JPS61116628A - Pyroelectric type infrared sensor and manufacture thereof - Google Patents

Pyroelectric type infrared sensor and manufacture thereof

Info

Publication number
JPS61116628A
JPS61116628A JP59236648A JP23664884A JPS61116628A JP S61116628 A JPS61116628 A JP S61116628A JP 59236648 A JP59236648 A JP 59236648A JP 23664884 A JP23664884 A JP 23664884A JP S61116628 A JPS61116628 A JP S61116628A
Authority
JP
Japan
Prior art keywords
polarized
substrate
pyroelectric
infrared sensor
induced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59236648A
Other languages
Japanese (ja)
Inventor
Yoshiaki Fujiwara
嘉朗 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59236648A priority Critical patent/JPS61116628A/en
Publication of JPS61116628A publication Critical patent/JPS61116628A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Abstract

PURPOSE:To obtain an infrared sensor with an excellent resolution, by a method wherein a substrate with a pyroelectric property is annealed partially to form polarized areas in a matrix after polarizing treatment thereof to keep induced charge by local heat from dispersing through the entire substrate. CONSTITUTION:For example, small poralized areas 12 are arranged criscross in a matrix on a pyroelectric substrate 11 made of LiTaO3 while electrodes are provided on the surface and back sides thereof to perform a polarizing treatment thereof being cooled with the application of a voltage. Then, the non-polarized areas 13 is subjected to an annealing by a laser light to form a pyroelectric type infrared sensor. Then, when infrared rays 22 are applied to the substrate 11, a large amount of electric charge is induced as shown by the curve 21 at the portion of the polarized area 12 in the center thereof while no electric charge induced at the non-polarized area 13. In the polarized area 12 at both ends thereof, a small amount of electric charge is induced. Thus, a large contrast can be obtained to produce an infrared sensor with an excellent resolution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は焦電性を有する物質を用いた赤外線センサに関
し、例えば赤外線像を検知するための二次元の焦電型赤
外線センサおよびその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an infrared sensor using a pyroelectric substance, such as a two-dimensional pyroelectric infrared sensor for detecting an infrared image and a method for manufacturing the same. Regarding.

〔従来の技術〕[Conventional technology]

、 焦電性とは圧電体でかつ強誘電体である物質に現れ
る特有の性質であって、分極処理された基板状に加工さ
れた該物質に熱が加えられ温度が上昇すると該基板の表
面および裏面に電荷を誘起する。
Pyroelectricity is a unique property that appears in materials that are both piezoelectric and ferroelectric.When heat is applied to a material processed into a polarized substrate and the temperature rises, the surface of the substrate changes. and induces a charge on the back side.

この電荷の誘起を利用して赤外線による温度を検出する
ようにしたものが焦電型赤外線センサである。
A pyroelectric infrared sensor uses the induction of this electric charge to detect temperature using infrared rays.

焦電型赤外線センサの焦電基板は、焦電性を有する物質
、例えばタンタル酸すチュウム(LiTaOi)、ニオ
ブ酸すチュウム(liNbO+) 、または圧電セラミ
ック等、を板状の基板に加工し、該基板の表面および裏
面に電極を設け、該電極間に電圧を供給して該基板の表
面および裏面間に高電界を印加し、同時に該基板の温度
を該物質のキエリ一温度以上に上昇した後、高電界を印
加したまま冷却して分極処理することによって得られる
The pyroelectric substrate of a pyroelectric infrared sensor is made by processing a pyroelectric substance, such as tantalum oxide (LiTaOi), niobate (liNbO+), or piezoelectric ceramic, into a plate-like substrate. After providing electrodes on the front and back surfaces of the substrate, applying a voltage between the electrodes to apply a high electric field between the front and back surfaces of the substrate, and at the same time raising the temperature of the substrate to a temperature equal to or higher than the temperature of the material. , obtained by cooling and polarization treatment while applying a high electric field.

