JPS61115666A - Manufacture of heat exchanging body - Google Patents

Manufacture of heat exchanging body

Info

Publication number
JPS61115666A
JPS61115666A JP59234987A JP23498784A JPS61115666A JP S61115666 A JPS61115666 A JP S61115666A JP 59234987 A JP59234987 A JP 59234987A JP 23498784 A JP23498784 A JP 23498784A JP S61115666 A JPS61115666 A JP S61115666A
Authority
JP
Japan
Prior art keywords
manufacturing
heat exchanger
metal layer
metal
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59234987A
Other languages
Japanese (ja)
Other versions
JPH0361539B2 (en
Inventor
Takao Funamoto
舟本 孝雄
Hiroshi Wachi
和知 弘
Mitsuo Kato
光雄 加藤
Kyo Matsuzaka
松坂 矯
Tomohiko Shida
志田 朝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59234987A priority Critical patent/JPS61115666A/en
Publication of JPS61115666A publication Critical patent/JPS61115666A/en
Publication of JPH0361539B2 publication Critical patent/JPH0361539B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To manufacture a cooler for integrated elements excellent in cooling ability by joining a metallic plate on which grooves are formed by photoetching and another metallic plate under specific conditions using a specific low melting point metallic plate. CONSTITUTION:A plate 5 on which cooling grooves are formed by photoetching and a plate 6 for upper cover are put in a vacuum container. An oxide film adhering on the surface of the metallic plates is removed by irradiating an argon ion beam. Then, a thin film of low melting point metal such as copper- titanium alloy, etc. is formed on the surface of the metallic members by sputter vapor deposition in the same container. The grooved plate 5 on which the thin film is formed and the plate 6 for upper cover are superposed and put in a vacuum furnace, and a cooler 1 is manufactured by heating and joining at joining pressure of about 0.1-0.3kg/mm<2>. Thus, a cooler having high cooling efficiency and free from blockage of coolant passage is manufactured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、熱交換体の製造法に係り、特にIC。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method of manufacturing a heat exchanger, particularly an IC.

LSI、サイリスタなどの半導体装置の冷却器として使
用するのに好適な熱交換体の製造方法に関する。
The present invention relates to a method for manufacturing a heat exchanger suitable for use as a cooler for semiconductor devices such as LSIs and thyristors.

〔発明の背景〕[Background of the invention]

