JPH0131454B2 - - Google Patents

Info

Publication number
JPH0131454B2
JPH0131454B2 JP7035380A JP7035380A JPH0131454B2 JP H0131454 B2 JPH0131454 B2 JP H0131454B2 JP 7035380 A JP7035380 A JP 7035380A JP 7035380 A JP7035380 A JP 7035380A JP H0131454 B2 JPH0131454 B2 JP H0131454B2
Authority
JP
Japan
Prior art keywords
trichlorosilane
silicon tetrachloride
hydrogen
volume
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7035380A
Other languages
Japanese (ja)
Other versions
JPS56169119A (en
Inventor
Fukuhiko Suga
Kenji Tomizawa
Shinichiro Kobayashi
Katsumi Ogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP7035380A priority Critical patent/JPS56169119A/en
Publication of JPS56169119A publication Critical patent/JPS56169119A/en
Publication of JPH0131454B2 publication Critical patent/JPH0131454B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、四塩化珪素の部分水素還元反応に
よりトリクロルシランを製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing trichlorosilane by a partial hydrogen reduction reaction of silicon tetrachloride.

一般に、半導体工業において、きわめて重要な
半導体材料であるシリコンは、粗シリコンに塩化
水素を反応させてトリクロルシランを生成し、こ
のトリクロルシランを蒸留精製して高純度トリク
ロルシランとし、これを水素還元することによつ
て製造されている。また、半導体シリコンは、上
記の粗シリコンと塩化水素とを反応させてトリク
ロルシランを生成する際に、副反応生成物として
かなりの量生成する四塩化珪素を、水素還元する
ことによつても製造することができるが、この場
合反応速度が遅く、かつ反応率も低いことから、
この方法は工業的にほとんど採用されておらず、
したがつて、半導体シリコン製造時に副生する四
塩化珪素は余剰となる傾向にある。
In general, silicon, which is an extremely important semiconductor material in the semiconductor industry, is produced by reacting crude silicon with hydrogen chloride to produce trichlorosilane, which is purified by distillation to obtain high-purity trichlorosilane, which is then reduced with hydrogen. It is manufactured by. Semiconductor silicon can also be produced by reducing silicon tetrachloride, which is produced in considerable amounts as a side reaction product, with hydrogen when trichlorosilane is produced by reacting the above-mentioned crude silicon with hydrogen chloride. However, in this case, the reaction rate is slow and the reaction rate is low, so
This method is rarely used industrially,
Therefore, silicon tetrachloride, which is produced as a by-product during the production of semiconductor silicon, tends to be surplus.

このようなことから、四塩化珪素からトリクロ
ルシランを製造する種々の方法が提案され、特に
触媒として、Cu、Ni、Mg−Zn合金、これらの
金属をアルミナに坦持されたもの、Si−Cu合金、
およびSi−Ni合金などを使用し、四塩化珪素を
部分水素還元する方法が知られているが、いずれ
の触媒を使用した場合にも、トリクロルシラン生
成時に副生する塩化水素が前記触媒と反応して金
属塩化物を生成するため、前記触媒の消耗がはげ
しく、長期に亘る使用が不可能であるばかりでな
く、前記金属塩化物がトリクロルシランに混入し
て、その純度を下げ、さらにコスト高の原因とな
る副生する塩化水素の分離除去も必要であるなど
の問題点を有するものであつた。
For this reason, various methods for producing trichlorosilane from silicon tetrachloride have been proposed, and in particular Cu, Ni, Mg-Zn alloys, these metals supported on alumina, Si-Cu alloy,
There is a known method of partially reducing silicon tetrachloride with hydrogen using a Si-Ni alloy, etc.; however, when using either catalyst, hydrogen chloride, which is produced as a by-product during the production of trichlorosilane, reacts with the catalyst. As a result, the catalyst is consumed rapidly, making it impossible to use it for a long period of time, and the metal chloride mixes into trichlorosilane, lowering its purity and increasing costs. This method has problems such as the need to separate and remove hydrogen chloride, which is a by-product and causes the problem.

