JPS61116258A - Cryostat - Google Patents

Cryostat

Info

Publication number
JPS61116258A
JPS61116258A JP23674784A JP23674784A JPS61116258A JP S61116258 A JPS61116258 A JP S61116258A JP 23674784 A JP23674784 A JP 23674784A JP 23674784 A JP23674784 A JP 23674784A JP S61116258 A JPS61116258 A JP S61116258A
Authority
JP
Japan
Prior art keywords
liquid
liquid tank
tank
helium
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23674784A
Other languages
Japanese (ja)
Other versions
JPH0144985B2 (en
Inventor
純平 湯山
藤井 宗明
洋幸 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP23674784A priority Critical patent/JPS61116258A/en
Publication of JPS61116258A publication Critical patent/JPS61116258A/en
Publication of JPH0144985B2 publication Critical patent/JPH0144985B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主として液体ヘリウム温度で試料の構造、物性
値等を測定するに使用されるクライオスタットに関り−
る。。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a cryostat used primarily to measure the structure, physical properties, etc. of a sample at liquid helium temperature.
Ru. .

(従来の技術) 従来、試料のX線解析、フA[−ルミネッレンス測定、
ボール測定、電気伝導度測定、t4i化測定、帯磁率測
定、ESR測定、NMR測定、比熱測定、熱伝導度測定
、超音波減衰測定等に於いては、室温で試料を取付けし
たのち液体ヘリウム温度にまでクライオスタットにより
冷却して行なわれる。この場合液体ヘリウムは試料の測
定の都度液体窒素等で予冷されたクライオスタットの液
槽に注入される。
(Prior art) Conventionally, X-ray analysis of a sample, luminescence measurement,
In ball measurement, electrical conductivity measurement, T4I measurement, magnetic susceptibility measurement, ESR measurement, NMR measurement, specific heat measurement, thermal conductivity measurement, ultrasonic attenuation measurement, etc., the sample is mounted at room temperature and then the liquid helium temperature is The process is carried out using a cryostat. In this case, liquid helium is injected into a cryostat liquid tank pre-cooled with liquid nitrogen or the like each time a sample is measured.

(発明が解決しようとする問題点) 液体窒素で77Kにまで予冷したクライオスタットの液
槽に液体ヘリウムを注入する場合、該液槽の温度が液体
ヘリウムの液温即ち4.2Kに達するまでの間、注入さ
れる液体ヘリウムは気化して該液槽から外部へ放散する
。該液槽はヘリウムガスの冷気によってその上方から次
第に冷却され、4.2Kになると注入される液体ヘリウ
ムが該液槽内に溜るようになる。外部から液槽への熱流
入を小さく抑えるため外部に連なる液体ヘリウムの流通
管を熱伝導率の小さなステンレス鋼で製作し、これどの
接続のために液槽も熱伝導率の小さなステンレス鋼で製
作するを一般とするが、液槽の熱伝導率が悪いのでその
全体が液体ヘリウムを貯める温度となるまで艮時間掛り
、その間にd:入される液体ヘリウムは次々と気化する
ため該液槽の容積の約2〜3倍程度の液体ヘリウムを要
し、無駄が多くなる不都合がある。
(Problems to be Solved by the Invention) When liquid helium is injected into the liquid tank of a cryostat that has been precooled to 77K with liquid nitrogen, until the temperature of the liquid tank reaches the liquid temperature of liquid helium, that is, 4.2K. The injected liquid helium is vaporized and diffused from the liquid tank to the outside. The liquid tank is gradually cooled from above by cold helium gas, and when the temperature reaches 4.2 K, the injected liquid helium begins to accumulate in the liquid tank. In order to minimize heat inflow from the outside into the liquid tank, the liquid helium flow pipe connected to the outside is made of stainless steel with low thermal conductivity, and the liquid tank is also made of stainless steel with low thermal conductivity for all connections. However, since the thermal conductivity of the liquid tank is poor, it takes a long time for the entire tank to reach the temperature at which liquid helium can be stored. This requires liquid helium approximately 2 to 3 times the volume, which is disadvantageous in that it results in a large amount of waste.

