14 Preparation of fluorochlorosilane Granted JPS61117112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23823684A JPS61117112A (en) 1984-11-14 1984-11-14 Preparation of fluorochlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23823684A JPS61117112A (en) 1984-11-14 1984-11-14 Preparation of fluorochlorosilane

Publications (2)

Publication Number Publication Date
JPS61117112A true JPS61117112A (en) 1986-06-04
JPH0328371B2 JPH0328371B2 (en) 1991-04-18

Family

ID=17027163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23823684A Granted JPS61117112A (en) 1984-11-14 1984-11-14 Preparation of fluorochlorosilane

Country Status (1)

Country Link
JP (1) JPS61117112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072502A3 (en) * 2002-02-27 2004-02-26 Honeywell Int Inc Preparation of mixed-halogen halo-silanes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072502A3 (en) * 2002-02-27 2004-02-26 Honeywell Int Inc Preparation of mixed-halogen halo-silanes
US7030260B2 (en) 2002-02-27 2006-04-18 Honeywell International Inc. Preparation of mixed-halogen halo-silanes

Also Published As

Publication number Publication date
JPH0328371B2 (en) 1991-04-18

Similar Documents

Publication Publication Date Title
US8043591B2 (en) Process for preparing trichloromonosilane
JPS608969B2 (en) Continuous production method of trichlorosilane
US4986971A (en) Method for production of trichloromonosilane
US3203759A (en) Method of preparing silicon dioxide
EP0123100A1 (en) Process for the manufacture of silicon
JPS6112844B2 (en)
EP0077138A2 (en) Production process of silion tetrachloride
JPS61117112A (en) Preparation of fluorochlorosilane
JP3272689B2 (en) Direct synthesis of methylchlorosilane
JPH01119505A (en) Production of powdery silicon nitride
JPS63233007A (en) Production of chloropolysilane
JPH046104A (en) Production of anhydrous potassium flouride for synthesizing organic fluorine compound
JP6239753B2 (en) Production of trichlorosilane
US11198613B2 (en) Process for producing chlorosilanes using a catalyst selected from the group of Co, Mo, W
JPH10139786A (en) Production of vinyltrichlorosilane
JPS5860609A (en) Preparation of high purity sic
JPH0131454B2 (en)
JPS616109A (en) Manufacture of sic
JP7381605B2 (en) Method for producing trichlorosilane with silicon particles with optimized structure
JP2646228B2 (en) Method for producing silicon nitride powder
JPS61151015A (en) Production of partially substituted fluorosilane
US3153572A (en) Process for the production of niobium pentachloride
JP2024028751A (en) Method of producing trichlorosilane comprising silicon particle of optimized structure
JPS61232215A (en) Production of partially fluorinated silane
JPS6140805A (en) Manufacture of silicon nitride fine powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees