JPH0442095B2 - - Google Patents

Info

Publication number
JPH0442095B2
JPH0442095B2 JP23693184A JP23693184A JPH0442095B2 JP H0442095 B2 JPH0442095 B2 JP H0442095B2 JP 23693184 A JP23693184 A JP 23693184A JP 23693184 A JP23693184 A JP 23693184A JP H0442095 B2 JPH0442095 B2 JP H0442095B2
Authority
JP
Japan
Prior art keywords
pressure
pipe
roll
hydraulic
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23693184A
Other languages
Japanese (ja)
Other versions
JPS61115619A (en
Inventor
Tadashi Fukunaga
Takashi Kanzaki
Munekatsu Furukata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23693184A priority Critical patent/JPS61115619A/en
Publication of JPS61115619A publication Critical patent/JPS61115619A/en
Publication of JPH0442095B2 publication Critical patent/JPH0442095B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
    • B21D3/02Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers
    • B21D3/04Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers arranged on axes skew to the path of the work

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は傾斜対向式ロール矯正機による管の矯
正方法に関し、更に詳述すれば管の曲がり矯正、
真円度向上、特に真円度向上の可能な管の矯正方
法に関する。 〔従来技術〕 管の矯正機としては種々のロール配置型式のも
のが知られており、例えば第4図に示すように、
3対の傾斜対向式ロール1,2,3を備えた、所
謂傾斜対向6ロール式(2−2−2型)の竪型ロ
ール配置の矯正機が知られている。この矯正機は
3対の対向ロールのうち入側、中間、出側の各上
ロール1a,2a,3aと中間の下ロール2bが
ねじ式圧下装置4により上下動可能、入側、出側
の各下ロール1b,3bが固定とされ、各ロール
1,2,3のロール間隔を管外径よりわずかに小
さくして、管Pに圧力(クラツシユ)を加えると
共に、中間の上下ロール2a,2bを入側の上下
ロール1a,1b及び出側の上下ロール3a,3
bより少し上に偏位させて(オフセツト)、入側、
出側の上ロール1a,3a及び中間の下ロール2
bにて管に曲げ応力を与えて曲げを矯正するよう
にしている。 この矯正においては、管外径Dとロール間隔A
との差であるクラツシユ量δが通常、管外径Dの
3%程度であるため従来のねじ式圧下方式ではロ
ール間隔の設定精度が十分でなく、バツクラツシ
ユ、ベアリングのガタ或いはローラ支持部材の弾
性変形などにより、管外径Dのばらつきと相まつ
てクラツシユ量が変動していた。 第5図は横軸にロール間隙、管外径をとり、縦
軸に荷重をとつてミル剛性曲線Xと管の塑性曲線
Yとを示すグラフである。 前述のように設定ロール間隙Aに対して設定誤
差によるロール間隙A′が存在すると共に管外径
Dに対してばらつきによる管外径D′が存在する。
そのためロール間隙Aで管外径Dのときのクラツ
シユ量δ0に対して、ロール間隙がばらつき、これ
がA′で管外径Dのときのクラツシユ量はδ1とな
り、また管外径のばらつきこれがD′でロール間
隙がSAのときのクラツシユ量はδ2となり工程ご
とに変動することになる。 従つてこのようにクラツシユ量が変動する場合
は十分な矯正がなされず、またクラツシユ量が過
大となつてこのために生じる残留応力により製品
に応力腐食割れが発生することがある。この残留
応力の発生防止には矯正工程において、クラツシ
ユ量を所定範囲内で一定に保持し、残留応力が生
じないようにすることが望まれている。 本願出願人は矯正を適正に行つて過大な残留応
力の発生を防止すべく特開昭55−128318号の方法
を提案した。この方法は第6図に示す如く傾斜対
向式ロール矯正機のロールのうち管にクラツシユ
を与える入側下ロール1b、出側下ロール3b及
び中間上ロール2aに液圧圧下装置、例えば油圧
ポンプ8から送られる圧油を定圧弁9にて所定圧
としてこれをロール1b,3b,2aに夫々取付
けたシリンダ7へ供給可能に構成した装置を設
け、前記定圧弁9の圧力を所定の管外径部に付与
したいクラツシユ量と管の塑性曲線から設定し、
この設定圧力を一定にして所定のクラツシユ量で