IC,LSIなど構成素子の集積度を上げれば上げる1
1ど発熱量が多くなり性能の向上、維持を図るために冷
却が必要である。冷却性能のよい冷却器の開発が素子の
集積度向上の決めてともなっている。またサイリスタな
どの半導体素子に於ても容量の大型化に伴っていかに効
率のよい冷却器を開発するかが重要な課題となっている
。従来半導体素子は放熱フィンを有する放熱板に取りつ
けるなどの手段や特開昭56−88344号公報に示さ
その代表例を示す。冷媒流入口8から入った冷媒は、素
子4の下を流れ流出口14に出て素子を冷却する構造と
なっている。符号2は冷媒通路、3は電気絶縁板、1は
冷却器である。しかし前記したように素子の集積度が年
々向上するため冷却性能金さらに向上させる方策を取る
必要にせまられている。このため冷却器をいかなる構造
にするか、またそれをいかに製造するかについて従来よ
り研究開発が続けられてきているがいまだそれらの要件
を十分満足する技術が開発されていないのが現状である
。従来、この方式の冷却器を製造する方法として第7図
に示すように冷却溝9を切削加工によって形成した冷却
溝加工板5と上蓋用板6の間にろう材7t−はさみ、ろ
う付法により接合し作製している。しかし機械的な切削
加工やろう付法が採用されるため冷却溝の深さや幅が小
さくできない。冷却溝の深さや幅を小さくするとろう材
の冷却溝への流入により冷却通路が閉塞され冷媒が流れ
ないという問題が生じる。冷媒通路の幅を小さくしその
数を多くすることは伝熱面積を大にし冷却効率を高める
うえで重要な事項であるがろう付法によってはまったく
不可能である。又、冷却溝の幅や深さを小さくする接合
方法として固相接合の採用が考えられるが、高温でIK
9/■2以上の大きな接合圧力を必要とするため冷却通
路が変形し場合によっては、閉塞するという問題が生じ
、必ずしも信頼性のある接合法とは言えない。
It can be increased by increasing the degree of integration of constituent elements such as ICs and LSIs.
First, the amount of heat generated increases, and cooling is required to improve and maintain performance. The development of coolers with good cooling performance is also the key to increasing the degree of device integration. Furthermore, as the capacity of semiconductor devices such as thyristors increases, the development of efficient coolers has become an important issue. Conventional semiconductor devices have been manufactured by mounting them on a heat dissipating plate having heat dissipating fins, and a representative example thereof is shown in Japanese Patent Application Laid-Open No. 56-88344. The refrigerant entering from the refrigerant inlet 8 flows under the element 4 and exits to the outlet 14 to cool the element. Reference numeral 2 is a refrigerant passage, 3 is an electrical insulating plate, and 1 is a cooler. However, as mentioned above, as the degree of integration of elements increases year by year, it is necessary to take measures to further improve cooling performance. For this reason, although research and development have been carried out to date regarding the structure of the cooler and how to manufacture it, the current situation is that no technology has been developed that fully satisfies these requirements. Conventionally, as a method for manufacturing a cooler of this type, as shown in FIG. 7, a brazing material 7t is placed between a cooling groove machined plate 5 in which cooling grooves 9 are formed by cutting and an upper lid plate 6, and a brazing method is used. It is made by joining. However, since mechanical cutting and brazing methods are used, the depth and width of the cooling grooves cannot be made small. If the depth and width of the cooling grooves are reduced, a problem arises in that the cooling passages are blocked by the brazing filler metal flowing into the cooling grooves and the coolant does not flow. Reducing the width of the refrigerant passages and increasing their number is an important matter in increasing the heat transfer area and increasing the cooling efficiency, but this is completely impossible using the brazing method. In addition, solid phase welding can be considered as a joining method to reduce the width and depth of the cooling groove, but IK at high temperatures
Since a large bonding pressure of 9/2 or more is required, there is a problem that the cooling passage may be deformed or even clogged, and it cannot necessarily be said to be a reliable bonding method.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、微細な冷媒通路を高密度に配置しても
該通路fr、潰すことなく接合できるようにした熱交換
体の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a heat exchanger that allows fine refrigerant passages to be joined without crushing them even if they are arranged at high density.

〔発明の概要〕[Summary of the invention]

本発明は、従来のように機械的切削加工やろう付並びに
同相接合による冷媒通路形成には限界があり、これに代
る新規な方式の冷却器を開発すべきであるとの考えから
鋭意研究した結果、開発したものである。以下の説明に
おいて板とは、数10μm以上の板厚の板を意味する。
The present invention was developed based on the idea that there are limits to conventional methods of forming refrigerant passages by mechanical cutting, brazing, and in-phase bonding, and that a new type of cooler should be developed to replace this. This was developed as a result of research. In the following description, a plate means a plate having a thickness of several tens of μm or more.

本発明は、第1図、第2図に示すように少なくとも2枚
の板の少なくとも1枚にフォトエツチングにより所定の
微細な冷却溝9を形成しこれらの板を接合して冷媒通路
を形成するものである。接合に際して非酸化性雰囲気中
でArイオンビーム等によって接合面を清浄化した後、
接合用金礪又は合金膜を蒸着又はスパッタ蒸看法により
形成して接合することにより気密性にすぐれかつ微細な
冷媒通路が得られることを見出したものである。
In the present invention, as shown in FIGS. 1 and 2, predetermined fine cooling grooves 9 are formed by photoetching on at least one of at least two plates, and these plates are joined to form a coolant passage. It is something. After cleaning the bonding surface with an Ar ion beam or the like in a non-oxidizing atmosphere during bonding,
It has been discovered that fine refrigerant passages with excellent airtightness can be obtained by forming and bonding metal trowels or alloy films by vapor deposition or sputter vapor deposition.