本発明者等は、上述のような観点から、四塩化
珪素よりトリクロルシランを製造するに際して副
生する塩化水素を速やかに除去すべく研究を行な
つた結果、水素気流中、600〜1100℃の温度範囲
において、水素とのモル比:4〜1/40の範囲
で、四塩化珪素を金属珪素と活性炭の充填層また
は流動層からなる混合層に、前記混合層との接触
時間:1〜300秒の範囲で通過させると、前記活
性炭は、触媒作用を発揮して四塩化珪素の部分水
素還元反応によるトリクロルシランの生成、並び
に副生する塩化水素と共存する金属珪素との結合
反応によるトリクロルシランおよび四塩化珪素の
生成を十分に進行させ、この結果四塩化珪素から
高収率で、かつ塩化水素の副生なく、トリクロル
シランを製造することができるという知見を得た
のである。
From the above-mentioned viewpoint, the present inventors conducted research to quickly remove hydrogen chloride, which is a by-product when producing trichlorosilane from silicon tetrachloride. In a temperature range, silicon tetrachloride is added to a mixed bed consisting of a packed bed or a fluidized bed of metallic silicon and activated carbon at a molar ratio of 4 to 1/40 with hydrogen, and the contact time with the mixed bed is 1 to 300. When the activated carbon is passed for a period of seconds, the activated carbon exerts a catalytic action to produce trichlorosilane through a partial hydrogen reduction reaction of silicon tetrachloride, and trichlorosilane through a bonding reaction with by-produced hydrogen chloride and coexisting metallic silicon. The inventors also found that trichlorosilane can be produced from silicon tetrachloride in a high yield and without by-product of hydrogen chloride by sufficiently promoting the production of silicon tetrachloride.

この発明は上記知見にもとづいてなされたもの
であり、この発明の方法を実施するに当つて、活
性炭および金属珪素は塊状、粒状、および粉末状
のいずれでもよく、またこれらは製造炉内に固定
して充填された状態(充填層形成)、および原料
である四塩化珪素を含む水素気流により流動化さ
れた状態(流動層形成)のいずれの状態で保持さ
れてもよいが、流動層の場合には消耗する金属珪
素を連続的に補給することができ、活性炭の触媒
作用が失なわれるまで連続、かつ長期に亘つての
製造が可能となるので、より望ましい。
This invention has been made based on the above findings, and when carrying out the method of this invention, activated carbon and metallic silicon may be in the form of lumps, particles, or powder, and these may be fixed in the manufacturing furnace. In the case of a fluidized bed, it may be maintained in either a state filled with gas (packed bed formation) or a state fluidized by a hydrogen stream containing silicon tetrachloride as a raw material (fluidized bed formation). This is more desirable because metallic silicon, which is consumed, can be continuously replenished, and production can be carried out continuously and over a long period of time until the catalytic action of activated carbon is lost.

また、混合層における活性炭と金属珪素の混合
割分に特に制限はないが、金属珪素については、
副生する塩化水素と十分に反応し得る量が必要で
あり、流動層の場合には活性炭に対して2倍から
1/10倍の割合で混合すると運転の維持が容易とな
る。
In addition, there is no particular restriction on the mixing ratio of activated carbon and metallic silicon in the mixed layer, but regarding metallic silicon,
A sufficient amount is required to react with by-produced hydrogen chloride, and in the case of a fluidized bed, mixing at a ratio of 2 times to 1/10 times the amount of activated carbon makes it easier to maintain operation.

つぎに、この発明の方法において、反応温度、
水素に対する四塩化珪素のモル比、および接触時
間を上記の通りに限定した理由を説明する。
Next, in the method of this invention, the reaction temperature,
The reason why the molar ratio of silicon tetrachloride to hydrogen and the contact time were limited as described above will be explained.

