JPS61115619A - Straightening method of pipe - Google Patents
Straightening method of pipeInfo
- Publication number
- JPS61115619A JPS61115619A JP23693184A JP23693184A JPS61115619A JP S61115619 A JPS61115619 A JP S61115619A JP 23693184 A JP23693184 A JP 23693184A JP 23693184 A JP23693184 A JP 23693184A JP S61115619 A JPS61115619 A JP S61115619A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- pressure
- roll
- hydraulic
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D3/00—Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
- B21D3/02—Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers
- B21D3/04—Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers arranged on axes skew to the path of the work
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は傾斜対向式ロール矯正機による管の矯正方法に
関し、更に詳述すれば管の曲がり矯正。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for straightening a tube using an inclined opposing roll straightening machine, and more specifically to straightening a tube.
真円度向上、特に真円度向上の可能な管の矯正方法に関
する。The present invention relates to a method for straightening a tube capable of improving roundness, particularly to improving roundness.
管の矯正機としては種々のロール配置型式のものが知ら
れており、例えば第4図に示すようド、3対の傾斜対向
式ロール1.2.3を備えた、所謂傾斜対向60一ル式
(2−2−2型)の竪型ロール配置の矯正機が知られて
いる。この矯正機は3対の対向ロールのうち入側、中間
、出側の各上ロール1a、2a、3aと中間の下ロール
2bがねじ式圧下装置4により上下動可能、入側、出側
の各下ロール1b、3bが固定とされ、各ロール1,2
.3のロール間隔を管外径よりわずかに小さくして、管
Pに圧力(クラッシュ)を加えると共に、中間の上下ロ
ール2a、2bを入側の上下ロール1a、1b及び出側
の上下ロール3a、3bより少し上に偏位させて(オフ
セット)、入側、出側の上ロールla、3a及び中間の
下ロール2bにて管に曲げ応力を与えて曲げを矯正する
ようにしている。Various types of roll arrangement types are known as tube straightening machines, and for example, as shown in FIG. A type (2-2-2 type) straightening machine with vertical roll arrangement is known. In this straightening machine, among three pairs of opposing rolls, each of the upper rolls 1a, 2a, 3a on the entry side, intermediate side, and exit side and the lower roll 2b in the middle can be moved up and down by a screw type rolling device 4. Each lower roll 1b, 3b is fixed, each roll 1, 2
.. 3 is made slightly smaller than the outside diameter of the tube, pressure (crush) is applied to the tube P, and the middle upper and lower rolls 2a and 2b are moved to the upper and lower rolls 1a and 1b on the entry side and the upper and lower rolls 3a on the exit side, respectively. 3b (offset), bending stress is applied to the tube by the upper rolls la and 3a on the entry and exit sides, and the lower roll 2b in the middle to correct the bending.
この矯正においては、管外径りとロール間隔Aとの差で
あるクラッシュ量δが通常、管外径りの3%程度である
ため従来のねじ式圧下方式ではロール間隔の設定精度が
十分でなく、バックラッシュ、ベアリングのガタ或いは
ローラ支持部材の弾性変形などにより、管外径りのばら
つきと相まってクラッシュ量が変動していた。In this straightening, the crush amount δ, which is the difference between the tube outer diameter and the roll spacing A, is usually about 3% of the tube outer diameter, so the conventional screw type reduction method does not have sufficient accuracy in setting the roll spacing. However, the amount of crushing fluctuated due to backlash, backlash in the bearings, elastic deformation of the roller support member, etc., combined with variations in the outer diameter of the tube.
第5図は横軸にロール間隙、管外径をとり、縦軸に荷重
をとってミル剛性曲線Xと管の塑性曲線Yとを示すグラ
フである。FIG. 5 is a graph showing the mill stiffness curve X and the tube plasticity curve Y, with the roll gap and tube outer diameter plotted on the horizontal axis and the load plotted on the vertical axis.
前述のように設定ロール間隙Aに対して設定誤差による
ロール間隙A′が存在すると共に管外径りに対してばら
つきによる管外径D′が存在する。As mentioned above, there is a roll gap A' due to a setting error with respect to the set roll gap A, and there is also a tube outer diameter D' due to variations in the tube outer diameter.
そのためロール間隙人で管外径りのときのクラッシュ量
δ0に対して、ロール間隙がばらつき、これがA′で管
外径りのときのクラッシュ量はδlとなり、また管外径
がばらつきこれがD′でロール間隙がSAのときのクラ
ッシュ量はδ2となり工程ごとに変動することになる。Therefore, the roll gap varies with respect to the amount of crushing δ0 when the roll gap is on the outer diameter of the tube, and this is A', and the amount of crushing when the tube is on the outside diameter is δl, and the outer diameter of the tube varies and this is D' When the roll gap is SA, the crush amount is δ2, which varies from process to process.
従ってこのようにクラッシュ量が変動する場合は十分な
矯正がなされず、またクラッシュ量が過大となってこの
ために生じる残留応力により製品に応力腐食割れが発生
することがある。この残留応力の発生防止には矯正工程
において、クラッシュ量を所定範囲内で一定に保持し、
残留応力が生じないようにすることが望まれている。Therefore, when the amount of crushing fluctuates in this manner, sufficient correction may not be made, and the amount of crushing may become excessive, resulting in residual stress that may cause stress corrosion cracking in the product. To prevent this residual stress from occurring, the amount of crush is kept constant within a predetermined range during the straightening process.