本発明においては、接合時冷媒通路となる冷却溝形成に
フォトエツチングを採用することによシ数10μm以上
の冷却溝が自由に形成できるため従来の機械的切削加工
では不可能な微細な冷却溝の形成が可能である。さらに
非酸化性雰囲気中でArイオンビームなどによって接合
面を清浄化した後さらにその接合面に接合用金属又は合
金膜全冷却溝深さより薄く形成して接合すること建よシ
冷媒通路を閉塞すること無く形成することができる。こ
の技術的理由は以下の通りである。素材となる金属板表
面は、通常汚染膜又は酸化皮膜で覆われているためこの
まま金属板を固相接合するには、極めて高い温度と高い
接合圧力を要し、このため変形が生じやすい。特にアル
ミニウム又はその合金よりなる板は緻密で安定な酸化膜
?有するためその接合は極めて困難である。そこで本発
明者等はこの問題について種々研究した結果非酸化性雰
囲気中でま−ず接合面の汚染膜、酸化膜をArイオンビ
ーム等により除去清浄化したのち、更にその接合面にC
uに対しては素材より融点の低いCu−Ti系、Atに
対してはAt−8i系などの合金膜を冷却溝深さより薄
く蒸着またはスパッタ蒸着法により形成して接合する手
段killしることにより、低接合圧力で接合でき、変
形の恐れがなく、シかも金属又は合金膜の溶融による冷
媒通路の閉塞もなく強固な接合が可能であること全見出
したものである。
In the present invention, by employing photoetching to form cooling grooves that serve as coolant passages during bonding, cooling grooves of several tens of micrometers or more can be freely formed, making it possible to create fine cooling grooves that are impossible with conventional mechanical cutting. It is possible to form Furthermore, after cleaning the joint surface with an Ar ion beam or the like in a non-oxidizing atmosphere, a metal or alloy film for joining is formed on the joint surface to be thinner than the total depth of the cooling groove, and the refrigerant passage is blocked. It can be formed without any problem. The technical reason for this is as follows. The surface of the metal plate used as the raw material is usually covered with a contaminated film or an oxide film, so solid-phase bonding of the metal plate as it is requires extremely high temperature and high bonding pressure, which tends to cause deformation. In particular, does a plate made of aluminum or its alloy have a dense and stable oxide film? Therefore, joining is extremely difficult. As a result of various studies on this problem, the present inventors first removed and cleaned the contaminated film and oxide film on the bonding surface using an Ar ion beam in a non-oxidizing atmosphere, and then applied carbon to the bonding surface.
For u, an alloy film such as Cu-Ti series having a melting point lower than that of the material, and for At, an alloy film such as At-8i series is formed thinner than the depth of the cooling groove by vapor deposition or sputter deposition, and the bonding method is kill. It has been discovered that this method enables bonding at low bonding pressure, without fear of deformation, and without clogging of the refrigerant passage due to melting of the metal or alloy film.

冷却性能をいかに上げるかの一つの方策は、伝熱面積金
できるだけ上げることである。第3図は冷却溝を1枚の
板の両面にフォトエツチングにより形成しそれを他の2
枚の板の間にはさみ接合した冷却器の断面である。第4
図は、2枚の板の一方にそれぞれフォトエツチングによ
り冷却溝を形成した後お互の冷却溝が千鳥状に配置され
るようにずらして接合して得た冷却器の断面でおる。こ
のようにすれば、微細な冷媒通路か、高密度に配置する
ことができ、さらに高性能な冷却器となる。
One way to improve cooling performance is to increase the heat transfer area as much as possible. Figure 3 shows cooling grooves formed on both sides of one plate by photo-etching and then attached to the other two plates.
This is a cross section of a cooler sandwiched between two plates. Fourth
The figure shows a cross section of a cooler obtained by forming cooling grooves on one of two plates by photo-etching, and then joining the plates with the cooling grooves staggered so that they are arranged in a staggered manner. In this way, fine refrigerant passages can be arranged with high density, resulting in a cooler with even higher performance.