(a) 反応温度 600℃未満の反応温度では、トリクロルシラ
ンの生成率が悪く、一方1100℃を越えた反応温
度にすると、生成したトリクロルシランが水素
還元されるようになるため、活性炭表面にシリ
コンが析出し、活性炭の触媒作用を著しく低下
させることから、反応温度を600〜1100℃と定
めた。
(a) Reaction temperature At a reaction temperature of less than 600°C, the production rate of trichlorosilane is poor; on the other hand, at a reaction temperature of over 1100°C, the trichlorosilane produced is reduced by hydrogen, so silicon is deposited on the activated carbon surface. The reaction temperature was set at 600 to 1100°C because this precipitates and significantly reduces the catalytic effect of activated carbon.

(b) 水素に対する四塩化珪素のモル比 そのモル比が4を越えると、相対的に水素の
量が少なすぎて、水素還元の進行が急激に遅く
なり、一方1/40未満のモル比では、相対的に
四塩化珪素濃度が希薄になりすぎて、冷却凝固
方式による生成物の水素との分離回収が困難に
なることから、四塩化珪素と水素のモル比を
4:1〜1:40、すなわち4〜1/40の範囲に
定めた。
(b) Molar ratio of silicon tetrachloride to hydrogen When the molar ratio exceeds 4, the amount of hydrogen is relatively too small and the progress of hydrogen reduction is rapidly slowed down, while when the molar ratio is less than 1/40, , the silicon tetrachloride concentration becomes relatively too dilute, making it difficult to separate and recover the product from hydrogen using the cooling solidification method, so the molar ratio of silicon tetrachloride and hydrogen was set to 4:1 to 1:40. , that is, it is set in the range of 4 to 1/40.

(c) 接触時間 四塩化珪素を含む水素と混合層との接触時間
が1秒未満では、所望の高収率を確保すること
ができず、一方300秒を越えた接触時間は工業
的有用さが失なわれることから、その接触時間
を1〜300秒と定めた。
(c) Contact time If the contact time between the hydrogen containing silicon tetrachloride and the mixed layer is less than 1 second, it will not be possible to secure the desired high yield, while if the contact time exceeds 300 seconds, it will not be industrially useful. The contact time was determined to be 1 to 300 seconds.

ついで、この発明の方法を実施例により説明す
る。
Next, the method of the present invention will be explained by way of examples.

実施例 1 四塩化珪素と水素とを1:37のモル比で混合し
た混合ガスを、粒度:65〜200meshの活性炭粉
末:80重量%と同粒度の金属珪素粉末:20重量%
からなる温度:750℃に加熱された混合層に、線
速度:7cm/sec、接触時間:10秒の条件で通過
させて前記混合層を流動化させながら反応を行な
い、ついで、この結果得られた反応生成物を−20
℃に冷却した凝縮器で捕集し、ガスクロマトグラ
フにより分析したところ、四塩化珪素:79容量
%、トリクロルシラン:21容量%からなる組成を
示した。
Example 1 A mixed gas of silicon tetrachloride and hydrogen mixed at a molar ratio of 1:37 was mixed with activated carbon powder of particle size: 65 to 200 mesh: 80% by weight and metallic silicon powder of the same particle size: 20% by weight.
The reaction was carried out while fluidizing the mixed layer by passing it through a mixed layer heated to a temperature of 750°C at a linear velocity of 7 cm/sec and a contact time of 10 seconds. -20
It was collected in a condenser cooled to .degree. C. and analyzed by gas chromatography, which showed a composition consisting of silicon tetrachloride: 79% by volume and trichlorosilane: 21% by volume.

一方、比較の目的で、上記の混合層を上記活性
炭粉末だけで構成する以外は同一の条件で反応を
行なつたところ、四塩化珪素:84容量%、トリク
ロルシラン:8容量%、塩化水素:8容量%から
なる組成を示した。
On the other hand, for the purpose of comparison, a reaction was carried out under the same conditions except that the mixed layer was composed only of the activated carbon powder. Silicon tetrachloride: 84% by volume, trichlorosilane: 8% by volume, hydrogen chloride: It showed a composition consisting of 8% by volume.