第4図に前述の分極処理された焦電型赤外線センサの焦
電基板の斜視図が示される。焦電性を有する物質を加工
した基板10は、分極処理された後、熱が加えられ温度
が上昇すると、第4図のように表面および裏面に電荷1
4および15が誘起される。この電荷を前記分極を介し
て高抵抗で接続すると、抵抗の両端に温度上昇に対応す
る電圧が検出される。
FIG. 4 shows a perspective view of the pyroelectric substrate of the above-mentioned polarized pyroelectric infrared sensor. When the substrate 10, which is made of a pyroelectric substance, is polarized and then heated and the temperature rises, an electric charge of 1 is generated on the front and back surfaces as shown in FIG.
4 and 15 are induced. When this charge is connected with a high resistance through the polarization, a voltage corresponding to a temperature rise is detected across the resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した焦電基板は、従来、単一分極領域のものとして
製造されている。すなわち1つの基板上に、小さい領域
を区切って分極するのではなく、全体として連続した分
極領域を設けている。このような単一分極領域を有する
焦電基板を用いた赤外線センサにおいては、該センサを
二次元のセンサとして赤外線による画像を検出するよう
な場合、熱による表面誘起電荷が基板全域に分散し、画
素と画素の間の分解能が劣化し、画像としての解像度が
得られないという問題点がある。本発明はこの問題点を
解決しようとするものである。
The above-mentioned pyroelectric substrate is conventionally manufactured as having a single polarization region. That is, on one substrate, a continuous polarized region is provided as a whole, rather than dividing the polarized region into small regions. In an infrared sensor using such a pyroelectric substrate having a single polarization region, when the sensor is used as a two-dimensional sensor to detect an infrared image, surface-induced charges due to heat are dispersed over the entire substrate. There is a problem in that the resolution between pixels deteriorates, making it impossible to obtain image resolution. The present invention seeks to solve this problem.

従って、本発明の目的は、赤外線センサにおける焦電性
基板の分極処理において、これを単一分極領域としない
で、分極処理された小さい領域をマトリクス状に配置し
、該小さい領域の境界部分には分極処理されない部分を
設けるという着想に基づき、局部的な熱による誘起電荷
が基板全域に分散しないようにし、分解能の優れた二次
元赤外線センサを得ることにある。
Therefore, an object of the present invention is to arrange polarized small regions in a matrix, rather than forming a single polarized region, in the polarization treatment of a pyroelectric substrate in an infrared sensor, and to The purpose of this method is to provide a two-dimensional infrared sensor with excellent resolution by preventing local heat-induced charges from dispersing over the entire substrate, based on the idea of providing a portion that is not polarized.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の1つは、上記問題点を改善する焦電型赤外線セ
ンサを提供するもので、その手段は、焦電性を有′する
基板を分極処理した後、部分的にアニールし分極領域を
マトリクス状に形成するようにした焦電型赤外線センサ
によってなされる。
One aspect of the present invention is to provide a pyroelectric infrared sensor that improves the above-mentioned problems, and the means thereof includes polarizing a pyroelectric substrate and then partially annealing the polarized region. This is done using a pyroelectric infrared sensor formed in a matrix.

本発明の他の1つは、上記焦電型赤外線センサを製造す
る方法を提供するもので、その手段は、焦電性を有する
基板を分極処理し、該分極処理した焦電性基板を分極領
域がマトリクス状に形成されるように所望の分極領域以
外の部分をレーザ光線を用いてアニールして非分極領域
とする焦電型赤外線センサの製造方法によってなされる
Another aspect of the present invention is to provide a method for manufacturing the above-mentioned pyroelectric infrared sensor, which includes polarizing a pyroelectric substrate, and polarizing the polarized pyroelectric substrate. This is accomplished by a method for manufacturing a pyroelectric infrared sensor in which portions other than the desired polarized regions are annealed using a laser beam to form non-polarized regions so that the regions are formed in a matrix.

〔作 用〕[For production]

前述の手段によれば、焦電型赤外線センサの焦電性基板
は、マトリクス状に配列された小さい分極領域の集合体
から成り、該小さい分極領域の境界部分は非分極領域と
なっており、等価的に絶縁されたものとみなされるから
、局部的な温度変化を受けた場合、対応する個々の分極
領域のみ表面誘起電荷が変化し、その他の領域は変化し
ないで、個々の分極領域に設けた電極に、対応する温度
変化に係る出力値が出力される。これにより二次元の赤
外線センサとして分解能の優れた検出値を得ることがで
きる。
According to the above-mentioned means, the pyroelectric substrate of the pyroelectric infrared sensor is composed of a collection of small polarized regions arranged in a matrix, and the boundary portions of the small polarized regions are non-polarized regions, Since it is considered to be equivalently insulated, when a local temperature change occurs, the surface induced charge changes only in the corresponding individual polarized region, while the other regions remain unchanged. An output value related to the corresponding temperature change is output to the electrode. As a result, detection values with excellent resolution can be obtained as a two-dimensional infrared sensor.