素材として金属以外にセラミックスを一方に配置するこ
とも可能である。金属へのフォトエツチング加工は容易
であるため、金属の接合面へ冷却溝を形成し電気絶縁性
がありかつ高熱伝導のセラミックスを接合すれば、冷却
性能の高い冷却器が得られる。尚、すべて金属で冷却器
を作った時は、セラミックス基板上にLSIなどの素子
を搭載した後冷却器に接合固定することが望ましい。
In addition to metals, it is also possible to use ceramics as a material on one side. Since photoetching of metal is easy, a cooler with high cooling performance can be obtained by forming cooling grooves on the joining surface of metal and joining ceramics with electrical insulation and high thermal conductivity. Note that when the cooler is made entirely of metal, it is desirable to mount elements such as LSI on a ceramic substrate and then bond and fix them to the cooler.

以上は、フォトエツチングにより冷却溝を形成した後金
属又は合金膜を形成し接合を行う方法について説明した
が、金属又は合金膜を形成した後フォトエツチングを行
って所定の冷却溝を形成し接合しても何ら問題はない。
The above describes a method in which cooling grooves are formed by photo-etching, then a metal or alloy film is formed, and then bonding is performed. There is no problem.

すなわちArイオンビーム等で清浄化処理を行うため非
常【密着性の良い金属又は合金膜が形成できるためフォ
トエツチング処理を行っても膜が剥離するなどの問題は
起らない。
That is, since the cleaning process is performed using an Ar ion beam or the like, a metal or alloy film with very good adhesion can be formed, so even if photoetching is performed, problems such as peeling of the film do not occur.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図、第5図および第6図を用いて
説明する。
Embodiments of the present invention will be described using FIGS. 1, 5, and 6.

第1図に示す板厚0.5 wrxrの銅板よりなる上蓋
用板6とフォトエツチングによシ形成した@0.1 m
、深さ0.06mの冷却溝を有する銅板よりなる冷却溝
加工板5を用意し、これらを真空室に装入してそれぞれ
の接合面にA「イオンビームを照射して清浄化したのち
、同一真空容器内でスパッタ蒸着によりCu−30’1
tTi合金膜を24m付着させ第5図に示すよう重ねた
。次に真空炉に装入し940C,0,2に9f/り2の
接合圧力で1時間接合を行い一体化し第6図に示すよう
な冷却器上作製した。最後に冷媒の流入口8、流出口1
1となるパイプを点線のようにろう付し冷却器1で完成
した。冷媒通路の閉基もなく良好な冷媒通路が出きた。
@0.1 m formed by photo etching with the upper cover plate 6 made of a copper plate with a plate thickness of 0.5 wrxr shown in FIG.
A cooling groove machined plate 5 made of a copper plate having cooling grooves with a depth of 0.06 m is prepared, and these are placed in a vacuum chamber and each joint surface is irradiated with an ion beam A and cleaned. Cu-30'1 was deposited by sputter deposition in the same vacuum container.
A tTi alloy film of 24 m was deposited and stacked as shown in FIG. Next, the pieces were placed in a vacuum furnace and bonded at 940C, 0.2 for 1 hour at a bonding pressure of 9f/2 to integrate them, and fabricated on a cooler as shown in FIG. Finally, refrigerant inlet 8, outlet 1
1 was completed by brazing the pipe as indicated by the dotted line and using cooler 1. A good refrigerant passage was created without any blockages in the refrigerant passage.

なお冷媒の流入、#、出口のパイプの接続は、金属又は
合金膜形成後パイプを冷媒流入口及び流出口に配置し接
合すれば前記ろう付処理を行わなくても板の接合時に一
度に処理できる。符号10は冷媒だめ用溝である。
Note that the refrigerant inlet, #, and outlet pipes can be connected all at once when joining the plates without having to perform the brazing process described above, if the pipes are placed at the refrigerant inlet and outlet and joined after the metal or alloy film is formed. can. Reference numeral 10 is a refrigerant reservoir groove.