It is desirable to prevent residual stress from occurring.
本願出願人は矯正を適正に行って過大な残留応力の発生
を防止すべく特開昭55−128318号の方法を提案
した。この方法は第6図に示す如く傾斜対向式ロール矯
正機のロールのうち管にクラッシュを与える入側下ロー
ルtb、出側下ロール3b及び中間上ロール2aに液圧
圧下装置、例えば油圧ポンプ8から送られる圧油を定圧
弁9にて所定圧としてこれをロールlb、 3b、 2
aに夫々取付けたシリンダ7へ供給可能に構成した装置
を設け、前記定圧弁9の圧力を所定の管外径部に付与し
たいクデフシエ量と管の塑性曲線から設定し、この設定
圧力を一定にして所定のクラッシュ量で管を矯正する方
法である。The applicant of the present application has proposed a method disclosed in Japanese Patent Application Laid-open No. 128318/1983 in order to properly correct and prevent the generation of excessive residual stress. As shown in FIG. 6, this method uses a hydraulic pressure reducing device, for example, a hydraulic pump 8, for the lower roll tb on the entry side, the lower roll 3b on the exit side, and the upper roll 2a on the intermediate side, which crush the pipes, among the rolls of the inclined opposed roll straightening machine. The pressure oil sent from the is set to a predetermined pressure by the constant pressure valve 9 and then transferred to the rolls lb, 3b, 2.
A device configured to be able to supply to the cylinders 7 attached to each is provided, and the pressure of the constant pressure valve 9 is set based on the amount of Kudefushie desired to be applied to a predetermined outer diameter portion of the pipe and the plasticity curve of the pipe, and this set pressure is kept constant. In this method, the pipe is straightened by a predetermined amount of crush.
〔発明が解決しようとする問題点〕:′この方法により
矯正する場合は、設定圧力を一定にして圧下力を一定に
保持しているため、第7図に示すミル剛性曲線となる。[Problems to be solved by the invention]: 'When straightening by this method, the setting pressure is kept constant and the rolling force is kept constant, so the mill stiffness curve shown in FIG. 7 is obtained.
第7図は、第5図同様、横軸にロール間隙、管外径をと
り、縦軸に荷重をとって、ミル剛性曲線Xと管の塑性曲
線Yとを示すグラフであり、この図より理解される如く
ミル剛性曲線は定圧弁9の設定圧に相当する荷重以上で
は一定値となり、このため矯正を受けても管外径りに対
して外径のばらついた管外径D′のときのクラッシュ量
δ3は管外径りのときのクラッシュ量δ0と等しくなる
。FIG. 7, like FIG. 5, is a graph showing the mill stiffness curve X and the tube plasticity curve Y, with the roll gap and tube outer diameter plotted on the horizontal axis and the load plotted on the vertical axis. As can be understood, the mill stiffness curve has a constant value above the load corresponding to the set pressure of the constant pressure valve 9, and therefore, even after correction, when the outside diameter of the pipe is D', the outside diameter varies with respect to the outside diameter of the pipe. The amount of crushing δ3 is equal to the amount of crushing δ0 when the outside diameter of the tube is reduced.
つまり、管の外径が大きい周位置、外径が小さい周位置
に拘わらず夫々の位置でクラッシュ量は一致する。従っ
てこの方法による場合は、残留応力は生じないが管の真
円度が改善され難いという問題点があった。In other words, the amount of crush is the same at each position regardless of whether the outer diameter of the pipe is large or the circumferential position is small. Therefore, when using this method, residual stress does not occur, but there is a problem in that it is difficult to improve the roundness of the tube.
本発明は斯かる問題に鑑みてなされたものであり、管に
クラッシュを付与するロールを液圧圧下装置により所定
の液圧にて圧下すると共にロールが管より受ける力が所
定圧力以上の場合に液圧圧下装置での液体の逆流を防止
することにより管の曲がり矯正、過大な残留応力の発生
防止、真円度の向上を図ることが可能な管の矯正方法を
堤供することを目的とする。The present invention has been made in view of this problem, and it is possible to reduce the pressure of the roll that imparts crushing to the pipe at a predetermined hydraulic pressure using a hydraulic pressure reduction device, and when the force received by the roll from the pipe exceeds the predetermined pressure. The purpose of the present invention is to provide a pipe straightening method that can correct the bending of the pipe, prevent the generation of excessive residual stress, and improve the roundness by preventing the backflow of liquid in a hydraulic pressure reduction device. .
