JPS6111575A - Heat pump - Google Patents

Heat pump

Info

Publication number
JPS6111575A
JPS6111575A JP13167584A JP13167584A JPS6111575A JP S6111575 A JPS6111575 A JP S6111575A JP 13167584 A JP13167584 A JP 13167584A JP 13167584 A JP13167584 A JP 13167584A JP S6111575 A JPS6111575 A JP S6111575A
Authority
JP
Japan
Prior art keywords
gas
generator
compressor
heat
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13167584A
Other languages
Japanese (ja)
Inventor
誠二 佐藤
彰 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP13167584A priority Critical patent/JPS6111575A/en
Publication of JPS6111575A publication Critical patent/JPS6111575A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分軒〕 本発明はエネルギーの有効利用を図9得るようにしたヒ
ートポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applications] The present invention relates to a heat pump capable of effectively utilizing energy.

〔従来の技術〕[Conventional technology]

従来、80℃程度の工場廃熱は冷凍機で吸収してすてて
いた。しかし、エネルギーの有効利用の観点からは好ま
しく々かった。
Conventionally, factory waste heat of around 80°C was absorbed and discarded using refrigerators. However, this was not favorable from the viewpoint of effective energy use.

〔発明が解決I〜ようとする問題点〕[Problems that the invention attempts to solve]

本発明は80℃程度の工場廃熱を利用して廃熱よシも高
温の熱を再生し、エネルギーの有効利用を図るべくなし
たものである。
The present invention utilizes factory waste heat of approximately 80° C. to regenerate heat of a higher temperature than the waste heat, thereby making effective use of energy.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は液状アンモニア化合物を廃熱源を利用して加熱
しNH3ガスを発生させるNH3発生器と、該NH3発
生器で発生したNH3ガスを加圧する圧縮機と、該圧縮
機で圧縮したNH3ガスを冷却して凝縮させ液化NH3
にするNH3凝縮機と、液化NH3を廃熱源を利用して
加熱し、蒸発させるNH3蒸発器と、該NH3蒸発器で
蒸発したNH3ガスを加圧する圧縮機と、該圧縮機で圧
縮したNH3ガスを前記NH3発生器でNH3ガスが発
生させられて塩が高濃度に々つだ液状アンモニア化合物
に吸収さぜ廃熱よりも高温の熱を発生させる中温発生器
とを設けている。
The present invention includes an NH3 generator that heats a liquid ammonia compound using a waste heat source to generate NH3 gas, a compressor that pressurizes the NH3 gas generated by the NH3 generator, and a compressor that pressurizes the NH3 gas compressed by the compressor. Cool and condense to liquefy NH3
an NH3 condenser that heats and evaporates liquefied NH3 using a waste heat source; a compressor that pressurizes the NH3 gas evaporated by the NH3 evaporator; and an NH3 gas compressed by the compressor. The NH3 gas is generated in the NH3 generator, and the salt is absorbed into the liquid ammonia compound containing a high concentration of salt, thereby generating heat at a higher temperature than the waste heat.

〔作 用〕[For production]

従って、本発明では、NI]3発生器で液状アンモニア
化合物が加熱されてNI■3ガスが発生し、該Nl−1
3ガスは圧縮機で加圧されてNll3凝縮器へ送られ、
該Nll3凝縮器で冷却、凝縮されて液化N■−■、に
なり、液化N113はNII3蒸発器で加熱され蒸発し
てNll、ガスになり、該Nl−13ガスは加圧されて
中温発生器に送られ、一方、前記N143発生器でNH
3が発生し塩が高濃度になった液状アンモニア化合物も
中温発生器に送られ、該中温発生器でNII、ガスが液
状アンモニア化合物に吸収されて廃熱源よりも高温の熱
が発生する。
Therefore, in the present invention, the liquid ammonia compound is heated in the NI]3 generator to generate NI3 gas, and the Nl-1
3 gas is pressurized by a compressor and sent to the Nll3 condenser,
The liquefied N113 is cooled and condensed in the Nll3 condenser and becomes liquefied N■-■, and the liquefied N113 is heated and evaporated in the NII3 evaporator to become Nll gas, and the N113 gas is pressurized and sent to the medium temperature generator. On the other hand, the N143 generator generates NH
The liquid ammonia compound with a high salt concentration resulting from the generation of 3 is also sent to the medium temperature generator, where the NII gas is absorbed by the liquid ammonia compound to generate heat at a higher temperature than the waste heat source.

〔実 施 例〕 以下、本発明の実施例を添伺図面を参照しつつ説明する
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to accompanying drawings.