さらに、比較の目的で、上記の混合層を上記金
属珪素粉末だけで構成する以外は同一の条件で反
応を行なつたところ、四塩化珪素:86容量%、ト
リクロルシラン:8容量%、塩化水素:6容量%
からなる組成を示した。
Furthermore, for the purpose of comparison, a reaction was carried out under the same conditions except that the above mixed layer was composed only of the above metal silicon powder.Silicon tetrachloride: 86 volume %, trichlorosilane: 8 volume %, hydrogen chloride :6 capacity%
The composition was shown as follows.

実施例 2 四塩化珪素と水素とを1:8.5のモル比で混合
した混合ガスを、粒度:65〜200meshの活性炭粉
末50重量%と同粒度の金属珪素粉末:50重量%か
らなる温度:900℃に加熱された混合層に、線速
度:5cm/sec、接触時間:5秒の条件で通過さ
せて前記混合層を流動化させながら反応を行なつ
た。この結果の反応生成物を−20℃に冷却した凝
縮器で捕集し、ガスクロマトグラフにより分析し
たところ、四塩化珪素:73容量%、トリクロルシ
ラン:27容量%の組成を示した。
Example 2 A mixed gas of silicon tetrachloride and hydrogen mixed at a molar ratio of 1:8.5 was heated to 900 ml of a mixture of 50% by weight of activated carbon powder with a particle size of 65 to 200 mesh and 50% by weight of metallic silicon powder with the same particle size. The mixture was passed through a mixed layer heated to .degree. C. at a linear velocity of 5 cm/sec and a contact time of 5 seconds to carry out the reaction while fluidizing the mixed layer. The resulting reaction product was collected in a condenser cooled to -20°C and analyzed by gas chromatography, which showed a composition of silicon tetrachloride: 73% by volume and trichlorosilane: 27% by volume.

一方、比較の目的で、上記の混合層を上記活性
炭粉末だけで構成する以外は同一の条件で反応を
行なつたところ、四塩化珪素:80容量%、トリク
ロルシラン:11容量%、塩化水素:9容量%から
なる組成を示した。
On the other hand, for the purpose of comparison, a reaction was carried out under the same conditions except that the above mixed layer was composed only of the above activated carbon powder.Silicon tetrachloride: 80% by volume, trichlorosilane: 11% by volume, hydrogen chloride: It showed a composition consisting of 9% by volume.

さらに、比較の目的で、上記の混合層を上記金
属珪素粉末だけで構成する以外は同一の条件で反
応を行なつたところ、四塩化珪素:85容量%、ト
リクロルシラン:10容量%、塩化水素:5容量%
からなる組成を示した。
Furthermore, for the purpose of comparison, a reaction was carried out under the same conditions except that the above mixed layer was composed only of the above metal silicon powder. :5 volume%
The composition was shown as follows.

実施例 3 四塩化珪素と水素とを1:17のモル比で混合し
た混合ガスを、平均直径:約5mmの粒状活性炭:
90重量%と金属珪素:10重量%からなる温度:
800℃に加熱された充填層混合層に、接触時間:
50秒の条件で通過させて反応を行なつた。この結
果の反応生成物を−70℃に冷却された凝縮器で捕
集し、ガスクロマトグラフにより分析したとこ
ろ、四塩化珪素:75容量%、トリクロルシラン:
25容量%の組成を示し、凝縮器出口で塩化水素は
全く検出されなかつた。
Example 3 A mixed gas of silicon tetrachloride and hydrogen at a molar ratio of 1:17 was mixed with granular activated carbon having an average diameter of about 5 mm:
Temperature: 90% by weight and 10% by weight of silicon metal:
Contact time to packed mixed bed heated to 800℃:
The reaction was carried out by passing the sample for 50 seconds. The resulting reaction products were collected in a condenser cooled to -70°C and analyzed by gas chromatography. Silicon tetrachloride: 75% by volume, trichlorosilane:
It showed a composition of 25% by volume, and no hydrogen chloride was detected at the condenser outlet.