本発明に係る管の矯正方法は、少なくとも液圧圧下装置
を備えたロールの対の間に管を通し、これにクラッシュ
を与えて管の曲がりを矯正する方法において、ロールを
圧下駆動する液圧シリンダと液圧源との間に液圧シリン
ダ内の液圧の調圧器を設けると共に、ロール側から液圧
シリンダに与えられる力により液圧シリンダ内の液圧が
調圧された液圧よりも上昇した場合に液圧源側への液体
の逆流を防止すべくなし、前記管の真円度を向上せしめ
るべく、調圧された液圧又はそれ以上の液圧にて管を圧
下して、クラッシュを付与することを特徴とする。A method for straightening a pipe according to the present invention is a method for straightening a bend in a pipe by passing a pipe between a pair of rolls equipped with at least a hydraulic pressure reducing device, and applying a crush to the pipe. A pressure regulator for the hydraulic pressure in the hydraulic cylinder is provided between the cylinder and the hydraulic pressure source, and the hydraulic pressure in the hydraulic cylinder is lower than the regulated hydraulic pressure by the force applied to the hydraulic cylinder from the roll side. In order to prevent the liquid from flowing back toward the hydraulic pressure source when the pressure rises, and to improve the roundness of the pipe, the pipe is lowered with a regulated hydraulic pressure or a higher hydraulic pressure, It is characterized by adding a crash.
以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.
第1図は本発明を傾斜対向60一ル式(2−2−2型)
の竪型ロール配置矯正機に通用した場合の実施状態を示
す模式図であり、図中Pは矯正対象の管を示す。管Pは
上記矯正機の入側ロール1゜中間ロール2.出側ロール
3にて管軸長方向(白陵矢符方向)へスキニー移送され
、矯正機はロール1,2.3間にて管Pに所定のオフセ
ット量と所要のクラソシェ量を付与できるように構成さ
れている。Figure 1 shows the present invention with inclined facing 60 single type (2-2-2 type).
It is a schematic diagram showing the implementation state when it is applicable to a vertical roll arrangement straightening machine, and P in the figure indicates a pipe to be straightened. The pipe P is the entrance roll 1° intermediate roll 2. of the straightening machine. The tube is transferred skinny in the longitudinal direction of the tube axis (in the direction of the white arrow) by the exit roll 3, and the straightening machine can apply a predetermined offset amount and required crassoche amount to the tube P between rolls 1, 2, and 3. It is composed of
入側、出側の各上ロールla、3a及び中間の下ロール
2bには夫々ロール位置調整用に従来のねじ式の圧下装
置4,4.4が設けられており、それらの各ロールla
、2b、3aは夫々圧下装置4,4.4により管Pに所
定のオフセット量を付与するように高さ調整されている
。Conventional screw-type lowering devices 4, 4.4 are provided on each of the upper rolls la, 3a on the entry side and the exit side, and the intermediate lower roll 2b, respectively, for adjusting the roll position.
, 2b, and 3a are adjusted in height by lowering devices 4, 4.4, respectively, so as to apply a predetermined offset amount to the pipe P.
入側下ロールlb、出側下ロール3bの軸枢支部は油圧
圧下装置10.10の一部である単動シリンダ11゜1
1にて支持されており、ロールlb、3bの高さ、管圧
下刃は油圧圧下装置10.10にて調整されるようにな
っている。単動シリンダ11.11は夫々シリンダロッ
ドを下向きにしてシリンダチューブがロールxb、3b
の軸枢支部に取付けられ、シリンダロッドが固定されて
いる。The pivot support of the lower entry roll lb and the lower exit roll 3b is a single-acting cylinder 11°1 that is part of the hydraulic lowering device 10.10.
1, and the heights of the rolls lb and 3b and the pipe lowering blades are adjusted by a hydraulic lowering device 10.10. Single-acting cylinders 11 and 11 have cylinder rods facing downward and cylinder tubes in rolls xb and 3b, respectively.
The cylinder rod is fixed to the shaft of the cylinder.
単動シリンダ11のロッド進出用油室11aには、油圧
ポンプ16から十分高い圧力にて送り出された圧油を圧
油戻りが自由な逆上弁付絞り弁15を介して2次圧可変
の比例電磁式減圧弁13へ供給し、その設定圧力に減圧
された圧油を逆止弁12を介して供給されるようになっ
ている。また逆止弁12のシリンダ側から減圧弁13の
ポンプ側へは圧油戻り用のバイパス路10bが連結され
ており、バイパス路fobには逆止弁14が取付けられ
ている。The rod advancement oil chamber 11a of the single-acting cylinder 11 receives pressurized oil sent out at a sufficiently high pressure from the hydraulic pump 16 through a throttle valve 15 with a reversing valve that allows the pressure oil to return freely, and has a variable secondary pressure. The pressure oil is supplied to the proportional electromagnetic pressure reducing valve 13 and reduced to the set pressure thereof, and is then supplied via the check valve 12. A bypass passage 10b for returning pressure oil is connected from the cylinder side of the check valve 12 to the pump side of the pressure reducing valve 13, and a check valve 14 is attached to the bypass passage fob.
従って油圧圧下装置10の単動シリンダll内の圧力は
減圧弁13に設定された圧力になるが、単動シリンダ1
1のロール1bから受ける力により油室11aの圧力が
減圧弁13の設定圧よりも高くなった場合、逆止弁14
のポンプ側圧力が十分高いため逆止弁14を介しての圧
油戻りが生じず、上記単動シリンダ11がロール1bか
ら受ける力と同じ大きさの力で管Pのクラッシュが行わ
れる。Therefore, the pressure in the single-acting cylinder 11 of the hydraulic pressure reduction device 10 becomes the pressure set in the pressure reducing valve 13, but the pressure in the single-acting cylinder 1
When the pressure in the oil chamber 11a becomes higher than the set pressure of the pressure reducing valve 13 due to the force received from the roll 1b, the check valve 14
Since the pressure on the pump side is sufficiently high, pressure oil does not return through the check valve 14, and the pipe P is crushed with the same force as the force that the single acting cylinder 11 receives from the roll 1b.