第1図は本発明の一実施例で、図中(1)はNII、/
塩の比(7I)が高い液状アンモニア化合物(例えばN
a8CN−nNH3、NIJ4N03.nN■■3等)
を貯留し得るようにした高NH3濃度タンク、(2)は
ポンプ、(3)はポンプ(2)により送給された液状ア
ンモニア化合物を廃熱源からのプロセス冷却媒(4)に
より加熱し、N H3ガスを発生させるようにしたNF
I3発生器、(5)はNH3発生器(3)で発生したN
H3ガスを加圧する圧縮機、(6)は圧縮機(5)で加
圧されたNI−13ガスを冷却水(力により冷却して凝
縮させるNll3凝縮器、(8)はNH3凝縮器(6)
で凝縮した液化Nll3(液安)を貯留する液安タンク
、(9)はポンプ、(10)はポンプ(9)により送給
された液化NH3を廃熱源からのプロセス冷却媒(11
)により加熱し蒸発させるNl−13蒸発器、(12)
はNI−(3蒸発器(10)で蒸発したNI(3ガスを
加圧する圧縮機、(131はNH3発生器(3)でNI
−I3ガスが発生し、NII3/塩の比が低くなった液
状アンモニア化合物を貯留し得るようにした低NH3濃
度タンク、(14)はポンプ、(15)は圧縮機(12
)で加圧されて送給されたNI]3ガスを低、NH3濃
度タンク(I3)からポンプ(14)により送給された
液状アンモニア化合物に吸収させて発熱させ媒体(I6
)に中温の熱を回収させる中温発生器である。
FIG. 1 shows an embodiment of the present invention, in which (1) is NII, /
Liquid ammonia compounds with a high salt ratio (7I) (e.g. N
a8CN-nNH3, NIJ4N03. nN■■3 etc.)
(2) is a pump, (3) is a high NH3 concentration tank capable of storing N NF designed to generate H3 gas
I3 generator (5) is the N generated by NH3 generator (3)
A compressor that pressurizes H3 gas, (6) is a Nll3 condenser that cools and condenses the NI-13 gas pressurized by the compressor (5) with cooling water (force), and (8) is an NH3 condenser (6 )
(9) is a pump, (10) is a liquid ammonium tank that stores liquefied Nll3 (liquid ammonium) condensed in
) heating and evaporating Nl-13 evaporator, (12)
is a compressor that pressurizes the NI-(3 gas) evaporated by the 3 evaporator (10), (131 is the NH3 generator (3) that pressurizes the NI gas
- A low NH3 concentration tank in which I3 gas is generated and can store the liquid ammonia compound with a low NII3/salt ratio, (14) is the pump, (15) is the compressor (12
) is absorbed into the liquid ammonia compound fed by the pump (14) from the low, NH3 concentration tank (I3) to generate heat in the medium (I6).
) is a medium-temperature generator that recovers medium-temperature heat.

次に、本発明の作用について、第2図をも参照しつつ説
明する。
Next, the operation of the present invention will be explained with reference to FIG. 2.

高Nll3濃度タンク(1)には、液状アンモニア化合
物として例えばN H3/ Nα5CN=4.5程度の
Na5CNnNH,が貯留されている。而して、該Na
5CN−nNII、はポンプ(2)により高Nll3濃
度タンク(1)からNJI3発生器(3)に送られ、N
H3発生器(3)で温度が約80℃程度のプロセス冷却
媒(4)により加熱されてNII、ガスが発生する(第
2図の0点からb点)。N■■3発生器(3)から排出
されるプロセス冷却媒の温度は約45℃程度に々る。
The high Nll3 concentration tank (1) stores a liquid ammonia compound, for example, Na5CNnNH, where N H3 / Nα5CN = about 4.5. Therefore, the Na
5CN-nNII is sent from the high Nll3 concentration tank (1) to the NJI3 generator (3) by the pump (2), and
It is heated by the process coolant (4) having a temperature of about 80° C. in the H3 generator (3), and NII gas is generated (points 0 to b in FIG. 2). The temperature of the process coolant discharged from the N■■3 generator (3) reaches approximately 45°C.

NH3発生器(3)で発生したN)I3ガスは圧縮機(
5)で約4.2atαから16ata 4で加圧されて
NH3凝縮器(6)へ送られ、該N113凝縮器(6)
で温度が約30℃の冷却水(力により冷却されて凝縮し
、液化NH3となって液安タンク(8)K貯留され、蓄
熱される(第2図の6点)。NH9凝縮器(6)から排
出される冷却水の温度は約35℃程度になる。
The N)I3 gas generated in the NH3 generator (3) is transferred to the compressor (
5), it is pressurized from about 4.2atα to 16ata 4 and sent to the NH3 condenser (6), and the N113 condenser (6)
Cooling water with a temperature of approximately 30°C (cooled by force, condensed, turned into liquefied NH3, stored in the ammonium tank (8), and stored heat (point 6 in Figure 2). NH9 condenser (6) The temperature of the cooling water discharged from ) is approximately 35°C.