本発明は、液体ヘリウム等の超低温流体を無駄なく短時
間で充填出来るクライオスタットを得ることを目的とす
るものである。
An object of the present invention is to obtain a cryostat that can be filled with a cryogenic fluid such as liquid helium in a short time without waste.

(問題点を解決するための手段) 本発明では、液体ヘリウム等の超低温流体が流通管を介
して導入される液槽を設けるようにしたものに於いて、
該液槽をアルミニウム合金等の熱伝導率の大きい材料に
て製作し、これにジヨイントを介してステンレス鋼等の
熱伝導率の小さい材料で製作した流通管を接続するよう
にした。
(Means for Solving the Problems) In the present invention, a liquid tank is provided in which an ultra-low temperature fluid such as liquid helium is introduced through a flow pipe.
The liquid tank is made of a material with high thermal conductivity such as an aluminum alloy, and a flow pipe made of a material with low thermal conductivity such as stainless steel is connected to this via a joint.

(作 用) 試料が設置され液体窒素でクライオスタットの液槽が予
冷されると液体ヘリウムが流通管を介して液槽内に注入
される。その注入当初は液槽の温度が液体窒素の温度の
77に以下に冷却されないので注入される液体ヘリウム
は気化し、該液槽の上方のみがヘリウムガスの冷気で7
7に以下に冷却されるだけであるが、該液槽は熱伝導率
の大きいアルミニウム合金等で形成されているのでヘリ
ウムガスに接触しない液槽の下方の温度も迅速に低下し
、液体ヘリウムが液状に溜まる4、2Kにまで短時間に
冷却することが出来る。該液槽と同。じ熱伝導率が大き
い材料で流通管を形成すると熱が流入し易くなるが、該
流通管をステンレス鋼等の熱伝導率の小さい材料で形成
し、これをアルミニウム、スインレス鋼ジヨイント等の
ジヨイントで液槽に接続することにより該液槽へ流通管
を介して流入する熱量を減少させ得、液体ヘリウムを充
填するまでに該液槽を冷却するに要する時間を大幅に短
縮出来る。
(Operation) When the sample is installed and the cryostat tank is pre-cooled with liquid nitrogen, liquid helium is injected into the tank via the flow pipe. At the beginning of the injection, the temperature of the liquid tank is not cooled below the temperature of liquid nitrogen, so the injected liquid helium vaporizes, and only the upper part of the liquid tank is filled with cold helium gas.
However, since the liquid tank is made of aluminum alloy or the like with high thermal conductivity, the temperature below the liquid tank, which does not come into contact with helium gas, decreases rapidly, and the liquid helium It can be cooled in a short time to 4.2K, where it remains in liquid form. Same as the liquid tank. If the flow pipe is made of a material with high thermal conductivity, heat will easily flow in, but if the flow pipe is made of a material with low thermal conductivity such as stainless steel, and this is made of a material with low thermal conductivity such as stainless steel, and this is made of a material with a joint such as aluminum or stainless steel joint. By connecting to a liquid tank, the amount of heat flowing into the liquid tank via the flow pipe can be reduced, and the time required to cool the liquid tank before filling it with liquid helium can be significantly shortened.