なお、油室11aの圧力が減圧弁13の設定圧より
各も高く、かつポンプ側圧力よりも高く
なった場合、圧油は逆止弁14を介してポンプ側へ戻り
、ポンプ側に設げられたりリーフ弁(図示せず)により
タンクへ排出するようになっている。Note that the pressure in the oil chamber 11a is lower than the set pressure of the pressure reducing valve 13.
When both pressures are high and the pressure becomes higher than the pump side pressure, the pressure oil returns to the pump side via the check valve 14 and is discharged to the tank by a leaf valve (not shown) provided on the pump side. It has become.
中間の上ロール2aの軸枢支部は油圧圧下装置20の一
部である複動シリンダ21及び固定されたねじ式の圧下
装置4にて支持されており、ロール2aの高さは油圧圧
下装置20及びねじ式の圧下装置4にて調整され、ロー
ル2aの管圧下刃は油圧圧下装置20にて調整されるよ
うになっている。The pivot portion of the intermediate upper roll 2a is supported by a double-acting cylinder 21 that is a part of the hydraulic lowering device 20 and a fixed screw type lowering device 4, and the height of the roll 2a is determined by the hydraulic lowering device 20. The pipe reduction blade of the roll 2a is adjusted by a hydraulic reduction device 20.
複動シリンダ21はシリンダロッドを上向きにしてシリ
ンダチューブがロール2aの軸枢支部に取付けられ、シ
リンダロッドが圧下装置4のねじとなっている。油圧圧
下装置20はロール2aを下方への押付け、また上方へ
の吊り上げ可能に構成されており、複動シリンダ21の
ロッド進出用(下側)油室21aには、油圧ポンプ25
から十分高い圧力にて送り出された圧油を2次圧可変の
比例電磁式減圧弁23へ供給し、その設定圧力に減圧さ
れた圧油を逆止弁22を介して供給されるようになって
いる。The double-acting cylinder 21 has a cylinder tube attached to the pivot portion of the roll 2a with the cylinder rod facing upward, and the cylinder rod serves as a screw for the lowering device 4. The hydraulic lowering device 20 is configured to be able to press the roll 2a downward and lift it upward, and a hydraulic pump 25 is installed in the (lower) oil chamber 21a for rod advancement of the double-acting cylinder 21.
The pressure oil sent out at a sufficiently high pressure is supplied to the proportional electromagnetic pressure reducing valve 23 with variable secondary pressure, and the pressure oil reduced to the set pressure is supplied via the check valve 22. ing.
また、逆止弁22のシリンダ側から減圧弁23のポンプ
便■には圧油戻り用のバイパス路20bが連結してあり
、バイパス路20bには逆止弁24が設けられている。Further, a bypass passage 20b for returning pressure oil is connected from the cylinder side of the check valve 22 to the pump line (2) of the pressure reducing valve 23, and a check valve 24 is provided in the bypass passage 20b.
またロンド退入用(上側)油室21bには、油圧ポンプ
26から送り出された圧油が定圧弁25にてロール自重
に相当する一定の圧力に維持されるように供給される。Further, pressure oil sent out from a hydraulic pump 26 is supplied to the (upper side) oil chamber 21b for entering and leaving the roll so as to be maintained at a constant pressure corresponding to the weight of the roll by a constant pressure valve 25.
従って複動シリンダ21のロンド進出用油室り1a内の
圧力は減圧弁23に設定された圧力になるが、ロール2
aから受ける力により油室21aの設定圧よりも高くな
った場合、逆止弁24のポンプ側圧力が十分高いため逆
止弁24を介しての圧油戻りが生じず、上記油室21a
のロール2aから受ける力と同じ大きさの力で管Pのク
ラッシュが行われる。Therefore, the pressure in the oil chamber 1a for advancing the roll of the double-acting cylinder 21 becomes the pressure set in the pressure reducing valve 23, but
When the pressure in the oil chamber 21a becomes higher than the set pressure in the oil chamber 21a due to the force received from the oil chamber 21a, the pressure on the pump side of the check valve 24 is sufficiently high, so that pressure oil does not return through the check valve 24, and the pressure in the oil chamber 21a increases.
The pipe P is crushed with the same force as the force received from the roll 2a.
上記油室21b内の圧力がロール自重に相当する値に設
定されているため、油圧圧下装置20.複動シリンダ2
1はロール自重に影響されず、油室21aと21bとの
圧力差によりロール2aの管Pへの圧下刃の調整が可能
である。Since the pressure in the oil chamber 21b is set to a value corresponding to the roll's own weight, the hydraulic lowering device 20. Double acting cylinder 2
1 is not affected by the roll's own weight, and the reduction blade of the roll 2a to the pipe P can be adjusted by the pressure difference between the oil chambers 21a and 21b.