管を矯正する方法である。 〔発明が解決しようとする問題点〕 この方法により矯正する場合は、設定圧力を一
定にして圧力下を一定に保持しているため、第7
図に示すミル剛性曲線となる。 第7図は、第5図同様、横軸にロール間〓、管
外径をとり、縦軸に荷重をとつて、ミル剛性曲線
Xと管の塑性曲線Yとを示すグラフであり、この
図より理解される如くミル剛性曲線は定圧弁9の
設定圧に相当する荷重以上では一定値となり、こ
のため矯正を受けても管外径Dに対して外径のば
らついた管外径D′のときのクラツシユ量δ3は管外
径Dのときのクラツシユ量δ0と等しくなる。つま
り、管の外径が大きい周位置、外径が小さい周位
置に拘わらず夫々の位置でクラツシユ量は一致す
る。従つてこの方法による場合は、残留応力は生
じないが管の真円度が改善され難いという問題点
があつた。 〔問題点を解決するための手段〕 本発明は斯かる問題点に鑑みてなされたもので
あり、管にクラツシユを付与するロールを液圧圧
下装置により所定の液圧にて圧下すると共にロー
ルが管より受ける力が所定圧力以上の場合に液圧
圧下装置での液体の逆流を防止することにより管
の曲がり矯正、過大な残留応力の発生防止、真円
度の向上を図ることが可能な管の矯正方法を提供
することを目的とする。 本発明に係る管の矯正方法は、少なくとも液圧
圧下装置を備えたロールの対の間に管を通し、こ
れにクラツシユを与えて管の曲がりを矯正する方
法において、ロールを圧下駆動する液圧シリンダ
と液圧源との間に液圧シリンダ内の液圧の調圧器
を設けると共に、ロール側から液圧シリンダに与
えられる力により液圧シリンダ内の液圧が調圧さ
れた液圧よりも上昇した場合に液圧源側への液体
の逆流を防止すべくなし、前記管の真円度を向上
せしめるべく、調圧された液圧又はそれ以上の液
圧にて管を圧下して、クラツシユを付与すること
を特徴とする。 〔実施例〕 以下本発明を図面に基づき具体的に説明する。
第1図は本発明を傾斜対向6ロール式(2−2−
2型)の竪型ロール配置矯正機に適用した場合の
実施状態を示す模式図であり、図中Pは矯正対象
の管を示す。管Pは上記矯正機の入側ロール1、
中間ロール2、出側ロール3にて管軸長方向(白
抜矢符方向)へスキユー移送され、矯正機はロー
ル1,2,3間にて管Pに所定のオフセツト量と
所要のクラツシユ量を付与できるように構成され
ている。 入側、出側の各上ロール1a,3a及び中間の
下ロール2bには夫々ロール位置調整用に従来の
ねじ式の圧下装置4,4,4が設けられており、
それらの各ロール1a,2b,3aは夫々圧下装
置4,4,4により管Pに所定のオフセツト量を
付与するように高さ調整されている。 入側下ロール1b、出側下ロール3bの軸枢支
部は油圧圧下装置10,10の一部である単動シ
リンダ11,11にて支持されており、ロール1
b,3bの高さ、管圧下力は液圧圧下装置10,
10にて調整されるようになつている。単動シリ
ンダ11,11は夫々シリンダロツドを下向きに
してシリンダチユーブがロール1b,3bの軸枢
支部に取付けられ、シリンダロツドが固定されて
いる。 単動シリンダ11のロツド進出用油室11aに
は、油圧ポンプ16から十分高い圧力にて送り出
された圧油を圧油戻りが自由な逆止弁付絞り弁1
5を介して2次圧可変の比例電磁式減圧弁13へ
供給し、その設定圧力に減圧された圧油を逆止弁
12を介して供給されるようになつている。また
逆止弁12のシリンダ側から減圧弁13のポンプ
側へは圧油戻り用のバイパス路10bが連結され
ており、バイパス路10bには逆止弁14が取付
けられている。 従つて油圧圧下装置10の単動シリンダ11内
の圧力は減圧弁13に設定された圧力になるが、
単動シリンダ11のロール1bから受ける力によ
り油室11aの圧力が減圧弁13の設定圧よりも
高くなつた場合、逆止弁14のポンプ側圧力が十
分高いため逆止弁14を介しての圧油戻りが生じ
ず、上記単動シリンダ11がロール1bから受け
る力と同じ大きさの力で管Pのクラツシユが行わ
れる。 なお、油室11aの圧力が減圧弁13の設定圧
よりも高く、かつポンプ側圧力よりも高くなつた
場合、圧油は逆止弁14を介してポンプ側へ戻
り、ポンプ側に設けられたリリーフ弁(図示せ
ず)によりタンクへ排出するようになつている。 中間の上ロール2aの軸枢支部は油圧圧下装置
20の一部である複動シリンダ21及び固定され
たねじ式の圧下装置4にて支持されており、ロー
ル2aの高さは油圧圧下装置20及びねじ式の圧
下装置4にて調整され、ロール2aの管圧下力は
油圧圧下装置20にて調整されるようになつてい
る。 複動シリンダ21はシリンダロツドを上向きに
してシリンダチユーブがロール2aの軸枢支部に
取付けられ、シリンダロツドが圧下装置4のねじ
となつている。油圧圧下装置20はロール2aを
下方への押付け、また上方への吊り上げ可能に構
成されており、複動シリンダ21のロツド進出用
(下側)油室21aには、油圧ポンプ25から十
分高い圧力にて送り出された圧油を2次圧可変の
比例電磁式減圧弁23へ供給し、その設定圧力に
減圧された圧油を逆止弁22を介して供給される
ようになつている。また、逆止弁22のシリンダ
側から減圧弁23のポンプ側には圧油戻り用のバ
イパス路20bが連結してあり、バイパス路20
bには逆止弁24が設けられている。またロツド
退入用(上側)油室21bには、油圧ポンプ26
から送り出された圧油が定圧弁25にてロール自
重に相当する一定の圧力に維持されるように供給