一方、比較の目的で、上記の充填混合層を上記
粒状活性炭だけで構成する以外は同一の条件で反
応を行なつたところ、四塩化珪素:83容量%、ト
リクロルシラン:10容量%、塩化水素:7容量%
からなる組成を示した。
On the other hand, for the purpose of comparison, a reaction was carried out under the same conditions except that the packed mixed bed was composed only of the granular activated carbon. Silicon tetrachloride: 83% by volume, trichlorosilane: 10% by volume, hydrogen chloride :7 capacity%
The composition was shown as follows.

さらに、比較の目的で、上記の充填混合層を上
記金属珪素だけで構成する以外は同一の条件で反
応を行なつたところ、四塩化珪素:86容量%、ト
リクロルシラン:9容量%、塩化水素:5容量%
からなる組成を示した。
Furthermore, for the purpose of comparison, a reaction was carried out under the same conditions except that the above-mentioned packed mixed bed was composed only of the above-mentioned metal silicon.Silicon tetrachloride: 86% by volume, trichlorosilane: 9% by volume, hydrogen chloride :5 volume%
The composition was shown as follows.

実施例 4 四塩化珪素と水素とを1:4.25のモル比で混合
した混合ガスを、平均直径:約5mmの粒状活性
炭:70重量%と同約10mmの塊状金属珪素:30重量
%からなる温度:1000℃に加熱された充填混合層
に、接触時間:100秒の条件で通過させて反応を
行なつた。この結果得られた反応生成物を−70℃
に冷却された凝縮器で捕集し、ガスクロマトグラ
フにより分析したところ、四塩化珪素:66容量
%、トリクロルシラン:34容量%からなる組成を
示した。この場合も上記凝縮器出口において、塩
化水素は全く検出されなかつた。
Example 4 A mixed gas of silicon tetrachloride and hydrogen in a molar ratio of 1:4.25 was heated to a temperature consisting of 70% by weight of granular activated carbon with an average diameter of about 5 mm and 30% by weight of lumpy metallic silicon with an average diameter of about 10 mm. : The reaction was carried out by passing it through a packed mixed bed heated to 1000°C for a contact time of 100 seconds. The resulting reaction product was heated at -70°C.
It was collected in a condenser cooled to 100 mL and analyzed by gas chromatography, which showed a composition consisting of silicon tetrachloride: 66% by volume and trichlorosilane: 34% by volume. In this case as well, no hydrogen chloride was detected at the outlet of the condenser.

一方、比較の目的で、上記の充填混合層を上記
塊状活性炭だけで構成する以外は同一の条件で反
応を行なつたところ、四塩化珪素:77容量%、ト
リクロルシラン:13容量%、塩化水素:10容量%
からなる組成を示した。
On the other hand, for the purpose of comparison, a reaction was carried out under the same conditions except that the packed mixed bed was composed only of the above lump activated carbon. Silicon tetrachloride: 77% by volume, trichlorosilane: 13% by volume, hydrogen chloride :10 capacity%
The composition was shown as follows.

さらに、比較の目的で、上記の充填混合層を上
記塊状金属珪素だけで構成する以外は同一の条件
で反応を行なつたところ、四塩化珪素:76容量
%、トリクロルシラン:14容量%、塩化水素:10
容量%からなる組成を示した。
Furthermore, for the purpose of comparison, a reaction was carried out under the same conditions except that the above-mentioned packed mixed layer was composed only of the above-mentioned bulk metallic silicon.Silicon tetrachloride: 76% by volume, trichlorosilane: 14% by volume, Hydrogen: 10
The composition is shown in volume %.

以上の結果から、本発明では、高い収率で、か
つ塩化水素の副生なくトリクロルシランを製造す
ることができるのに対して、比較法では、トリク
ロルシランの収率が相対的に低く、かつ塩化水素
が副生することが明らかである。
From the above results, in the present invention, trichlorosilane can be produced with a high yield and without the by-product of hydrogen chloride, whereas in the comparative method, the yield of trichlorosilane is relatively low and It is clear that hydrogen chloride is produced as a by-product.