なお、各ロール1,2.3の入側、出側には光センサ(
図示せず)が設置されており、これらが各ロール間に管
があることを検出している間、検比信号を入力する制御
装置(図示せず)は油圧ポンプ16と逆止弁付絞り弁1
5との間に設けた弁(図示せず)及び油圧ポンプ26と
減圧弁23との間に設けた弁(図示せず)を切替えて油
圧ポンプ16.26から送られる圧油を各油室に供給す
る。In addition, optical sensors (
(not shown) is installed, and while these detect the presence of a pipe between each roll, a control device (not shown) that inputs a ratio check signal is connected to a hydraulic pump 16 and an orifice with a check valve. Valve 1
A valve (not shown) provided between the hydraulic pump 16 and the pressure reducing valve 23 is switched between the valve (not shown) provided between the hydraulic pump 16 and the pressure reducing valve 23, and the pressure oil sent from the hydraulic pump 16. supply to.
このように構成された矯正機により管の曲がり矯正及び
真円度向上を図る本発明の矯正方法につき以下に説明す
る。まず圧延後の管Pを移送開始する。そして管Pの先
端が入側ロール1に入るようになると、図示しない光セ
ンサがそれを検出し、−この検出により図示しない制御
装置が第2図に示すミル剛性曲線X及び管の塑性曲線Y
に基づいて公称値に近い管外径りのときに所定のクラッ
シュ量δ0を付与すぺ(定めた圧力に設定した減圧弁1
3に給油すべく図示しない弁を切替える。The straightening method of the present invention, which aims to straighten the bending of a tube and improve its roundness using the straightening machine configured as described above, will be described below. First, transfer of the rolled pipe P is started. When the tip of the pipe P enters the entrance roll 1, an optical sensor (not shown) detects this, and this detection causes the mill stiffness curve X and the pipe plasticity curve Y shown in FIG.
Based on
3. Switch the valve (not shown) to supply fuel.
これにより管先端はロール1に入ると同時に圧下され始
め、ロール1bの圧下位置は減圧弁13にて定まる油圧
が得られるロール間隙となる位置になる。第2図に示す
ようにこのときのロール間隙がA、管先端の外径がDで
あればクラッシュ量はδ0になるが減圧#−13の働き
により管外径りより小さいD#であっても、またロール
間隙Aより小さいA′であっても圧下荷重は均一である
のでクラッシュ量はδ0と一定である。ところが例えば
Dより大きいD′となると次に詳述するように逆止弁1
2の作用により油室11内油圧が高くなり圧下荷重が高
くなってクラッシュ量はδ4 (〉δ0)となる。As a result, the tip of the tube begins to be rolled down as soon as it enters the roll 1, and the rolled down position of the roll 1b becomes a position that is a gap between the rolls where the oil pressure determined by the pressure reducing valve 13 is obtained. As shown in Figure 2, if the roll gap at this time is A and the outer diameter of the tube tip is D, the crush amount will be δ0, but due to the action of reduced pressure #-13, D# is smaller than the tube outer diameter. Also, even if A' is smaller than the roll gap A, the rolling load is uniform, so the crush amount is constant at δ0. However, for example, when D' is larger than D, the check valve 1
Due to the action of 2, the oil pressure in the oil chamber 11 increases, the rolling load increases, and the crush amount becomes δ4 (>δ0).
さて、管Pが移送されていき管外径りが第3図(イ)に
示す如く小さくなっていくと、減圧弁13の存在により
単動シリンダ11の油室11a内圧力がその設定圧に維
持されて〔第3図(ロ)〕ロール間隙が小さくなってい
き〔第3図(ハ)〕、所定のクラッシュ量δ0が管Pに
付与される〔第3図(ニ)〕。Now, as the pipe P is transferred and the pipe outer diameter becomes smaller as shown in FIG. The roll gap is maintained [FIG. 3(B)] and becomes smaller [FIG. 3(C)], and a predetermined crush amount δ0 is applied to the pipe P [FIG. 3(D)].
管外径が極小値り、を経て増加に転じると逆止弁12の
存在により圧油の逆流が防止され、第3図(ハ)に示す
ようにロール間隙はDlのときのA1に固定され、従っ
てそれ以後のり、より大径の部分ではクラッシュ量δ0
より大きいクラッシュ量が次に同外径D1となるまで管
Pに付与され続ける〔第3図(ニ)〕、管外径が更に小
さくなり管外径り、2 (D2 <I)、 )までに
なる間においては、減圧弁13の働きによってロール間
隙はA2まで小さくなり、クラッシュ量δ0が付与され
る。When the outside diameter of the pipe reaches a minimum value and then starts to increase, the presence of the check valve 12 prevents the pressure oil from flowing back, and the roll gap is fixed at A1 when Dl, as shown in Fig. 3 (c). , therefore, after that, the crush amount δ0 in the larger diameter part
A larger amount of crush continues to be applied to the pipe P until the next outer diameter becomes the same outer diameter D1 [Fig. 3 (d)], and the outer diameter of the pipe further decreases until the outer diameter reaches 2 (D2 < I), ). During this period, the roll gap is reduced to A2 by the action of the pressure reducing valve 13, and a crush amount δ0 is applied.