〔実施例〕〔Example〕

本発明の一実施例としての焦電型赤外線センサの焦電基
板の平面図が第1図に、部分断面図が第2図に示される
A plan view of a pyroelectric substrate of a pyroelectric infrared sensor as an embodiment of the present invention is shown in FIG. 1, and a partial cross-sectional view is shown in FIG.

このセンサは焦電基板11を具備し、焦電基板11はマ
トリクス状に縦横に配列された、小さい分極領域12を
具備する。分極領域12でない部分、すなわち境界部分
13は非分極領域である。
The sensor comprises a pyroelectric substrate 11, which comprises small polarized regions 12 arranged horizontally and vertically in a matrix. The portion other than the polarized region 12, that is, the boundary portion 13, is a non-polarized region.

図においては縦横に配列された分極領域12は一部記載
を省略しているが、縦横の配列数は任意の値をとること
ができる。分極領域12は温度変化に対応して電荷が、
その表面に誘起される。第1図においては一例として正
電荷14が記載されているが、裏側の面には逆極性の電
荷が誘起される。
Although some of the polarized regions 12 arranged vertically and horizontally are omitted in the figure, the number of polarized regions 12 arranged vertically and horizontally can take any value. The polarized region 12 changes in charge in response to temperature changes.
induced on its surface. Although positive charges 14 are shown as an example in FIG. 1, charges of opposite polarity are induced on the back surface.

正電荷14の図中の記載は一部の分極領域にとどめ、他
は省略している。非分極領域は焦電性を示さないから非
分極領域13で分割された分極領域12は互いに絶縁さ
れた個々の複数個の分極領域の存在と等価と考えられる
The description of the positive charges 14 in the figure is limited to some polarized regions, and other regions are omitted. Since the non-polarized region does not exhibit pyroelectricity, the polarized region 12 divided by the non-polarized region 13 is considered to be equivalent to the existence of a plurality of individual polarized regions that are insulated from each other.

第2図の部分断面図は局部的に赤外線22が焦電基板1
1に加えられた場合の電荷の誘起量の一例を図示するも
のである。中央に配置された分極領域12の部分に赤外
線22が加えられると、曲線21に示すように中央の分
極領域12の部分には多量の電荷が誘起され、非分極領
域13には電荷が誘起されず、両端の分極領域12には
少量の電荷が誘起され、コントラストが大きくとれる。
In the partial cross-sectional view of FIG. 2, the infrared rays 22 locally
1 is a diagram illustrating an example of the amount of induced charge when added to 1. When infrared rays 22 are applied to the centrally located polarized region 12, a large amount of charge is induced in the central polarized region 12, and a large amount of charge is induced in the non-polarized region 13, as shown by the curve 21. First, a small amount of charge is induced in the polarized regions 12 at both ends, and a large contrast can be obtained.

一方従来例の単一分極を用いた焦電基板においては、第
5図に示されるように、非分極領域が介在しないため局
部的な加熱によって曲線41に示すようなほぼ正規分布
に近い幅広い、すなわち分解能の劣る電荷分布となる。
On the other hand, in the conventional pyroelectric substrate using single polarization, as shown in FIG. In other words, the charge distribution has poor resolution.