なお、以上の説明は冷却器について行ったが、加熱器に
おいても全く同様であることは言うまでもない。
Although the above explanation has been made regarding the cooler, it goes without saying that the same applies to the heater.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば微細な冷
媒通路、必要によっては0.1日以下の冷媒通路が自由
に形成できるため、高い冷却効率を有する冷却器を実現
することができる。また、板の接合面の清浄化および接
合用合金膜の形成工程をすべて非酸化性雰囲気中で行う
ことにより、接合強度及び気密性の高い熱交換体を容易
に製造できるという効果を有する。
As is clear from the above description, according to the present invention, fine refrigerant passages, if necessary, refrigerant passages of 0.1 days or less can be freely formed, so that a cooler with high cooling efficiency can be realized. Furthermore, by performing all the steps of cleaning the bonding surfaces of the plates and forming the bonding alloy film in a non-oxidizing atmosphere, it is possible to easily manufacture a heat exchanger with high bonding strength and airtightness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の冷却部品を示す平面及び
側面断面図、第3図及び第4図は、本発明の冷却器の斜
視図、第5図は、本発明の積層状況の概略斜視図、第6
図は、本発明による冷却器り の完成品を示す斜視図、第8図は、従来の冷却器? の装造工程を示す斜視図、第9図は、従来の冷却器の平
面および断面図である。 1・・・冷却器、2・・・冷媒通路、3・・・電気絶縁
板、4・・・素子、5・・・冷却溝加工板、6・・・上
蓋用板、7・・・ろう材、8・・・冷媒流入口、9・・
・冷却溝、10・・・冷媒だめ用溝、11・・・冷媒流
出口。
1 and 2 are plan and side sectional views showing a cooling component of the present invention, FIGS. 3 and 4 are perspective views of a cooler of the present invention, and FIG. 5 is a stacked state of the present invention. Schematic perspective view of 6th
The figure is a perspective view showing a completed product of the cooler according to the present invention, and FIG. 8 is a conventional cooler. FIG. 9 is a perspective view showing the installation process of the conventional cooler, and FIG. 9 is a plan view and a sectional view of a conventional cooler. DESCRIPTION OF SYMBOLS 1...Cooler, 2...Refrigerant passage, 3...Electrical insulating board, 4...Element, 5...Cooling groove processing plate, 6...Upper cover plate, 7...Waffle Material, 8... Refrigerant inlet, 9...
- Cooling groove, 10...Groove for refrigerant reservoir, 11...Refrigerant outlet.

Claims (1)