(実施例) 本発明の実施例を図面により説明すると、(1)はクラ
イオスタット、(2)はクライオスタット(1)の外筺
でその内部は真空ポンプにより真空排気される。(3)
はクライオスタット(1)の内部に設けたアルミニウム
合金製の環状の液槽で、これに5US−Alジヨイント
(4)を介して接続したステンレス[1の流通管(5)
 (6)のいずれか一方から液体ヘリウム等の超低温流
体が注入される。(7)は前記液槽(3)と外筐(2)
との間に設けられた環状の予冷槽を示し、該予冷槽(7
)内には外筐(2)を挿通して外部へ伸びる配管(8)
 (9)を介して液体窒素が導入される。1Gは環状の
液槽(3)及び予冷槽(Dの中心を挿通して設けた支軸
で、その中間にサーマルアンカー(In(121を設け
、その先端に試料を取付ける1Jンブルホルダ(′13
を設けるようにした。
(Example) An example of the present invention will be described with reference to the drawings. (1) is a cryostat, and (2) is an outer casing of the cryostat (1), the inside of which is evacuated by a vacuum pump. (3)
is an annular liquid tank made of aluminum alloy installed inside the cryostat (1), and a stainless steel flow pipe (5) connected to this via a 5US-Al joint (4).
A cryogenic fluid such as liquid helium is injected from either one of (6). (7) is the liquid tank (3) and outer casing (2)
shows an annular pre-cooling tank provided between the pre-cooling tank (7
) is a pipe (8) that passes through the outer casing (2) and extends to the outside.
Liquid nitrogen is introduced via (9). 1G is a support shaft inserted through the centers of the annular liquid tank (3) and pre-cooling tank (D), and a thermal anchor (In (121) is installed between them, and a 1J bracket holder ('13) is installed at the tip of which the sample is attached.
.

該ナンプルホルダa3の周囲を液槽(3)に着脱自在に
設けたカバー〇LDで覆い、さらにその外周を予冷In
 (7)らに首1B2白右に取イー1けたカバー09で
覆うようにし、リンプルボルダa3への試料の着脱に際
しては各カバー(1Φ09及び外筺(2)の底板0eを
取外して行なうようにした。
The circumference of the sample holder a3 is covered with a cover LD which is removably attached to the liquid tank (3), and the outer periphery is covered with a pre-cooled In.
(7) In addition, the neck 1B2 was covered with a cover 09 with a single digit on the white right side, and each cover (1Φ09 and the bottom plate 0e of the outer casing (2) were removed when attaching and detaching the sample to the rimple boulder a3. .

図示の例eは予冷槽(7) ’bアルミニウム合金で製
作し、これに5US−Aj!ジヨイント(+7)を介し
てステンレス鋼製の配管(8) (9)に接続するよう
にした。
The illustrated example e is made of pre-cooling tank (7) 'b aluminum alloy, and 5US-Aj! It was connected to stainless steel pipes (8) and (9) via joints (+7).

尚、熱伝導率の大きい銅で液槽(3)を製作するように
してもよく、液槽(3)の形状は環状に限らず第2図示
のような流通管(5)の届かない四部t’+eを有する
場合もある。この場合は本発明の効果が著しく発揮され
る。
Note that the liquid tank (3) may be made of copper, which has high thermal conductivity, and the shape of the liquid tank (3) is not limited to an annular shape, but may be made of four parts that cannot be reached by the flow pipe (5) as shown in the second figure. It may also have t'+e. In this case, the effects of the present invention are significantly exhibited.