次に上述の第1図のセンサの製造方法について説明する
。まず、例えばLiTa0z  、LiNb0+または
圧電セラミック等の焦電性を示す材料を板状に加工しシ
、焦電体基板を作る。次いで、焦電体基板上の分極領域
を設ける位置の表面側および裏面側に電極を設ける。こ
の表面側の電極をすべて接続し、同様に接続された裏面
側の電極との間に電圧を印加する。電圧を印加した状態
で該材料のキュリ一温度以上に該基板を加熱する。電圧
を印加した状態のままで冷却する。これにより該基板の
分極が行われる。次に非分極領域を形成するため、単一
分極状態となっている該基板のマトリクス状分極領域を
形成しない部分(第1図における参照数字13で示され
る部分)にレーザ光線を照射しレーザ光線の熱により該
部分の温度を該基板のキュリ一温度以上とする。この際
、前期電極間に電界は印加しないで行われる。引続き電
界を印加しないで該基板を冷却すればレーザ光線による
アニール処理が完了し、非分極領域13が形成される。
Next, a method of manufacturing the above-mentioned sensor shown in FIG. 1 will be explained. First, a pyroelectric substrate is fabricated by processing a pyroelectric material such as LiTaOz, LiNbO+, or piezoelectric ceramic into a plate shape. Next, electrodes are provided on the front and back sides of the pyroelectric substrate at positions where polarized regions are to be provided. All the electrodes on the front surface are connected, and a voltage is applied between them and the similarly connected electrodes on the back surface. The substrate is heated to a temperature equal to or higher than the Curie temperature of the material while a voltage is applied. Cool with the voltage applied. This polarizes the substrate. Next, in order to form a non-polarized region, a laser beam is irradiated onto a portion of the substrate that is in a single polarized state that does not form a matrix polarized region (the portion indicated by reference numeral 13 in FIG. 1). The temperature of the portion is raised to the Curie temperature of the substrate or higher. At this time, an electric field is not applied between the first electrodes. If the substrate is subsequently cooled without applying an electric field, the annealing process using the laser beam is completed and the non-polarized region 13 is formed.

レーザ光線のスポットは10マイクロメートル程度の直
径であり、精度の高いマトリクス状分極領域12を形成
することができる。第3図にはレーザ光線30が照射さ
れ、基板11が加熱される態様が示される。曲線31は
レーザによる熱の分布を示す。
The laser beam spot has a diameter of about 10 micrometers, and can form a matrix-like polarized region 12 with high precision. FIG. 3 shows how the substrate 11 is heated by being irradiated with a laser beam 30. Curve 31 shows the distribution of heat due to the laser.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、局部的な熱による誘起電荷が焦電性基
板全域に分散しないようにすることができ、分解能の優
れた二次元赤外線センサを得ることができる。
According to the present invention, it is possible to prevent local heat-induced charges from dispersing over the entire pyroelectric substrate, and it is possible to obtain a two-dimensional infrared sensor with excellent resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての焦電型赤外線センサ
の焦電基板の平面図、第2図は第1図の焦電基板の部分
断面図、第3図は第1図の焦電基板をレーザ#、J本よ
り加工する際の熱の分布を示す図、第4図は従来形の焦
電型赤外線センサの焦電基板の斜視図、および第5図は
第4図の焦電基板の部分断面図である。 io 、 ti・・・焦電基板、 12・・・分極領域、 13・・・非分極領域、 14 、15・・・電荷、 22・・・赤外線、 30・・・レーザ光線。
1 is a plan view of a pyroelectric substrate of a pyroelectric infrared sensor as an embodiment of the present invention, FIG. 2 is a partial sectional view of the pyroelectric substrate of FIG. 1, and FIG. Figure 4 is a perspective view of the pyroelectric substrate of a conventional pyroelectric infrared sensor, and Figure 5 is a diagram showing the distribution of heat when processing an electric substrate with lasers # and J. FIG. 3 is a partial cross-sectional view of the electric board. io, ti...pyroelectric substrate, 12...polarized region, 13...non-polarized region, 14, 15...charge, 22...infrared rays, 30...laser beam.

Claims (1)

【特許請求の範囲】 1、焦電性を有する基板を分極処理した後、部分的にア
ニールし分極領域をマトリクス状に形成するようにした
焦電型赤外線センサ。 2、焦電性を有する基板を分極処理し、該分極処理した
焦電性基板を分極領域がマトリクス状に形成されるよう
に所望の分極領域以外の部分をレーザ光線を用いてアニ
ールして非分極領域とする焦電型赤外線センサの製造方
法。
[Claims] 1. A pyroelectric infrared sensor in which a pyroelectric substrate is polarized and then partially annealed to form polarized regions in a matrix. 2. Polarize a pyroelectric substrate, and anneal the portions of the polarized pyroelectric substrate other than the desired polarized regions using a laser beam so that the polarized regions are formed in a matrix. A method for manufacturing a pyroelectric infrared sensor with a polarized region.
JP59236648A 1984-11-12 1984-11-12 Pyroelectric type infrared sensor and manufacture thereof Pending JPS61116628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59236648A JPS61116628A (en) 1984-11-12 1984-11-12 Pyroelectric type infrared sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59236648A JPS61116628A (en) 1984-11-12 1984-11-12 Pyroelectric type infrared sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61116628A true JPS61116628A (en) 1986-06-04

Family

ID=17003728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59236648A Pending JPS61116628A (en) 1984-11-12 1984-11-12 Pyroelectric type infrared sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61116628A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461618A (en) * 1987-09-01 1989-03-08 Nippon Ceramic Kk Pyroelectric element
EP0345047A2 (en) * 1988-06-01 1989-12-06 THORN EMI plc Thermal imaging device
EP1108997A2 (en) * 1999-12-17 2001-06-20 Matsushita Electric Works, Ltd. Infrared ray receiving element and infrared ray sensor using the same
US6264859B1 (en) 1986-10-03 2001-07-24 Ppg Industries Ohio, Inc. Optically transparent UV-protective coatings
WO2014021701A1 (en) 2012-07-31 2014-02-06 Universidad Nacional Autónoma de México Device for sensing elastomechanical pulse disturbances

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264859B1 (en) 1986-10-03 2001-07-24 Ppg Industries Ohio, Inc. Optically transparent UV-protective coatings
US6355189B1 (en) 1986-10-03 2002-03-12 Ppg Industries Ohio, Inc. Optically transparent UV-protective coatings
JPS6461618A (en) * 1987-09-01 1989-03-08 Nippon Ceramic Kk Pyroelectric element
EP0345047A2 (en) * 1988-06-01 1989-12-06 THORN EMI plc Thermal imaging device
EP1108997A2 (en) * 1999-12-17 2001-06-20 Matsushita Electric Works, Ltd. Infrared ray receiving element and infrared ray sensor using the same
US6399947B2 (en) 1999-12-17 2002-06-04 Matsushita Electric Works, Ltd. Infrared ray receiving element and infrared ray sensor using the same
EP1108997A3 (en) * 1999-12-17 2003-10-08 Matsushita Electric Works, Ltd. Infrared ray receiving element and infrared ray sensor using the same
WO2014021701A1 (en) 2012-07-31 2014-02-06 Universidad Nacional Autónoma de México Device for sensing elastomechanical pulse disturbances

Similar Documents

Publication Publication Date Title
US5008541A (en) Monolithic detection or infrared imaging structure and its production process
JPS61116628A (en) Pyroelectric type infrared sensor and manufacture thereof
US3932753A (en) Pyroelectric device with coplanar electrodes
US3885301A (en) Pyroelectric element of polymer film
JPH03502501A (en) Improved ridge array light valve device
JPS6165219A (en) Heat image sensor
US5310511A (en) Method and apparatus for poling a planar polarizable body
US4241421A (en) Solid state imaging apparatus
US5095215A (en) Thermal ir detector electrode configuration
JPS5950084B2 (en) Electret sense device with temperature and stress compensation
Zakharov et al. Possibilities of the practical use of a stationary strain gradient in the interelectrode volume of unpolarized ferroceramic plates
US3740118A (en) Self strain biased ferroelectricelectrooptics
JPH03194516A (en) Liquid crystal display element
JPH04142783A (en) Organic conversion element and manufacture thereof
JPS619890A (en) Magnetic device
JPS61182015A (en) Optical shutter array
JP3114235B2 (en) Pyroelectric array sensor
US2986717A (en) Thermistor bolometers
JPH0237704B2 (en)
JPH02236128A (en) Heat image generator
JPS6130268Y2 (en)
SU905660A2 (en) Pyroelectric radiation receiver
JP3214216B2 (en) Pyroelectric and light sensors
JPS61231421A (en) Infrared detection element
JP3620429B2 (en) Pyroelectric element manufacturing method