される。 従つて複動シリンダ21のロツド進出用油室2
1a内の圧力は減圧弁23に設定された圧力にな
るが、ロール2aから受ける力により油室21a
の設定圧よりも高くなつた場合、逆止弁24のポ
ンプ側圧力が十分高いため逆止弁24を介しての
圧油戻りが生じず、上記油室21aのロール2a
から受ける力と同じ大きさの力で管Pのクラツシ
ユが行われる。 上記油室21b内の圧力がロール自重に相当す
る値に設定されているため、油圧圧下装置20、
複動シリンダ21はロール自重に影響されず、油
室21aと21bとの圧力差によりロール2aの
管Pへの圧下力の調整が可能である。 なお、各ロール1,2,3の入側、出側には光
センサ(図示せず)が設置されており、これらが
各ロール間に管があることを検出している間、検
出信号を入力する制御装置(図示せず)は油圧ポ
ンプ16と逆止弁付絞り弁15との間に設けた弁
(図示せず)及び油圧ポンプ26と減圧弁23と
の間に設けた弁(図示せず)を切替えて油圧ポン
プ16,26から送られる圧油を各油室に供給す
る。 このように構成された矯正機により管の曲がり
矯正及び真円度向上を図る本発明の矯正方法につ
き以下に説明する。まず圧延後の管Pを移送開始
する。そして管Pの先端が入側ロール1に入るよ
うになると、図示しない光センサがそれを検出
し、この検出により図示しない制御装置が第2図
に示すミル剛性曲線X及び管の塑性曲線Yに基づ
いて公称値に近い管外径Dのときに所定のクラツ
シユ量δ0を付与すべく定めた圧力に設定した減圧
弁13に給油すべく図示しない弁を切替える。 これにより管先端はロール1に入ると同時に圧
下され始め、ロール1bの圧下位置は減圧弁13
にて定まる油圧が得られるロール間隙となる位置
になる。第2図に示すようにこのときのロール間
隙がA、管先端の外径がDであればクラツシユ量
はδ0になるが減圧弁13の働きにより管外径Dよ
り小さいD″であつても、またロール間隙Aより
小さいA′であつても圧下荷重は均一であるので
クラツシユ量はδ0と一定である。ところが例えば
Dより大きいD′となると次に詳述するように逆
止弁12の作用により油室11内油圧が高くなり
圧下荷重が高くなつてクラツシユ量はδ4(>δ0
となる。 さて、管Pが移送されていき管外径Dが第3図
イに示す如く小さくなつていくと、減圧弁13の
存在により単動シリンダ11の油室11a内圧力
がその設定圧に維持されて〔第3図ロ〕ロール間
隙が小さくなつていき〔第3図ハ〕、所定のクラ
ツシユ量δ0が管Pに付与される〔第3図ニ〕。 管外径が極小値D1を経て増加に転じると逆止
弁12の存在により圧油の逆流が防止され、第3
図ハに示すようにロール間隙はD1のときのA1
固定され、従つてそれ以後のD1より大径の部分
ではクラツシユ量δ0より大きいクラツシユ量が次
に同外径D1となるまで管Pに付与され続ける
〔第3図ニ〕。管外径が更に小さくなり管外径D2
(D2<D1)までになる間においては、減圧弁13
の働きによつてロール間隙はA2まで小さくなり、
クラツシユ量δ0が付与される。 そして管径がD2より大きくなると油室11a
内油圧は再び増加し、クラツシユ量はδ0よりも大
きい値となる。極小値D1をとつた場合のロール
間隙A1でのミル剛性曲線Xは第2図に2点鎖線
で示しているが、D″〜D′の変化領域では荷重の
平坦域を超えており、δ0より大きいクラツシユ
量、例えばδ5となる。 以上のようなクラツシユ付与がロール2,3に
より同様になされる。その結果、管全長に亘りδ0
又はそれ以上のクラツシユ量が付与され、外径が
管先端の直径よりも大きい管周部分では大きいク
ラツシユ量が付与されて真円度が高くなる。 管後端が各ロール1,2,3から出ると逆止弁
付絞り弁と油圧ポンプとの間及び減圧弁と油圧ポ
ンプとの間の図示しない弁を切換えてこの間をタ
ンクに連通させる。これにより各シリンダ11,
21内圧油は逆止弁14,24からタンクに還流
する。 なお、本発明は管の曲がり矯正を目的とせずオ
フセツトを管に付与しない場合であつても管の真
円度向上を行うことが可能である。 そして、本発明はロール間隙のばらつきにより
目標設定値Aと異なるロール間隙A′に設定又は
変化した場合にあつても所定の外径の管にクラツ
シユを付与する際の荷重が一定値となるようにし
ているので、所定の管外径以下の範囲では所定の
クラツシユ量を管に付与でき、また所定の管外径
より大の管周位置では増大したクラツシユ量を付
与できる。従つて本発明はロール間隙が変動する
場合、ロール間隙の設定違いの場合等にあつても
真円度を向上させ得る。 また、上記実施例ではロールの軸枢支部にシリ
ンダチユーブを取付けているが、本発明はシリン
ダロツドの向きを前記とは逆にしてロールの軸枢
支部にシリンダロツドを取付けても実施できるこ
とは勿論である。 そして、また上記実施例では各油圧圧下装置1
0,20に逆止弁12,22を設けているが、真
円度が悪い管の場合はシリンダロツドの進出、退
入が激しく変化するため減圧弁の応答が遅れて逆
止弁12,22と同効に作用するのでこれを略す
ることができる。 更に、本発明は傾斜対向6ロール式(2−2−
2型)の竪型ロール配置矯正機に限らず他の傾斜
対向ロール式矯正機、例えば5ロール式、6ロー
ル式等の矯正機、横型ロール配置矯正機等に対し
ても適用できることは勿論であり、横型ロール配
置矯正機に本発明を適用する場合は、ロールの管
圧下へロール自重が影響しないのですべて単動シ