そして管径がD2より大きくなると油室ILa内油圧は
再び増加し、クラッシュ量はδ0よりも大きい値となる
。極小値Dlをとった場合のロール間隙人1でのミル剛
性曲線Xは第2図に2点鎖線で示しているが、D#〜D
′の変化領域では荷重の平坦域を超えており、δ0より
大きいクラッシュ量、例えばδ、となる。Then, when the pipe diameter becomes larger than D2, the oil pressure in the oil chamber ILa increases again, and the crush amount becomes a value larger than δ0. The mill stiffness curve X at the roll gapper 1 when the minimum value Dl is taken is shown by a two-dot chain line in FIG.
In the change region of ', the plateau of the load is exceeded, and the amount of crushing, for example δ, is larger than δ0.
以上のようなりラッシュ付与がロール2,3により同様
になされる。その結果、管全長に亘りδ0又はそれ以上
のクラッシュ量が付与され、外径が管先端の直径よりも
大きい管周部分では大きいクラッシュ量が付与されて真
円度が高くなる。As described above, the rush is applied in the same manner by rolls 2 and 3. As a result, a crush amount of δ0 or more is imparted over the entire length of the tube, and a large crush amount is imparted to the circumferential portion of the tube where the outer diameter is larger than the diameter of the tip of the tube, resulting in high roundness.
管後端が各ロール1. 2. 3から出ると逆止弁付絞
り弁と油圧ポンプとの間及び減圧弁と油圧ポンプとの間
の図示しない弁を切換えてこの間をタンクに連通させる
。これにより各シリンダ11.21内圧油は逆止弁14
.24からタンクに還流する。The rear end of the tube is connected to each roll 1. 2. 3, valves (not shown) between the throttle valve with check valve and the hydraulic pump and between the pressure reducing valve and the hydraulic pump are switched to communicate with the tank. As a result, the internal pressure oil in each cylinder 11.21 is removed from the check valve 14.
.. Reflux from 24 to the tank.
なお、本発明は管の曲がり矯正を目的とせずオフセット
を管に付与しない場合であっても管の真円度向上を行う
ことが可能である。Note that the present invention can improve the roundness of a pipe even when the purpose is not to straighten the bend of the pipe and an offset is not applied to the pipe.
そして、本発明はロール間隙のばらつきにより目標設定
値Aと異なるロール間隙A′に設定又は変化した場合に
あっても所定の外径の管にクラッシュを付与する際のh
rTiが一定値となるようにしているので、所定の管外
径以下の範囲では所定のクラッシュ量を管に付与でき、
また所定の管外径より大の管周位置では増大したクラ7
シユ量を付与できる。従って本発明はロール間隙が変動
する場合、ロール間隙の設定違いの場合等にあっても真
円度を向上させ得る。The present invention also provides a method for applying crush force to a pipe of a predetermined outer diameter even when the roll gap A' is set or changed to a value different from the target set value A due to variations in the roll gap.
Since rTi is set to a constant value, a predetermined amount of crush can be applied to the pipe within a range below the predetermined pipe outer diameter.
In addition, at a pipe circumferential position larger than a predetermined pipe outer diameter, the crack 7 increases.
You can add a certain amount. Therefore, the present invention can improve roundness even when the roll gap changes or when the roll gap is set differently.
また、上記実施例ではロールの軸枢支部にシリンダチュ
ーブを取付けているが、本発明はシリンダロンドの向き
を111記とは逆にしてロールの軸枢支部にシリンダロ
ンドを取付けても実施できることは勿論である。In addition, in the above embodiment, the cylinder tube is attached to the pivot portion of the roll, but the present invention can also be carried out even if the direction of the cylinder iron is reversed from that in Section 111 and the cylinder tube is attached to the pivot portion of the roll. Of course.
そして、また上記実施例では各油圧圧下装210゜20
に逆止弁12,22を設けているが、真円度が悪い管の
場合はシリンダロッドの進出、退入が激しく変化するた
め減圧弁の応答が遅れて逆止弁12.22と同すJに作
用するのでこれを略することができる。Further, in the above embodiment, each hydraulic pressure lowering device 210°20
Check valves 12 and 22 are installed in the pipe, but if the cylinder rod is poorly rounded, the cylinder rod advances and retracts rapidly, causing a delay in the response of the pressure reducing valve, which is the same as check valve 12.22. Since it acts on J, this can be omitted.
更に、本発明は傾斜対向60一ル式(2−2−2型)の
竪型ロール配置矯正機に限らず他の傾斜対向ロール式矯
正機、例えば50一ル式、60−ル式等の矯正機、横型
ロール配置矯正機等に対しても適用できることは勿論で
あり、横型ロール配置矯正機に本発明を通用する場合は
、ロールの管圧下ヘロール自重が影響しないのですべて
単動シリンダであっても実施できる。Furthermore, the present invention is not limited to the vertical roll arrangement straightening machine of the inclined opposed 60-ru type (2-2-2 type), but also applies to other inclined opposed roll type straightening machines, such as the 50-ru type, the 60-ru type, etc. It goes without saying that the present invention can be applied to straightening machines, horizontal roll straightening machines, etc., and when the present invention is applied to horizontal roll straightening machines, all single-acting cylinders should be used because the weight of the rollers under pressure of the roll tube does not affect the present invention. It can also be implemented.