【特許請求の範囲】 1、熱交換媒体の通路となる溝を有する金属部材と他の
金属部材とを接触させて接合し、該接合によつて前記媒
体の流通孔を形成する熱交換体の製造法において、前記
溝をフォトエッチングにより形成する工程および前記接
触面に前記金属部材のいずれよりも低融点の金属層を介
在させる工程を含み、前記金属層の溶融温度以上且つ前
記金属部材が溶融しない温度で加熱して接合することを
特徴とする熱交換体の製造法。 2、特許請求の範囲第1項において、前記金属層の厚さ
を前記溝の深さよりも小さくすることを特徴とする熱交
換体の製造法。 3、特許請求の範囲第1項において、前記接触面を0.
1〜0.3kg/mm^2の圧力で加圧した状態で接合
することを特徴とする熱交換体の製造法。 4、特許請求の範囲第1項において、前記金属層をスパ
ッタ蒸着によつて形成することを特徴とする熱交換体の
製造法。 5、特許請求の範囲第1項において、前記金属層が箔よ
りなることを特徴とする熱交換体の製造法。 6、特許請求の範囲第1項において、前記接触面の少な
くとも一方に前記金属層を直接形成することを特徴とす
る熱交換体の製造法。 7、特許請求の範囲第1項において、前記金属部材が銅
よりなることを特徴とする熱交換体の製造法。 8、特許請求の範囲第7項において、前記金属層が銅−
チタン合金よりなることを特徴とする熱交換体の製造法
。 9、熱交換媒体の通路となる溝を有する金属部材と他の
金属部材とを接触させて接合し、該接合によつて前記媒
体の流通孔を形成する熱交換体の製造法において、前記
溝をフォトエッチングにより形成する工程、前記接触面
の少なくとも一方の面に前記金属部材のいずれよりも低
融点の金属層を直接形成する工程および前記金属層の形
成にあたり金属部材の表面の酸化皮膜を除去する工程を
含み、前記金属層の溶融温度以上且つ前記金属部材が溶
融しない温度で加熱して接合することを特徴とする熱交
換体の製造法。 10、特許請求の範囲第9項において、前記金属部材を
真空中に入れ、接触面にアルゴンイオンビームを照射す
ることによつて前記酸化皮膜除去処理を行うことを特徴
とする熱交換体の製造法。 11、特許請求の範囲第9項において、前記金属層をス
パッタ蒸着により形成することを特徴とする熱交換体の
製造法。 12、特許請求の範囲第9項において、前記金属層の厚
さを前記溝の深さよりも小さくすることを特徴とする熱
交換体の製造法。
[Scope of Claims] 1. A heat exchange body in which a metal member having grooves serving as a passage for a heat exchange medium and another metal member are brought into contact and joined, and by the joining, a flow hole for the medium is formed. The manufacturing method includes a step of forming the groove by photoetching, and a step of interposing a metal layer having a lower melting point than any of the metal members on the contact surface, and the method includes a step of forming the groove by photoetching, and a step of interposing a metal layer having a lower melting point than any of the metal members on the contact surface, A method for manufacturing a heat exchanger, which is characterized by heating and bonding at a temperature that does not exceed 100 degrees. 2. A method of manufacturing a heat exchanger according to claim 1, characterized in that the thickness of the metal layer is smaller than the depth of the groove. 3. In claim 1, the contact surface has a diameter of 0.
A method for producing a heat exchanger, characterized by joining under pressure of 1 to 0.3 kg/mm^2. 4. A method for manufacturing a heat exchanger according to claim 1, characterized in that the metal layer is formed by sputter deposition. 5. A method of manufacturing a heat exchanger according to claim 1, wherein the metal layer is made of foil. 6. A method of manufacturing a heat exchanger according to claim 1, characterized in that the metal layer is directly formed on at least one of the contact surfaces. 7. A method of manufacturing a heat exchanger according to claim 1, wherein the metal member is made of copper. 8. Claim 7, wherein the metal layer is made of copper.
A method for producing a heat exchanger characterized by being made of a titanium alloy. 9. A method for manufacturing a heat exchanger in which a metal member having grooves that serve as passages for a heat exchange medium and another metal member are brought into contact and bonded, and the bonding forms flow holes for the medium. a step of directly forming a metal layer having a lower melting point than any of the metal members on at least one of the contact surfaces, and removing an oxide film on the surface of the metal member when forming the metal layer. A method for manufacturing a heat exchange body, comprising the step of heating and joining at a temperature higher than the melting temperature of the metal layer and at a temperature at which the metal member does not melt. 10. Manufacturing a heat exchanger according to claim 9, characterized in that the oxide film removal treatment is performed by placing the metal member in a vacuum and irradiating the contact surface with an argon ion beam. Law. 11. A method for manufacturing a heat exchanger according to claim 9, characterized in that the metal layer is formed by sputter deposition. 12. A method of manufacturing a heat exchanger according to claim 9, characterized in that the thickness of the metal layer is smaller than the depth of the groove.
JP59234987A 1984-11-09 1984-11-09 Manufacture of heat exchanging body Granted JPS61115666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59234987A JPS61115666A (en) 1984-11-09 1984-11-09 Manufacture of heat exchanging body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59234987A JPS61115666A (en) 1984-11-09 1984-11-09 Manufacture of heat exchanging body