リンダであつても実施できる。 そして、更に上記実施例ではシリンダの作動に
圧油を使用しているが、本発明はこれに限らず他
の液体を使用しても実施可能である。 〔効果〕 次に本発明の効果につき説明する。本発明によ
り管の曲がり矯正、過大な残留応力の発生防止、
真円度の向上を図るべく単動シリンダでは圧下力
範囲を7.5〜68トン、複動シリンダではそれを0
〜60.5トンとして楕円量が異なる供試用の管を矯
正した。 第1表は供試用の管寸法、その楕円量及び上記
矯正後の楕円量をまとめた表であり、比較のため
に同一の供試用管を従来の特開昭55−128318号の
方法により矯正した場合の結果を併せて示してい
る。
[Industrial Field of Application] The present invention relates to a method for straightening a pipe using an inclined opposing roll straightening machine, and more specifically, to straightening a bent pipe,
The present invention relates to a method for straightening a tube capable of improving roundness, particularly to improving roundness. [Prior Art] Various roll arrangement types are known as pipe straightening machines, for example, as shown in Fig. 4,
2. Description of the Related Art A straightening machine with a vertical roll arrangement of a so-called 6-roll type (2-2-2 type) with 3 pairs of slanted opposing rolls 1, 2, and 3 is known. In this straightening machine, among three pairs of opposing rolls, each of the upper rolls 1a, 2a, 3a on the entry side, intermediate side, and exit side and the lower roll 2b in the middle can be moved up and down by a screw type reduction device 4. Each lower roll 1b, 3b is fixed, and the roll interval of each roll 1, 2, 3 is made slightly smaller than the outside diameter of the pipe to apply pressure (crush) to the pipe P, and the intermediate upper and lower rolls 2a, 2b are The upper and lower rolls 1a, 1b on the input side and the upper and lower rolls 3a, 3 on the output side
deviate slightly above b (offset), enter side,
Upper rolls 1a, 3a on the exit side and lower roll 2 on the intermediate side
In step b, bending stress is applied to the tube to correct the bend. In this straightening, the tube outer diameter D and the roll interval A
Since the crushing amount δ, which is the difference between the Due to deformation, etc., the amount of crushing fluctuated together with the variation in the outside diameter D of the tube. FIG. 5 is a graph showing a mill rigidity curve X and a tube plasticity curve Y, with the roll gap and tube outer diameter plotted on the horizontal axis and the load plotted on the vertical axis. As mentioned above, there is a roll gap A' due to a setting error with respect to the set roll gap A, and there is also a tube outside diameter D' due to variations in the tube outside diameter D.