そして、更に上記実施例ではシリンダの作動に圧油を使
用しているが、本発明は己れに限らず他の液体を使用し
ても実施可能である。Moreover, in the above embodiment, pressure oil is used to operate the cylinder, but the present invention is not limited to this and can be practiced using other liquids.
次に本発明の効果につき説明する。本発明により管の曲
がり矯正、過大な残留応力の発生防止。Next, the effects of the present invention will be explained. The present invention corrects bends in pipes and prevents excessive residual stress from occurring.
真円度の向上を図るべく単動シリンダでは圧下力範囲を
7.5〜68トン、複動シリンダではそれを0〜60.
51−ンとして楕円量が異なる供試用の管を矯正した。In order to improve roundness, the rolling force range for single-acting cylinders is 7.5 to 68 tons, and for double-acting cylinders it is 0 to 60 tons.
Test tubes with different amounts of ellipse were straightened as 51-tons.
第1表は供試用の管寸法、その楕円量及び上記矯正後の
楕円量をまとめた表であり、比較のために同一の供試用
管を従来の特開昭55−128318号の方法により矯
正した場合の結果を併せて示している。Table 1 is a table summarizing the dimensions of the sample tube, its ellipse amount, and the ellipse amount after the above-mentioned correction.For comparison, the same sample tube was straightened by the conventional method of JP-A-55-128318. The results are also shown.
第 1 表
この表より理解される如く、比較例では矯正前の楕円量
の2割程度が矯正されるに過ぎないが、本発明では矯正
前の楕円量が始めから小さい外径 特L14mx
厚み5uの管を除いて他の管では矯正前 代楕円
量の9割以上を矯正でき、真円度の高い管を製造できた
。Table 1 As can be understood from this table, in the comparative example, only about 20% of the ellipse before correction is corrected, but in the present invention, the ellipse before correction is small from the beginning.
With the exception of the 5u thick tube, we were able to correct more than 90% of the ellipse before straightening, and we were able to manufacture tubes with high roundness.
以上詳述した如く本発明は管の外径が大きい周位置では
所定のクラッシュ量より大きく、また外径が小さい周位
置では所定のクラッシュ量となるように管外面形状に応
じて矯正量を自動的に変化させて管を矯正するので真円
度が高く、また当然のことながら残留応力が抑制された
、曲がりのない管を製造できる等優れた効果を奏する。As detailed above, the present invention automatically adjusts the amount of correction according to the shape of the outer surface of the pipe so that the amount of crush is larger than the predetermined amount at circumferential positions where the outer diameter of the pipe is large, and the amount of crush is greater than the predetermined amount at circumferential positions where the outer diameter is small. Since the tube is straightened by changing the angle of the tube, it has excellent effects such as high roundness, suppressing residual stress, and making it possible to manufacture a tube without bending.
第1図は本発明の実施状態を示す模式図、第2図は本発
明のロール荷重説明図、第3図は本発明の矯正方法の説
明図、第4図、第6図は従来の矯正機の模式図、第5図
、第7図はその矯正内容説明図である。
P・・・管 1,2.3・・・ロール 10.20・・
・油圧圧許 出願人 住友金属工業株式会社
理人 弁理士 河 野 登 夫麗 3 図
第 4 図
ロール間隙、管外を工
第 5 (¥l
第 6 図
ロール間陣、管庵径
猶 7 図
==り〉Figure 1 is a schematic diagram showing the implementation state of the present invention, Figure 2 is an explanatory diagram of the roll load of the present invention, Figure 3 is an explanatory diagram of the straightening method of the present invention, and Figures 4 and 6 are conventional straightening. The schematic diagram of the machine, FIGS. 5 and 7, are illustrations of the correction contents. P...Pipe 1,2.3...Roll 10.20...