上述のように、この発明の方法によれば、種々
の弊害をもたらす塩化水素の副生なく、四塩化珪
素より高純度のトリクロルシランをきわめて収率
よく、かつ低コストで製造することができるので
ある。
As mentioned above, according to the method of the present invention, trichlorosilane with higher purity than silicon tetrachloride can be produced in extremely high yield and at low cost without the by-product of hydrogen chloride which causes various harmful effects. be.

Claims (1)

【特許請求の範囲】[Claims] 1 水素気流中、600〜1100℃の温度範囲におい
て、水素とのモル比:4〜1/40の範囲で、四塩
化珪素を金属珪素と活性炭の充填層または流動層
からなる混合層に、前記混合層との接触時間:1
〜300秒の範囲で通過させることを特徴とするト
リクロルシランの製造法。
1 In a hydrogen gas flow, at a temperature range of 600 to 1100°C, at a molar ratio of 4 to 1/40 with hydrogen, silicon tetrachloride is added to a mixed bed consisting of a packed bed or a fluidized bed of silicon metal and activated carbon, as described above. Contact time with mixed layer: 1
A method for producing trichlorosilane, characterized by passing it in the range of ~300 seconds.
JP7035380A 1980-05-27 1980-05-27 Manufacture of trichlorosilane Granted JPS56169119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7035380A JPS56169119A (en) 1980-05-27 1980-05-27 Manufacture of trichlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7035380A JPS56169119A (en) 1980-05-27 1980-05-27 Manufacture of trichlorosilane

Publications (2)

Publication Number Publication Date
JPS56169119A JPS56169119A (en) 1981-12-25
JPH0131454B2 true JPH0131454B2 (en) 1989-06-26

Family

ID=13428974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7035380A Granted JPS56169119A (en) 1980-05-27 1980-05-27 Manufacture of trichlorosilane

Country Status (1)

Country Link
JP (1) JPS56169119A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062632A1 (en) * 2006-11-21 2008-05-29 Mitsubishi Materials Corporation Trichlorosilane producing apparatus
JP5160181B2 (en) 2006-11-21 2013-03-13 三菱マテリアル株式会社 Trichlorosilane production equipment
KR100984942B1 (en) * 2010-07-27 2010-10-01 전북대학교산학협력단 Catalysts for using in the production of trichlorosilane by the hydrodechlorination of silicon tetrachloride and process for preparing the same

Also Published As

Publication number Publication date
JPS56169119A (en) 1981-12-25

Similar Documents

Publication Publication Date Title
US4500724A (en) Method for making alkylhalosilanes
EP0191502B1 (en) Tin containing activated silicon for the direct reaction
US5871705A (en) Process for producing trichlorosilane
US5654460A (en) Method for production of aklylhalosilanes
EP1680357B1 (en) Method for production of trichlorosilane
JP2543920B2 (en) Method for producing alkylhalosilane
USRE33452E (en) Method for making alkylhalosilanes
JP2003531007A (en) Manufacturing method of contact body
RU2529224C1 (en) Method of producing trichlorosilane and silicon for use in production of trichlorosilane
WO2006031120A1 (en) Method for production of trichlorosilane, method for production of silicon and silicon for use in the production of trichlorosilane
JPS63166892A (en) Method for improving efficiency of production of alkylhalosilane
KR20140138065A (en) Method for preparing methylchlorosilanes
US7153992B2 (en) Process for preparing methylchlorosilanes
JPH0131454B2 (en)
JP3272689B2 (en) Direct synthesis of methylchlorosilane
JPH0259590A (en) Production of organic cholorosilane
JP6239753B2 (en) Production of trichlorosilane
US5625088A (en) Process for preparing dimethyldichlorosilane
JP7381605B2 (en) Method for producing trichlorosilane with silicon particles with optimized structure
US5160720A (en) Metal catalyzed production of tetrachlorosilane
JP3676515B2 (en) Method for producing silicon trichloride
JPH11310585A (en) Production of alkylhalosilane
JP3707875B2 (en) Method for producing silicon trichloride
JP7087109B2 (en) Chlorosilane manufacturing method
JP2024028751A (en) Method for producing trichlorosilane with structure-optimized silicon particles