Therefore, with respect to the amount of crushing δ 0 when the roll gap is A and the outside diameter of the tube is D, the roll gap varies, and when this is A' and the outside diameter of the tube is D, the amount of crushing is δ 1 , and the variation in the outside diameter of the tube is When the roll gap is SA at D', the amount of crushing is δ 2 , which varies from process to process. Therefore, when the amount of crushing fluctuates in this manner, sufficient correction may not be made, and the amount of crushing may become excessive, resulting in residual stress that may cause stress corrosion cracking in the product. In order to prevent this residual stress from occurring, it is desirable to keep the amount of crushing constant within a predetermined range in the straightening process so that residual stress does not occur. The applicant of the present application proposed a method disclosed in Japanese Patent Application Laid-open No. 128318/1983 in order to properly correct the problem and prevent the generation of excessive residual stress. In this method, as shown in FIG. 6, among the rolls of an inclined opposed roll straightening machine, a hydraulic pressure lowering device, for example, a hydraulic pump 8 A device is provided in which the pressure oil sent from the constant pressure valve 9 is set at a predetermined pressure by a constant pressure valve 9 and can be supplied to the cylinders 7 attached to the rolls 1b, 3b, and 2a, respectively. Set from the amount of crushing you want to give to the pipe and the plasticity curve of the pipe,
This is a method in which the set pressure is kept constant and the pipe is straightened by a predetermined amount of crushing. [Problem to be solved by the invention] When correcting with this method, the set pressure is kept constant and the pressure below is kept constant, so the seventh
The mill stiffness curve is shown in the figure. FIG. 7, like FIG. 5, is a graph showing the mill stiffness curve As can be understood, the mill stiffness curve has a constant value above the load corresponding to the set pressure of the constant pressure valve 9, and therefore, even after correction, the pipe outer diameter D', which varies with respect to the pipe outer diameter D, remains constant. The amount of crushing δ 3 at this time is equal to the amount of crushing δ 0 when the tube outer diameter is D. In other words, the amount of crushing is the same at each position regardless of whether the pipe has a large outer diameter or a small outer diameter. Therefore, this method has the problem that although no residual stress is generated, it is difficult to improve the roundness of the tube. [Means for Solving the Problems] The present invention has been made in view of the above problems, and involves reducing the rolls for imparting crushing to the pipe at a predetermined hydraulic pressure using a hydraulic pressure reduction device, and also reducing the pressure of the rolls. A pipe that can straighten the bend of the pipe, prevent the generation of excessive residual stress, and improve roundness by preventing backflow of liquid in the hydraulic pressure reduction device when the force received from the pipe exceeds a specified pressure. The purpose is to provide a method for correcting this. A method for straightening a pipe according to the present invention is a method for straightening a bend in a pipe by passing a pipe between a pair of rolls equipped with at least a hydraulic pressure reducing device and applying a crush to the pipe, in which a hydraulic pressure is applied to drive the rolls to reduce pressure. A pressure regulator for the hydraulic pressure in the hydraulic cylinder is provided between the cylinder and the hydraulic pressure source, and the hydraulic pressure in the hydraulic cylinder is lower than the regulated hydraulic pressure by the force applied to the hydraulic cylinder from the roll side. In order to prevent the liquid from flowing back toward the hydraulic pressure source when the pressure rises, and to improve the roundness of the tube, the tube is lowered with a regulated hydraulic pressure or a higher hydraulic pressure, It is characterized by adding a crush. [Example] The present invention will be specifically described below based on the drawings.
FIG. 1 shows the present invention using an inclined facing six roll type (2-2-
2) is a schematic diagram showing an implementation state when applied to a vertical roll arrangement straightening machine, and P in the figure indicates a pipe to be straightened. The pipe P is the entrance roll 1 of the straightening machine,
The pipe is skewed in the longitudinal direction of the pipe axis (in the direction of the white arrow) by intermediate rolls 2 and exit rolls 3, and the straightening machine applies a predetermined offset amount and required crush amount to the pipe P between rolls 1, 2, and 3. It is configured so that it can be granted. Conventional screw-type lowering devices 4, 4, 4 are provided on each of the upper rolls 1a, 3a on the entry side and the exit side, and the intermediate lower roll 2b, respectively, for adjusting the roll position.
The height of each of these rolls 1a, 2b, 3a is adjusted by means of rolling down devices 4, 4, 4, respectively, so as to apply a predetermined amount of offset to the pipe P. The pivot parts of the lower entry roll 1b and the lower exit roll 3b are supported by single acting cylinders 11, 11 which are part of the hydraulic lowering devices 10, 10.
The height of b, 3b and the pipe pressure reduction force are determined by the hydraulic pressure reduction device 10,
It is designed to be adjusted at 10. The single-acting cylinders 11, 11 have cylinder tubes attached to pivot supports of the rolls 1b, 3b with the cylinder rods facing downward, and the cylinder rods are fixed. In the rod advance oil chamber 11a of the single-acting cylinder 11, there is a throttle valve 1 with a check valve that allows the pressure oil sent out at a sufficiently high pressure from the hydraulic pump 16 to return freely.
5 to a proportional electromagnetic pressure reducing valve 13 with variable secondary pressure, and pressure oil reduced to its set pressure is supplied via a check valve 12. Further, a bypass passage 10b for returning pressure oil is connected from the cylinder side of the check valve 12 to the pump side of the pressure reducing valve 13, and a check valve 14 is attached to the bypass passage 10b. Therefore, the pressure inside the single acting cylinder 11 of the hydraulic pressure reduction device 10 becomes the pressure set in the pressure reducing valve 13, but
When the pressure in the oil chamber 11a becomes higher than the set pressure of the pressure reducing valve 13 due to the force received from the roll 1b of the single-acting cylinder 11, the pressure on the pump side of the check valve 14 is sufficiently high, so that Pressure oil does not return, and the pipe P is crushed with the same force as the force that the single acting cylinder 11 receives from the roll 1b. Note that when the pressure in the oil chamber 11a becomes higher than the set pressure of the pressure reducing valve 13 and higher than the pump side pressure, the pressure oil returns to the pump side via the check valve 14, and the pressure oil returns to the pump side via the check valve 14. A relief valve (not shown) provides for drainage to a tank. The pivot portion of the intermediate upper roll 2a is supported by a double-acting cylinder 21 that is a part of the hydraulic lowering device 20 and a fixed screw type lowering device 4, and the height of the roll 2a is determined by the hydraulic lowering device 20. and a screw-type rolling down device 4, and the pipe rolling force of the roll 2a is adjusted by a hydraulic rolling down device 20. The double-acting cylinder 21 has a cylinder tube attached to the pivot portion of the roll 2a with the cylinder rod facing upward, and the cylinder rod serves as a screw for the lowering device 4. The hydraulic lowering device 20 is configured to be able to press the roll 2a downward and lift it upward, and a sufficiently high pressure is applied from the hydraulic pump 25 to the (lower) oil chamber 21a for rod advancement of the double-acting cylinder 21. The pressure oil sent out is supplied to a proportional electromagnetic pressure reducing valve 23 with variable secondary pressure, and the pressure oil reduced to the set pressure is supplied via a check valve 22. Further, a bypass passage 20b for returning pressure oil is connected from the cylinder side of the check valve 22 to the pump side of the pressure reducing valve 23.