液安タンク(8)の液化NI■3はポンプ(9)により
NH3蒸発器00)に送られ、該NH3蒸発器(10)
で温度が約80℃のプロセス冷却媒01)により加熱さ
れ、蒸発してNH3ガスとなる(第2図の6点)。
The liquefied NI3 in the liquid ammonium tank (8) is sent to the NH3 evaporator (00) by the pump (9), and the NH3 evaporator (10)
It is heated by the process cooling medium 01) whose temperature is approximately 80° C., and evaporates to become NH3 gas (point 6 in Fig. 2).

NH3蒸発器(10)から排出されるプロセス冷却媒の
温度は約45℃程度になる。
The temperature of the process coolant discharged from the NH3 evaporator (10) is approximately 45°C.

NH3蒸発器00)で蒸発したNH3ガスは圧縮機02
)で約16αtαから30αtaまで加圧されて中温発
生器Q5)へ送られる。一方、NH3発生器(3)でN
H3の一部が蒸発させられたNa5CN−flNH3は
N H3/N a S CN = 2.5程度になって
低NH3濃度タンク03)に貯留され、ポンプ04)に
よって中温発生器讃へ送られる。而して中温発生器(1
,5)では低Nl−13濃度のNa5CN−rLNH3
にNH3ガスが吸収されてプロセス冷却媒(4Hn)よ
りも高温の熱が発生する(第2図のC点→d点)。この
ため、約100℃程度で供給された媒体06)は中温発
生器(15)で約140℃程度に昇温され、プロセスへ
送られて仕事を行う。中温発生器α(ト)でNH,ガス
を吸収したNa 5CN−%NH3はNH3/Na8C
N = 4.5にカリ高NH3濃度タンク(1)へ戻さ
れる。又NH3発生器(3)、Nll3蒸発器(10)
で熱を回収されたプロセス冷却媒(4)(11)は温度
が約45℃程度に冷却されるため、例えば冷凍機のクー
ラーとして利用できる。
The NH3 gas evaporated in the NH3 evaporator 00) is transferred to the compressor 02.
) is pressurized from about 16αtα to 30αta and sent to the medium temperature generator Q5). On the other hand, the NH3 generator (3)
Na5CN-flNH3 from which a portion of H3 has been evaporated becomes approximately NH3/N a S CN = 2.5, is stored in a low NH3 concentration tank 03), and is sent to a medium temperature generator by a pump 04). Then, a medium temperature generator (1
, 5), Na5CN-rLNH3 with low Nl-13 concentration
NH3 gas is absorbed by the process coolant (4Hn), generating heat at a higher temperature than the process coolant (4Hn) (point C → point d in Figure 2). For this reason, the medium 06) supplied at about 100° C. is heated to about 140° C. by the intermediate temperature generator (15), and sent to the process to perform work. Na 5CN-%NH3 which absorbed NH and gas in medium temperature generator α(g) is NH3/Na8C
The potash is returned to the high NH3 concentration tank (1) at N=4.5. Also NH3 generator (3), Nll3 evaporator (10)
The process coolants (4) and (11) from which heat is recovered are cooled to a temperature of about 45° C., so they can be used, for example, as a cooler for a refrigerator.

なお、本発明は上述の実施例に限定されるものではなく
、本発明の要旨を逸脱しない範囲内で種々変更を加え得
ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明のヒートポンプによれば、工場廃熱全有効利用で
きるので、省エネルギーに貢献できるという優れた効果
を奏し得る。
According to the heat pump of the present invention, all of the factory waste heat can be effectively utilized, so it can have an excellent effect of contributing to energy saving.

4図面の簡11iな説明 第1図は本発明のヒートポンプの説明図、第2図に本発
明のヒートポツプに使用するN a S CN・nN 
I−1,の蒸気11E線図である。
4. Brief explanation of the drawings Fig. 1 is an explanatory diagram of the heat pump of the present invention, and Fig. 2 is an explanatory diagram of the heat pump of the present invention.
It is a steam 11E diagram of I-1.

図中(1)は高Nll、濃度タンク、(3)はN1−1
73発生器、(5)は圧縮機、(6)はN11.凝縮器
、(8)は液安タンク、(10)tlj、NT−1,蒸
発器、(12)は圧縮機、(13)は低N l−13濃
度タンク、(15)(I′li中温発生器を示す。
In the figure, (1) is a high Nll, concentration tank, and (3) is N1-1.
73 generator, (5) is a compressor, (6) is N11. condenser, (8) is a low liquid tank, (10) tlj, NT-1, evaporator, (12) is a compressor, (13) is a low N l-13 concentration tank, (15) (I'li medium temperature Shows the generator.