・Hydraulic pressure Applicant Sumitomo Metal Industries Co., Ltd. Manager Patent attorney Noboru Kono 3 Figure 4 Figure 4 Roll gap, construction outside the pipe Figure 6 Figure 6 Roll gap, pipe diameter 7 ==ri>
Claims (1)
管を通し、これにクラッシュを与えて管の曲がりを矯正
する方法において、ロールを圧下駆動する液圧シリンダ
と液圧源との間に液圧シリンダ内の液圧の調圧器を設け
ると共に、ロール側から液圧シリンダに与えられる力に
より液圧シリンダ内の液圧が調圧された液圧よりも上昇
した場合に液圧源側への液体の逆流を防止すべくなし、
前記管の真円度を向上せしめるべく、調圧された液圧又
はそれ以上の液圧にて管を圧下して、クラッシュを付与
することを特徴とする管の矯正方法。1. In a method of straightening a bend in a pipe by passing a pipe between a pair of rolls equipped with at least a hydraulic pressure reduction device and applying a crush to the pipe, between a hydraulic cylinder that drives the rolls to reduce pressure and a hydraulic pressure source. A pressure regulator for the hydraulic pressure in the hydraulic cylinder is installed on the hydraulic cylinder, and if the hydraulic pressure in the hydraulic cylinder rises above the regulated hydraulic pressure due to the force applied to the hydraulic cylinder from the roll side, the hydraulic pressure source side to prevent backflow of liquid to the
A method for straightening a pipe, characterized in that, in order to improve the roundness of the pipe, the pipe is compressed with a regulated hydraulic pressure or a higher hydraulic pressure to impart a crush.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23693184A JPS61115619A (en) | 1984-11-09 | 1984-11-09 | Straightening method of pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23693184A JPS61115619A (en) | 1984-11-09 | 1984-11-09 | Straightening method of pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61115619A true JPS61115619A (en) | 1986-06-03 |
JPH0442095B2 JPH0442095B2 (en) | 1992-07-10 |
Family
ID=17007872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23693184A Granted JPS61115619A (en) | 1984-11-09 | 1984-11-09 | Straightening method of pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61115619A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100394398B1 (en) * | 2000-08-03 | 2003-08-09 | 조청조 | Straightening roll device for tube mill pipe |
CN100402173C (en) * | 2006-06-05 | 2008-07-16 | 洛阳锐腾机械设备有限公司 | Combination system for servo-roll-separating and quick-backward of cross-roll straightening machine |
CN100434202C (en) * | 2006-12-22 | 2008-11-19 | 洛阳锐腾机械设备有限公司 | Two-stage tandem cross roll straightener bite servo and regulating system |
EP2116316A1 (en) * | 2007-01-16 | 2009-11-11 | Sumitomo Metal Industries Limited | 2-phase stainless pipe manufacturing method, correction method, intensity adjusting method, and correction device operating method |
JP2015066605A (en) * | 2013-09-26 | 2015-04-13 | 古河ロックドリル株式会社 | Hydraulic breaker |
-
1984
- 1984-11-09 JP JP23693184A patent/JPS61115619A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100394398B1 (en) * | 2000-08-03 | 2003-08-09 | 조청조 | Straightening roll device for tube mill pipe |
CN100402173C (en) * | 2006-06-05 | 2008-07-16 | 洛阳锐腾机械设备有限公司 | Combination system for servo-roll-separating and quick-backward of cross-roll straightening machine |
CN100434202C (en) * | 2006-12-22 | 2008-11-19 | 洛阳锐腾机械设备有限公司 | Two-stage tandem cross roll straightener bite servo and regulating system |
EP2116316A1 (en) * | 2007-01-16 | 2009-11-11 | Sumitomo Metal Industries Limited | 2-phase stainless pipe manufacturing method, correction method, intensity adjusting method, and correction device operating method |
US8006528B2 (en) * | 2007-01-16 | 2011-08-30 | Sumitomo Metal Industries, Ltd. | Method for producing duplex stainless steel pipe, method for straightening, method for regulating strength, and method for operating straightener |
EP2116316A4 (en) * | 2007-01-16 | 2013-07-10 | Nippon Steel & Sumitomo Metal Corp | 2-phase stainless pipe manufacturing method, correction method, intensity adjusting method, and correction device operating method |
JP2015066605A (en) * | 2013-09-26 | 2015-04-13 | 古河ロックドリル株式会社 | Hydraulic breaker |
Also Published As
Publication number | Publication date |
---|---|
JPH0442095B2 (en) | 1992-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6510721B1 (en) | Rolling mill | |
KR100484461B1 (en) | Rolling mill and method for operating same | |
JP3121471B2 (en) | Rolling mill and rolling method | |
JPH0890187A (en) | Method for continuously casting thin cast slab and apparatus thereof | |
JPS61115619A (en) | Straightening method of pipe | |
US4528830A (en) | Method for changing widthwise distribution of thickness of metal strip | |
US5115653A (en) | Method of straightening rolled material | |
RU2408445C2 (en) | Method of increasing process stability, in particular absolute accuracy of thickness, and reliability of steel or nonferrous metal hot rolling units | |
JPS61115618A (en) | Straightening method and straightening machine of metallic pipe | |
JPH06190425A (en) | Introducing guidance method for rolled steel, roller guide device and train of the same | |
JP3281593B2 (en) | Steel sheet thickness control method | |
JP2976834B2 (en) | Rolling channel manufacturing method | |
KR950010602B1 (en) | Shape control method for thin plate in continious cold rolling mill | |
CN114522986B (en) | Roll gap adjusting structure and method for pinch rolls of hot rolling box | |
SU738698A1 (en) | Method for cold pilger rolling of tubes | |
JP3019720B2 (en) | Rolling mill with camber straightening function | |
JP2689605B2 (en) | Rolling method | |
KR20010058077A (en) | Method for controlling gap of rolls in cold mill | |
SU747568A1 (en) | Section bending mill | |
SU900899A1 (en) | Hydromechanic screwdown mechanism for drum with rolling roll | |
RU1413789C (en) | Method for pipe manufacture on continuous pipe welding aggregates | |
RU1835328C (en) | Boring machine | |
RU1819695C (en) | Method to roll shapes with thin-wall flanges | |
SU880593A1 (en) | Method of rolling single-side periodic sections | |
JPH10180357A (en) | Method for controlling rail straightening device |