A check valve 24 is provided at b. In addition, a hydraulic pump 26 is provided in the (upper) oil chamber 21b for rod entry and exit.
The pressure oil sent out from the roll is supplied to the constant pressure valve 25 so as to be maintained at a constant pressure corresponding to the weight of the roll. Therefore, the oil chamber 2 for advancing the rod of the double-acting cylinder 21
The pressure inside 1a becomes the pressure set in the pressure reducing valve 23, but due to the force received from the roll 2a, the oil chamber 21a
When the pressure becomes higher than the set pressure of the oil chamber 21a, the pressure on the pump side of the check valve 24 is sufficiently high so that pressure oil does not return through the check valve 24, and the roll 2a of the oil chamber 21a
The pipe P is crushed with the same force as the force received from the pipe P. Since the pressure in the oil chamber 21b is set to a value corresponding to the weight of the roll, the hydraulic lowering device 20,
The double-acting cylinder 21 is not affected by the roll's own weight, and can adjust the pressure force applied to the pipe P by the roll 2a based on the pressure difference between the oil chambers 21a and 21b. Note that optical sensors (not shown) are installed on the entry and exit sides of each roll 1, 2, and 3, and while these detect the presence of a pipe between each roll, they do not output a detection signal. The input control device (not shown) includes a valve (not shown) provided between the hydraulic pump 16 and the throttle valve with check valve 15 and a valve provided between the hydraulic pump 26 and the pressure reducing valve 23 (not shown). (not shown) to supply pressure oil sent from the hydraulic pumps 16 and 26 to each oil chamber. The straightening method of the present invention, which aims to straighten the bending of a tube and improve its roundness using the straightening machine configured as described above, will be described below. First, transfer of the rolled pipe P is started. When the tip of the pipe P enters the entrance roll 1, an optical sensor (not shown) detects this, and this detection causes a control device (not shown) to adjust the mill stiffness curve X and the pipe plasticity curve Y shown in FIG. Based on this, a valve (not shown) is switched to supply oil to the pressure reducing valve 13, which is set at a pressure determined to provide a predetermined amount of crushing δ 0 when the pipe outer diameter D is close to the nominal value. As a result, the tip of the tube begins to be compressed as soon as it enters the roll 1, and the pressure reduction position of the roll 1b is at the pressure reducing valve 13.
The position will be the roll gap where the oil pressure determined by is obtained. As shown in Fig. 2, if the roll gap at this time is A and the outer diameter of the tube tip is D, the amount of crushing will be δ 0 , but due to the action of the pressure reducing valve 13, it will be D'' which is smaller than the tube outer diameter D. Also, even if A' is smaller than the roll gap A, the rolling load is uniform, so the crushing amount is constant at δ 0. However, for example, if D' is larger than D, the check valve Due to the action of 12, the oil pressure in the oil chamber 11 increases, the rolling load increases, and the amount of crushing becomes δ 4 (>δ 0 ).
becomes. Now, as the pipe P is transferred and the pipe outer diameter D becomes smaller as shown in FIG. Then, the roll gap becomes smaller [FIG. 3B] and a predetermined amount of crushing δ 0 is applied to the pipe P [FIG. 3D]. When the outside diameter of the pipe starts to increase after reaching the minimum value D1 , the presence of the check valve 12 prevents the pressure oil from flowing back, and the third
As shown in Figure C, the roll gap is fixed at A 1 when D 1 , so in the subsequent portion with a diameter larger than D 1 , the crush amount larger than the crush amount δ 0 will be the same as the outer diameter D 1 . It continues to be applied to the tube P until it becomes the same [Fig. 3 D]. The outer diameter of the tube is further reduced to D 2
(D 2 <D 1 ), the pressure reducing valve 13
The roll gap is reduced to A2 by the action of
A crash amount δ 0 is given. When the pipe diameter is larger than D2 , the oil chamber 11a
The internal oil pressure increases again, and the amount of crushing becomes a value larger than δ 0 . The mill stiffness curve X at roll gap A 1 when the minimum value D 1 is taken is shown by the two-dot chain line in Fig. 2, but in the changing region from D'' to D', the load exceeds the plateau. , the amount of crushing is larger than δ 0 , for example δ 5. The above-mentioned crushing is similarly performed by rolls 2 and 3. As a result, δ 0 is applied over the entire length of the pipe.