第1図示の例に於いて、外筐(2)の底板(le及びカ
バー(IΦ(+51を取外し、サンプルホルダ(13に
試料を取付け、再び底板ae及びカバーaΦa9を取付
けたのち内部を真空排気し、液槽(3)及び予冷槽(7
)に液体窒素を注入する。これにより液槽(3)が77
Kに予冷されると液槽(3)内の液体窒素を排出し、液
体ヘリウムが該液槽(3)に流通管(5)から注入され
る。液体ヘリウムはその注入当初77にの液槽(3)に
より気化し、気化ガスは流通管(6)を介して外部に放
散するが、気化ガスに触れる部分の液槽(3)は次第に
低温化する。而して該液槽(3)は熱伝導率の大きいア
ルミニウム合金であるので気化ガスに触れない部分の熱
も迅速に奪われ、しかも流通管(5) (6)は熱転3
41の小さいステンレス鋼であるのでこれを介して液槽
(3)に熱が伝わり難く、液槽(3)全体の温麿低下が
速くなり、4.2Kに近くなると内部に液化ヘリウムが
溜り始め、試料が4.2Kに冷部されると各種の実験が
開始される。
In the example shown in the first figure, remove the bottom plate (le) and cover (IΦ(+51) of the outer casing (2), attach the sample to the sample holder (13), attach the bottom plate ae and cover aΦa9 again, and then evacuate the inside. and liquid tank (3) and pre-cooling tank (7
) is injected with liquid nitrogen. As a result, the liquid tank (3) becomes 77
After being precooled to K, the liquid nitrogen in the liquid tank (3) is discharged, and liquid helium is injected into the liquid tank (3) from the flow pipe (5). The liquid helium is vaporized in the liquid tank (3) at 77 at the beginning of its injection, and the vaporized gas is dissipated to the outside through the flow pipe (6), but the temperature of the liquid tank (3) in the part that comes into contact with the vaporized gas gradually decreases. do. Since the liquid tank (3) is made of an aluminum alloy with high thermal conductivity, heat is quickly removed from the parts that do not come into contact with the vaporized gas, and the flow pipes (5) and (6) are made of an aluminum alloy with high thermal conductivity.
Since it is a small stainless steel of 4.1K, it is difficult for heat to be transferred to the liquid tank (3) through it, and the temperature of the entire liquid tank (3) decreases quickly, and when the temperature approaches 4.2K, liquefied helium begins to accumulate inside. When the sample was cooled to 4.2K, various experiments were started.

具体的にはステンレス鋼で流通管(5) (6)を製作
し容積3.7aのアルミニウム合金製の液槽(3)に液
体窒素を注入して77Kに予冷したのち該液恰(3)に
液体ヘリウムを移送したところ、約18分で液槽(3)
に液体ヘリウl\の充填が終了した。これに要した液体
ヘリウムは5.8Qであり、2.2Qが液槽(3)の冷
却に消費された。従来のステンレス鋼製の液槽の場合に
比べ充填時間は2分の1であり冷却にa′i貸される液
体ヘリウムのfは15分の1となり、実験等の能率が高
まり、液体ヘリウム涜費mが少ないので経済的である。
Specifically, flow pipes (5) and (6) were made of stainless steel, liquid nitrogen was injected into an aluminum alloy liquid tank (3) with a volume of 3.7a, and the liquid nitrogen was precooled to 77K. When liquid helium was transferred to tank (3), it took about 18 minutes to
The filling of liquid helium was completed. The liquid helium required for this was 5.8Q, and 2.2Q was consumed for cooling the liquid tank (3). Compared to conventional stainless steel liquid tanks, the filling time is 1/2, and the amount of liquid helium used for cooling is 1/15, increasing the efficiency of experiments and reducing the cost of liquid helium. It is economical because m is small.

液lf’! (3)をアルミニウム合金製どすれば軽量
になり放射熱や放出ガスも少なく、非磁性であるので磁
場も乱さず右利である。
Liquid lf'! If (3) is made of aluminum alloy, it will be lightweight, emit less radiant heat and gas, and since it is non-magnetic, it will not disturb the magnetic field.

(発明の効果) このように本発明によるときは、液槽を熱伝導率の大き
い材料で形成し、これにジヨイントを介して接続される
超低温流体の流通管を熱伝導率の小さい材料で形成した
ので超低温流体を液槽に充!2する場合に迅速に液槽を
冷却出来、短時間でしかも超低温流体のロスを少なく充
填することが出来、クライオスタットの使用効率と経済
性を向上させ得る効果がる。
(Effects of the Invention) According to the present invention, the liquid tank is formed of a material with high thermal conductivity, and the flow pipe for ultra-low temperature fluid connected to this via a joint is formed of a material with low thermal conductivity. So I filled the liquid tank with ultra-low temperature fluid! In the case of 2, the liquid tank can be quickly cooled and filled with ultra-low temperature fluid in a short time with less loss, which has the effect of improving the usage efficiency and economic efficiency of the cryostat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の截断側面図、第2図は液槽の
変形例の截断斜視図である。 (3)・・・液!      (4)・・・ジヨイント
(4) (5)・・・流通管
FIG. 1 is a cutaway side view of an embodiment of the present invention, and FIG. 2 is a cutaway perspective view of a modified example of the liquid tank. (3)...liquid! (4)...Joint (4) (5)...Flow pipe