Publications (2)

Publication Number Publication Date
JPS61115666A true JPS61115666A (en) 1986-06-03
JPH0361539B2 JPH0361539B2 (en) 1991-09-20

Family

ID=16979371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59234987A Granted JPS61115666A (en) 1984-11-09 1984-11-09 Manufacture of heat exchanging body

Country Status (1)

Country Link
JP (1) JPS61115666A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132805A (en) * 2004-11-02 2006-05-25 Calsonic Kansei Corp Plate type heat exchanger
JP2008524545A (en) * 2004-12-21 2008-07-10 コミツサリア タ レネルジー アトミーク Method for creating part including fluid flow path
US8096348B2 (en) 2005-10-05 2012-01-17 Seiko Epson Corporation Heat exchanger, method of manufacturing heat exchanger, liquid cooling system, light source device, projector, electronic device unit, and electronic equipment
CN109396587A (en) * 2018-12-17 2019-03-01 扬州嘉和新能源科技有限公司 A kind of method for welding of water-cooled plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928399B1 (en) 2020-06-22 2021-09-01 ネットビジネスコンサルティング株式会社 Blocking device and manufacturing method of blocking device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132805A (en) * 2004-11-02 2006-05-25 Calsonic Kansei Corp Plate type heat exchanger
JP4568581B2 (en) * 2004-11-02 2010-10-27 カルソニックカンセイ株式会社 Plate type heat exchanger
JP2008524545A (en) * 2004-12-21 2008-07-10 コミツサリア タ レネルジー アトミーク Method for creating part including fluid flow path
US8096348B2 (en) 2005-10-05 2012-01-17 Seiko Epson Corporation Heat exchanger, method of manufacturing heat exchanger, liquid cooling system, light source device, projector, electronic device unit, and electronic equipment
CN109396587A (en) * 2018-12-17 2019-03-01 扬州嘉和新能源科技有限公司 A kind of method for welding of water-cooled plate

Also Published As

Publication number Publication date
JPH0361539B2 (en) 1991-09-20

Similar Documents

Publication Publication Date Title
US8299604B2 (en) Bonded metal and ceramic plates for thermal management of optical and electronic devices
EP2200080B1 (en) Low Cost Manufacturing of Micro-Channel Heatsink
CN102574361B (en) Laminate and manufacture method thereof
EP2228820A2 (en) Double side cooled power module with power overlay
TW200302529A (en) Flip chip type semiconductor device and method of manufacturing the same
WO2008035742A1 (en) Thermal interface structure and method for manufacturing the same
JPH0321094B2 (en)
WO2022267268A1 (en) Microchannel heat sink and manufacturing method therefor
JPS61115666A (en) Manufacture of heat exchanging body
JPS61104645A (en) Cooler and manufacture thereof
JP2011082502A (en) Substrate for power module, substrate for power module with heat sink, power module, and method of manufacturing substrate for power module
JPS61104646A (en) Manufacture of cooler
JPS61104647A (en) Manufacture of cooler
CN113218232A (en) Aluminum heat exchanger with brazable outer surface layer
JP2503775B2 (en) Substrate for semiconductor device
EP0089604A1 (en) Method for selectively coating metallurgical patterns on dielectric substrates
JPS6148999A (en) Laminated structure cooling fin and method of producing same
JP7352735B2 (en) Manufacturing method of microchannel heat sink
JP6673635B2 (en) Method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, method of manufacturing heat sink, and bonded body, power module substrate with heat sink, and heat sink
JP2003037231A (en) Substrate for module
JPH11323549A (en) Substrate holder
JPS6027151A (en) Composite metallic filament for mounting semiconductor element
CN102130077A (en) Soaking plate with single layer of diamond particles and correlation method thereof
JPS61112359A (en) Manufacture of heat exchanger
JP2503774B2 (en) Substrate for semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term