A large amount of crushing is applied to the circumferential portion of the tube where the outer diameter is larger than the diameter of the tip of the tube, resulting in high roundness. When the rear end of the tube exits each roll 1, 2, and 3, valves (not shown) between the throttle valve with a check valve and the hydraulic pump and between the pressure reducing valve and the hydraulic pump are switched to communicate these spaces with the tank. As a result, each cylinder 11,
21 internal pressure oil flows back to the tank from the check valves 14, 24. Note that the present invention can improve the roundness of a pipe even when the purpose is not to straighten the bend of the pipe and an offset is not applied to the pipe. The present invention also makes it possible to maintain a constant load when applying crushing to a pipe of a predetermined outer diameter even when the roll gap A' is set or changed from the target set value A due to variations in the roll gap. Therefore, a predetermined amount of crushing can be applied to the pipe in a range below a predetermined pipe outer diameter, and an increased amount of crushing can be applied at a circumferential position of the pipe larger than the predetermined pipe outer diameter. Therefore, the present invention can improve the roundness even when the roll gap changes or when the roll gap is set differently. Further, in the above embodiment, the cylinder tube is attached to the pivot portion of the roll, but it goes without saying that the present invention can also be practiced by attaching the cylinder rod to the pivot portion of the roll with the direction of the cylinder rod reversed. . Furthermore, in the above embodiment, each hydraulic pressure lowering device 1
Check valves 12 and 22 are installed at 0 and 20, but if the pipe is poorly round, the cylinder rod advances and retracts rapidly and the response of the pressure reducing valve is delayed, causing problems with the check valves 12 and 22. This can be omitted since it has the same effect. Furthermore, the present invention is directed to a 6-roll type (2-2-
Of course, it can be applied not only to the vertical roll arrangement straightening machine (type 2) but also to other inclined opposing roll type straightening machines, such as 5-roll type, 6-roll type straightening machines, horizontal roll arrangement straightening machines, etc. However, when the present invention is applied to a horizontal roll arrangement straightening machine, it can be implemented even if all single-acting cylinders are used since the weight of the rolls does not affect the tube pressure of the rolls. Further, in the above embodiment, pressure oil is used to operate the cylinder, but the present invention is not limited to this and can be implemented using other liquids. [Effects] Next, the effects of the present invention will be explained. The present invention corrects bends in pipes, prevents excessive residual stress,
In order to improve roundness, the rolling force range is 7.5 to 68 tons for single-acting cylinders, and 0 for double-acting cylinders.
Test tubes with different amounts of ellipse were straightened as ~60.5 tons. Table 1 is a table summarizing the dimensions of the sample tube, its ellipse amount, and the ellipse amount after the above-mentioned correction.For comparison, the same sample tube was straightened using the conventional method disclosed in JP-A No. 128318/1983. The results are also shown.

【表】 この表より理解される如く、比較例では矯正前
の楕円量の2割程度が矯正されるに過ぎないが、
本発明では矯正前の楕円量が始めから小さい外径
114mm×厚み5mmの管を除いて他の管では矯正前
楕円量の9割以上を矯正でき、真円度の高い管を
製造できた。 以上詳述した如く本発明は管の外径が大きい周
位置では所定のクラツシユ量より大きく、また外
径が小さい周位置では所定のクラツシユ量となる
ように管外面形状に応じて矯正量を自動的に変化
させて管を矯正するので真円度が高く、また当然
のことながら残留応力が抑制された、曲がりのな
い管を製造できる等優れた効果を奏する。
[Table] As can be understood from this table, in the comparative example, only about 20% of the ellipse before correction was corrected, but
In the present invention, the ellipse amount before correction has a small outer diameter from the beginning.
With the exception of the 114 mm x 5 mm thick tube, more than 90% of the ellipse before correction could be corrected for the other tubes, making it possible to manufacture tubes with high roundness. As detailed above, the present invention automatically adjusts the amount of correction according to the shape of the outer surface of the tube so that the amount of crushing is greater than the predetermined amount at circumferential positions where the outer diameter of the tube is large, and the amount of crushing is greater than the predetermined amount at circumferential positions where the outer diameter is small. Since the tube is straightened by changing the angle of the tube, it has excellent effects such as high roundness, suppressing residual stress, and making it possible to manufacture a tube without bending.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施状態を示す模式図、第2
図は本発明のロール荷重説明図、第3図は本発明
の矯正方法の説明図、第4図、第6図は従来の矯
正機の模式図、第5図、第7図はその矯正内容説
明図である。 P……管、1,2,3……ロール、10,20
……油圧圧下装置。
Figure 1 is a schematic diagram showing the implementation state of the present invention, Figure 2 is a schematic diagram showing the implementation state of the present invention.
The figure is an explanatory diagram of the roll load of the present invention, Figure 3 is an explanatory diagram of the straightening method of the present invention, Figures 4 and 6 are schematic diagrams of a conventional straightening machine, and Figures 5 and 7 are the contents of the correction. It is an explanatory diagram. P...Pipe, 1,2,3...Roll, 10,20
...Hydraulic lowering device.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも液圧圧下装置を備えたロールの対
の間に管を通し、これにクラツシユを与えて管の
曲がりを矯正する方法において、ロールを圧下駆
動する液圧シリンダと液圧源との間に液圧シリン
ダ内の液圧の調圧器を設けると共に、ロール側か
ら液圧シリンダに与えられる力により液圧シリン
ダ内の液圧が調圧された液圧よりも上昇した場合
に液圧源側への液体の逆流を防止すべくなし、前
記管の真円度を向上せしめるべく、調圧された液
圧又はそれ以上の液圧にて管を圧下して、クラツ
シユを付与することを特徴とする管の矯正方法。
1. In a method of straightening a bend in a pipe by passing a pipe between a pair of rolls equipped with at least a hydraulic pressure reducing device and applying a crush to the pipe, there is a method in which a pipe is passed between a pair of rolls equipped with at least a hydraulic pressure reducing device, and a pipe is passed between a hydraulic cylinder that drives the rolls to reduce pressure and a hydraulic pressure source. In addition to providing a pressure regulator for the hydraulic pressure in the hydraulic cylinder, if the hydraulic pressure in the hydraulic cylinder rises above the regulated hydraulic pressure due to the force applied to the hydraulic cylinder from the roll side, a pressure regulator is provided to the hydraulic pressure source side. In order to prevent backflow of the liquid, and to improve the roundness of the pipe, the pipe is compressed with a regulated hydraulic pressure or a higher hydraulic pressure to impart a crush. How to straighten the tube.
JP23693184A 1984-11-09 1984-11-09 Straightening method of pipe Granted JPS61115619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23693184A JPS61115619A (en) 1984-11-09 1984-11-09 Straightening method of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23693184A JPS61115619A (en) 1984-11-09 1984-11-09 Straightening method of pipe

Publications (2)

Publication Number Publication Date
JPS61115619A JPS61115619A (en) 1986-06-03
JPH0442095B2 true JPH0442095B2 (en) 1992-07-10

Family

ID=17007872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23693184A Granted JPS61115619A (en) 1984-11-09 1984-11-09 Straightening method of pipe

Country Status (1)

Country Link
JP (1) JPS61115619A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394398B1 (en) * 2000-08-03 2003-08-09 조청조 Straightening roll device for tube mill pipe
CN100402173C (en) * 2006-06-05 2008-07-16 洛阳锐腾机械设备有限公司 Combination system for servo-roll-separating and quick-backward of cross-roll straightening machine
CN100434202C (en) * 2006-12-22 2008-11-19 洛阳锐腾机械设备有限公司 Two-stage tandem cross roll straightener bite servo and regulating system
JP2008173643A (en) * 2007-01-16 2008-07-31 Sumitomo Metal Ind Ltd Manufacturing method, straightening method and strength adjusting method of duplex stainless steel tube and method of operating straightening machine for duplex stainless steel tube
JP6155153B2 (en) * 2013-09-26 2017-06-28 古河ロックドリル株式会社 Hydraulic breaker

Also Published As

Publication number Publication date
JPS61115619A (en) 1986-06-03

Similar Documents

Publication Publication Date Title
RU2346773C2 (en) Method for flattening of metal tape
CN1052803A (en) The thickness control system of milling train
KR100310587B1 (en) Rolling mill and rolling method
JPH0442095B2 (en)
CN111346926A (en) Control method for roll bending force of temper mill
US5115653A (en) Method of straightening rolled material
EP3288694B1 (en) Method for induction bend forming a compression-resistant pipe having a large wall thickness and a large diameter and induction pipe bending device
CN105290116B (en) Method for controlling transverse rolling width and longitudinal rolling width of moderately-thick plate
RU2412016C1 (en) Method of tube production at tube continuous welding machines
JPH0698397B2 (en) Metal tube straightening method and straightening machine
JP3281593B2 (en) Steel sheet thickness control method
JPH11123457A (en) Crowning device of roller leveler and lateral deflection correcting method using the device
WO1981001114A1 (en) Method of controlling width of plate
JP2861854B2 (en) Flattening method of tapered thick steel plate
JP6451696B2 (en) Steel plate straightening method using roll leveler and roll leveler
JPH09239426A (en) Side guide device and method for adjusting opening degree thereof
JP2002210513A (en) Method for preventing camber and wedge in hot rolling
JPH0470089B2 (en)
JP6520864B2 (en) Method and apparatus for controlling plate thickness of rolling mill
RU1835328C (en) Boring machine
JP2688339B2 (en) Method and apparatus for straightening metal long material by roller leveler
JPH0584507A (en) Method for controlling hydraulic driving type side guide for roughing mill
JPS6323856B2 (en)
JP4355094B2 (en) Coarse universal rolling method for section steel with flange
RU1413789C (en) Method for pipe manufacture on continuous pipe welding aggregates