Claims (1)

【特許請求の範囲】[Claims] 1)液状アンモニア化合物を廃熱源を利用して加熱しN
H_3ガスを発生させるNH_3発生器と、該NH_3
発生器で発生したNH_3ガスを加圧する圧縮機と、該
圧縮機で圧縮したNH_3ガスを冷却して凝縮させ液化
NH_3にするNH_3凝縮器と、液化NH_3を廃熱
源を利用して加熱し蒸発させるNH_3蒸発器と、該N
H_3蒸発器で蒸発したNH_3ガスを加圧する圧縮機
と、該圧縮機で圧縮したNH_3ガスを前記NH_3発
生器でNH_3ガスが発生させられて塩が高濃度になつ
た液状アンモニア化合物に吸収させ廃熱よりも高温の熱
を発生させる中温発生器とを設けたことを特徴とするヒ
ートポンプ。
1) Heat the liquid ammonia compound using a waste heat source and
An NH_3 generator that generates H_3 gas, and the NH_3
A compressor that pressurizes the NH_3 gas generated by the generator, an NH_3 condenser that cools and condenses the NH_3 gas compressed by the compressor into liquefied NH_3, and heats and evaporates the liquefied NH_3 using a waste heat source. NH_3 evaporator and the N
A compressor pressurizes the NH_3 gas evaporated by the H_3 evaporator, and the NH_3 gas compressed by the compressor is absorbed into the liquid ammonia compound in which the NH_3 gas is generated by the NH_3 generator and has a high concentration of salt, and is then disposed of. A heat pump characterized by being equipped with a medium temperature generator that generates heat at a higher temperature than heat.
JP13167584A 1984-06-26 1984-06-26 Heat pump Pending JPS6111575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13167584A JPS6111575A (en) 1984-06-26 1984-06-26 Heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13167584A JPS6111575A (en) 1984-06-26 1984-06-26 Heat pump

Publications (1)

Publication Number Publication Date
JPS6111575A true JPS6111575A (en) 1986-01-18

Family

ID=15063595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13167584A Pending JPS6111575A (en) 1984-06-26 1984-06-26 Heat pump

Country Status (1)

Country Link
JP (1) JPS6111575A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268464A (en) * 1988-09-02 1990-03-07 Ishikawajima Harima Heavy Ind Co Ltd Chemical heat pump
US5046951A (en) * 1989-06-15 1991-09-10 Daihatsu Motor Co., Ltd. Wiring apparatus for making an electrical connection between a steering wheel and a steering column of a motor vehicle
JP2015524671A (en) * 2012-08-22 2015-08-27 インターコンチネンタル グレート ブランズ エルエルシー Chewing gum composition and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268464A (en) * 1988-09-02 1990-03-07 Ishikawajima Harima Heavy Ind Co Ltd Chemical heat pump
US5046951A (en) * 1989-06-15 1991-09-10 Daihatsu Motor Co., Ltd. Wiring apparatus for making an electrical connection between a steering wheel and a steering column of a motor vehicle
JP2015524671A (en) * 2012-08-22 2015-08-27 インターコンチネンタル グレート ブランズ エルエルシー Chewing gum composition and method for producing the same

Similar Documents

Publication Publication Date Title
US3478530A (en) Absorption refrigeration system
JPS6111575A (en) Heat pump
US4593538A (en) Refrigeration cycle operatable by low thermal potential energy sources
DE3477259D1 (en) Chemically assisted mechanical refrigeration process
US5723058A (en) Absorbent compositions for refrigerating and heating systems
JPS59207983A (en) Solvent for absorption-heat freezing cycle and binary fluid system
JP2776200B2 (en) Absorption type ice cold storage device
JPS6111576A (en) Heat pump
JPH03111606A (en) Water generating type binary generator
JPS5926926A (en) Apparatus for removing co2 with hot potassium carbonate
JPS5688485A (en) Refrigerant for absorption refrigerator
JPH01234761A (en) Double-effect multi-stage pressure type absorption type refrigerator and system therefor
JPS582564A (en) Composite absorption type refrigerator
JPH0480565A (en) Absorption refrigerating machine
JP2945971B1 (en) Ammonia absorption refrigerator
JPH10253194A (en) Water heat-storage system
JPS5815703B2 (en) absorption refrigerator
JPS63271083A (en) Condenser
SU438843A1 (en) Absorption bromide lithium cooler installation
JPH1054625A (en) Hybrid ammonium absorption refrigerator
SU1453129A1 (en) Operating pair of substances for absorption refrigerating machine
JPS61138059A (en) Heat pump for high temperature
JP2696581B2 (en) Absorption refrigeration equipment
JPS63134867A (en) Ocean temperature difference power generation set
JPS6396398A (en) Vaporizing method for liquid