Claims (1)

【特許請求の範囲】[Claims] 液体ヘリウム等の超低温流体が流通管を介して導入され
る液槽を設けるようにしたものに於いて、該液槽をアル
ミニウム合金等の熱伝導率の大きい材料にて製作し、こ
れにジョイントを介してステンレス鋼等の熱伝導率の小
さい材料で製作した流通管を接続することを特徴とする
クライオスタット。
When a liquid tank is provided in which an ultra-low temperature fluid such as liquid helium is introduced through a flow pipe, the liquid tank is made of a material with high thermal conductivity such as an aluminum alloy, and a joint is attached to the liquid tank. A cryostat characterized by connecting a flow pipe made of a material with low thermal conductivity such as stainless steel through a pipe.
JP23674784A 1984-11-12 1984-11-12 Cryostat Granted JPS61116258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23674784A JPS61116258A (en) 1984-11-12 1984-11-12 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23674784A JPS61116258A (en) 1984-11-12 1984-11-12 Cryostat

Publications (2)

Publication Number Publication Date
JPS61116258A true JPS61116258A (en) 1986-06-03
JPH0144985B2 JPH0144985B2 (en) 1989-10-02

Family

ID=17005185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23674784A Granted JPS61116258A (en) 1984-11-12 1984-11-12 Cryostat

Country Status (1)

Country Link
JP (1) JPS61116258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271038A (en) * 2006-03-31 2007-10-18 Honda Motor Co Ltd Transmission change mechanism
US7318360B2 (en) 2002-01-23 2008-01-15 Ikeya Formula Co., Ltd. Gear shift lever operating mechanism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318360B2 (en) 2002-01-23 2008-01-15 Ikeya Formula Co., Ltd. Gear shift lever operating mechanism
JP2007271038A (en) * 2006-03-31 2007-10-18 Honda Motor Co Ltd Transmission change mechanism

Also Published As

Publication number Publication date
JPH0144985B2 (en) 1989-10-02

Similar Documents

Publication Publication Date Title
Ekin Experimental techniques for low-temperature measurements: cryostat design, material properties and superconductor critical-current testing
US5508613A (en) Apparatus for cooling NMR coils
US20060225437A1 (en) Ultracryostat and frigidity supplying apparatus
EP0334382B1 (en) Magnet apparatus for use in magnetic resonance imaging system
Ishimoto et al. Two-stage nuclear demagnetization refrigerator reaching 27 µK
JPS61116258A (en) Cryostat
JPH02131143A (en) Low temperature physical property testing device
JPH10313135A (en) High-temperature superconductor magnetic shielding device
JPS59224187A (en) Exciting leading conductor unit for superconductive unit andparticularly magnet
JPH1197754A (en) Cryogenic vessel for housing superconducting quantum interference device
Bunkov et al. A compact dilution refrigerator with vertical heat exchangers for operation to 2 mK
JPH05267728A (en) Cryostat
JP3084046B2 (en) Weak magnetic field detection device with cooling device
Skyba et al. Košice nuclear demagnetization refrigerator
JPH07333311A (en) Nuclear magnetic resonance device
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
Hensel The nuclear refrigeration of copper
Reinders et al. Novel top-loading 20 mK/15 T cryomagnetic system
Haase et al. A brute force polarized target for neutron scattering experiments
JPH05264693A (en) Superconducting magnetic shield vessel
JP4906703B2 (en) Superconducting magnet device
JP2582377B2 (en) Low temperature physical property measurement device
Campbell et al. A continuous flow cooling unit for ESR experiments over the temperature range 3.7-300K
Puls He3 cryostat for steady state nuclear magnetic resonance measurements in metals
JP2893210B2 (en) Cryostat for high temperature superconducting magnetic shield

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees