JPS6111560B2 - - Google Patents

Info

Publication number
JPS6111560B2
JPS6111560B2 JP52107059A JP10705977A JPS6111560B2 JP S6111560 B2 JPS6111560 B2 JP S6111560B2 JP 52107059 A JP52107059 A JP 52107059A JP 10705977 A JP10705977 A JP 10705977A JP S6111560 B2 JPS6111560 B2 JP S6111560B2
Authority
JP
Japan
Prior art keywords
divided
winding
windings
armature winding
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52107059A
Other languages
Japanese (ja)
Other versions
JPS5439806A (en
Inventor
Yoshikatsu Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10705977A priority Critical patent/JPS5439806A/en
Publication of JPS5439806A publication Critical patent/JPS5439806A/en
Publication of JPS6111560B2 publication Critical patent/JPS6111560B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はサイリスタモータ、インバータモータ
の如くサイリスタ変換装置を介して電源から給電
を受ける電動機、或いは整流器回路を負荷とする
交流発電機など、電機子に整流器回路を接続して
組合せ使用される回転電機の電機子巻線に関し、
その目的は電機子巻線中に通流する高調波成分を
含む矩形波電流に基づいて発生する脈動トルクを
消去ないしは大巾に低減させることにある。 頭記の如き回転電機の一例として第1図にサイ
リスタモータを示す。図において1は同期機とし
てなる電動機、2は電源回路であり、電動機1の
電機子巻線3は周知のコンバーターインバータか
らなるサイリスタ変換装置4を介して電源回路2
より給電されるよう接続されている。かかる回転
電機ではサイリスタ変換装置4における整流素子
および直流回路の平滑リアクトルにより、電機子
電流波形は不連続矩形波状となる。かかる不連続
矩形波は周知の如く基本波のほかに周波数の異な
る高調波成分を多く含んでおり、このうち特に大
きい成分はフーリエ級数分析から明かなように、
第5次、第7次、第11次、第13次の高調波成分で
ある。即ち電機子巻線には周波数の基本波電流
のほかに上記の高調波電流が流れる。かかる各成
分の電流によつて生成される回転磁界のうち、第
5次、第11次成分による周波数5、11の回転
磁界φ5、φ11は基本波による回転磁界φ1と逆
方向に回転する。一方第7次、第13次成分による
周波数7、13の回転磁界φ7、φ13は基本波
と同方向に回転する。従つて電機子巻線と鎖交す
る界磁極の回転磁界に対する前記第5次、第7次
回転磁界の相対速度はいずれも6、また第11
次、第13次回転磁界の相対速度はいずれも12と
なり、この結果回転電機には周波数6、12の
脈動トルクが発生する。なお更に高次の高調波成
分による脈動トルクも同様である。かかる脈動ト
ルクは軸の振動をもたらすだけで有効トルクとは
なり得ず、このために共振を起した際には構造部
品の破損に至る恐れもあつて、できる限り脈動ト
ルクの発生を防止することが望まれる。 かかる点にかんがみ、本発明は脈動トルク発生
の要因となる高周波回転磁界を消去ないしは低減
させることによつて脈動トルク、特に大きな成分
を占める周波数6、12の脈動トルクの発生を
防止ないしは大巾に低減できるようにしたことを
目的としたものであり、かかる目的達成のために
本発明によれば電機子巻線が第1、第2、第3の
3組からなる分割巻線より構成され、空間的には
第1分割巻線に対して第2、第3分割巻線をそれ
ぞれ20゜、40゜の位相差だけずれた位置に配置す
るとともに、時間的には基本波を基準として第1
分割巻線に対し第2、第3分割巻線との間にそれ
ぞれほぼ20゜、40゜の位相差を設定して通電する
如くなすことにより、各分割巻線を通流する高次
の高周波電流によつて生じる回転磁界をベクトル
的に相殺するようにしたことを要旨とする。 次に本発明の構成並びに動作を図示の実施例に
基づいて詳細に説明する。第2図において、電機
子巻線3は各相巻線UA,VA,WAからなる第1
のA分割巻線と、各相巻線UB,VB,WBからな
る第2のB分割巻線と、各相巻線UC,VC,WC
からなる第3のC分割巻線とより構成されてい
る。なお図示例では各分割巻線がスター結線であ
るが、デルタ結線でもよい。かかるA、B、Cの
第1、第2、第3分割巻線は、A分割巻線を基準
としてB分割巻線が空間的に電気角でαAB=20゜
だけ進んだ位置に巻装配置され、更にC分割巻線
が電気角αAC=40゜だけ進んだ位置に巻装配置さ
れている。しかも各分割巻線はそれぞれ別個のサ
イリスタ変換装置4を介して電源2に接続されて
おり、各サイリスタ変換装置4の制御角位相制御
により第1のA分割巻線に対し基本波電圧を基準
として第2、第3のB、C分割巻線にはそれぞれ
時間的にαAB=20゜、θAC=40゜だけ遅れた位相
の電圧が印加されるよう定められている。なお図
示における各分割巻線の巻数比はWA:WB:WC
=1:1:1に定められている。 上記構成によれば、空間的に電気角20゜、40゜
の位相差が設定された第1、第2、第3のA、
B、C分割巻線に対し、時間的に基本波基準で20
゜、40゜だけ位相のずれた各高調波成分の電流が
通流する。この結果A、B、C各分割巻線への第
5次、第7次高調波電流による周波数5、7
の回転磁界φ5A、φ5B、φ5C、およびφ7A、φ
7B、φ7Cのベクトル図は第3図a,bの如くな
る。即ち回転磁界φ5Aに対して、φ5Bは空間的
位相差αAB=20゜に加えて時間的位相差20゜×5
=100゜だけ遅れるから合計120゜の位相差とな
る。またφ5Cは空間的位相差αAC=40゜と時間
的位相差40゜×5=200゜との合計となり240゜の
位相差となる。しかもφ5A、φ5B、φ5Cの大き
さは等しいことからこの結果、図から明かなよう
にφ5A、φ5B、φ5Cのベクトル総和はφ〓5A+φ〓
5B+φ〓5C=0となり、第5次の回転磁界は消滅
する。同様に回転磁界φ7A、φ7B、φ7Cは第3
図bの如くそれぞれ120゜づつ位相差となり、そ
のベクトル総和は0となる。なお第7次成分の回
転磁界は第5次成分と回転方向が逆であり空間的
な遅れ位相角20゜、40゜に対して時間的位相差が
逆向きに加わる。以上の結果を整理して式で表わ
せば次の如くなる。
The present invention applies to rotating electric machines that are used in combination with a rectifier circuit connected to an armature, such as a thyristor motor or an inverter motor that receives power from a power source through a thyristor conversion device, or an alternator that uses a rectifier circuit as a load. Regarding the armature winding of
The purpose is to eliminate or greatly reduce the pulsating torque generated based on the rectangular wave current containing harmonic components flowing through the armature winding. A thyristor motor is shown in FIG. 1 as an example of the above-mentioned rotating electric machine. In the figure, 1 is a motor as a synchronous machine, 2 is a power supply circuit, and the armature winding 3 of the motor 1 is connected to the power supply circuit 2 via a thyristor conversion device 4 consisting of a well-known converter/inverter.
connected to receive more power. In such a rotating electric machine, the armature current waveform becomes a discontinuous rectangular waveform due to the rectifying element in the thyristor conversion device 4 and the smoothing reactor of the DC circuit. As is well known, such a discontinuous rectangular wave contains many harmonic components with different frequencies in addition to the fundamental wave, and as is clear from Fourier series analysis, the particularly large component among these components is
These are the 5th, 7th, 11th, and 13th harmonic components. That is, in addition to the fundamental wave current of the frequency, the above-mentioned harmonic current flows through the armature winding. Among the rotating magnetic fields generated by the current of each component, the rotating magnetic fields φ5 and φ11 of frequencies 5 and 11 due to the 5th and 11th order components rotate in the opposite direction to the rotating magnetic field φ1 due to the fundamental wave. On the other hand, rotating magnetic fields φ7 and φ13 of frequencies 7 and 13 due to the 7th and 13th order components rotate in the same direction as the fundamental wave. Therefore, the relative speeds of the fifth and seventh rotating magnetic fields with respect to the rotating magnetic field of the field poles interlinking with the armature winding are both 6 and 11th.
The relative speeds of the next and 13th order rotating magnetic fields are both 12, and as a result, pulsating torques of frequencies 6 and 12 are generated in the rotating electric machine. Furthermore, the same applies to pulsating torque due to higher-order harmonic components. Such pulsating torque only causes vibration of the shaft and cannot be used as an effective torque. Therefore, when resonance occurs, there is a risk of damage to the structural parts, so it is necessary to prevent the occurrence of pulsating torque as much as possible. is desired. In view of this, the present invention eliminates or reduces the high-frequency rotating magnetic field that causes the generation of pulsating torque, thereby preventing or greatly reducing the generation of pulsating torque, especially pulsating torque at frequencies 6 and 12, which account for large components. In order to achieve this objective, according to the present invention, the armature winding is composed of divided windings consisting of three sets of first, second, and third sets, Spatially, the second and third divided windings are arranged at positions shifted by a phase difference of 20° and 40°, respectively, with respect to the first divided winding, and temporally, the first
By setting a phase difference of approximately 20° and 40° between the divided winding and the second and third divided windings, respectively, and energizing the divided winding, a high-order high-frequency wave is passed through each divided winding. The gist is that the rotating magnetic field generated by the current is offset vectorially. Next, the configuration and operation of the present invention will be explained in detail based on illustrated embodiments. In FIG. 2, the armature winding 3 is a first winding consisting of each phase winding U A , V A , W A .
a second B-divided winding consisting of each phase winding U B , V B , W B , and each phase winding U C , V C , W C
and a third C-divided winding. Although each divided winding is star-connected in the illustrated example, it may be delta-connected. The first, second, and third divided windings of A, B, and C are wound at positions where the B divided winding is spatially advanced by α AB = 20 degrees in electrical angle with respect to the A divided winding. Further, a C-divided winding is wound at a position advanced by an electrical angle α AC =40°. Furthermore, each divided winding is connected to the power supply 2 via a separate thyristor converter 4, and by controlling the angle and phase of each thyristor converter 4, the fundamental wave voltage is set as a reference for the first A divided winding. It is determined that voltages whose phases are delayed by α AB =20° and θ AC =40° in time are applied to the second and third B and C divided windings, respectively. The turns ratio of each divided winding in the diagram is W A : W B : W C
=1:1:1. According to the above configuration, the first, second, and third A, which are spatially set to have phase differences of 20° and 40° in electrical angle,
For B and C divided windings, time is 20 on the basis of the fundamental wave.
The current of each harmonic component whose phase is shifted by 40° flows. As a result, the frequencies 5 and 7 due to the 5th and 7th harmonic currents to the divided windings A, B, and C.
The rotating magnetic field of φ5A, φ5B, φ5C, and φ7A, φ
The vector diagrams of 7B and φ7C are shown in Figure 3 a and b. That is, for a rotating magnetic field φ5A, φ5B has a temporal phase difference of 20° x 5 in addition to a spatial phase difference α AB = 20°.
= 100° delay, resulting in a total phase difference of 120°. Further, φ5C is the sum of the spatial phase difference α AC =40° and the temporal phase difference 40°×5=200°, resulting in a phase difference of 240°. Furthermore, since the sizes of φ5A, φ5B, and φ5C are equal, as a result, as is clear from the figure, the vector sum of φ5A, φ5B, and φ5C is φ〓5A+φ〓
5B+φ〓5C=0, and the fifth-order rotating magnetic field disappears. Similarly, the rotating magnetic fields φ7A, φ7B, and φ7C are the third
As shown in Figure b, each has a phase difference of 120°, and the vector sum is 0. Note that the rotating magnetic field of the seventh-order component has a rotation direction opposite to that of the fifth-order component, and a temporal phase difference is applied in the opposite direction to the spatial delay phase angles of 20° and 40°. If we organize the above results and express them in the formula, we get the following.

【表】【table】

【表】【table】

【表】【table】

【表】 上記の動作は回転磁界の周波数が6g±1(但
しgが3の倍数である場合を除く)である時に成
立し、この結果、周波数が6、12、24、30
、……………など6(3n+1)、および6
(3n+2)(但しn=0、1、2、…………
…)の脈動トルクの発生は防止される。加えて前
述の如く高周波の回転磁界が消滅されることによ
り、回転電機に生じる銅損、鉄損も減少し、効率
を向上させることができる。 第2図に示した実施例では、A、B、C分割巻
線の相互間に20゜、40゜の時間的位相差を設定す
るために、各独立したサイリスタ変換装置4を必
要とするほか、電機子巻線3の各端子をスリツプ
リングを介して導出する場合には9個のスリツプ
リングを必要とする。この点の改善を図るよう第
1、第2、第3の各分割巻線を第4図の実施例の
如く結線して構成することにより、外部導出端子
U,V,Wは3個のみでよく、かつサイリスタ変
換装置も一基備えるのみで済む。即ち第4図の実
施例では、第1分割巻線は各相巻線UA,VA,W
Aからなるスター形結線のA分割巻線としてな
り、このA分割巻線に対し、第2、第3のB、C
分割巻線はそれぞれ図示の如く前記A分割巻線に
おける各相巻線UA,VA,WAの中央点と隣り合
う異相の外部導出端子U,V,Wとの間に跨つて
接続されたた各相巻線UB,VB,WB、およびU
C,VC,WCからなる。なおA、B、C各分割巻
線は第2図と同様に、A分割巻線を基準として
B、C分割巻線は空間的位相差がそれぞれ電気角
でαAB=20゜、αAC=40゜に設定されている。か
かる実施例の結線によれば、基本波を基準として
A分割巻線に対し、B、C分割巻線との間の時間
的位相差はθAB=19.1゜、θAC=40.9゜となり、
ほぼ20゜、40゜に近い位相差が設定される。なお
第4図の実施例ではA、B、C各分割巻線の巻数
比はWA:WB:WC=1:1.35:1.35ないしはそ
れに近い値に設定される。一例として第4図の結
線に対し実用的な巻数比WA,WB,WC=3:
4:4の例につき、各高調波回転磁界の低減度を
試算したところによれば、従来の電機子巻線と比
較してφ5=4.8%、φ7=6・7%、φ11=9.2
%、φ13=10.7%にまで低減させることができ
る。 以上述べたように本発明によれば、脈動トルク
の発生要因となる高調波成分の回転磁界を巧みに
分割巻線により相殺して消滅ないしは大巾に低減
させ、これにより脈動トルク、特に周波数6、
12など6(3n+1)、6(3n+2)の脈
動トルクの発生を良好に抑制できる優れた効果が
奏せられる。
[Table] The above operation is valid when the frequency of the rotating magnetic field is 6g±1 (except when g is a multiple of 3), and as a result, the frequency is 6, 12, 24, 30
, etc. 6(3n+1), and 6
(3n+2) (however, n=0, 1, 2,……
), the generation of pulsating torque is prevented. In addition, as the high-frequency rotating magnetic field is eliminated as described above, the copper loss and iron loss occurring in the rotating electric machine are also reduced, making it possible to improve efficiency. In the embodiment shown in FIG. 2, separate thyristor converters 4 are required in order to set temporal phase differences of 20° and 40° between the A, B, and C divided windings. If each terminal of the armature winding 3 is led out through a slip ring, nine slip rings are required. In order to improve this point, the first, second, and third divided windings are connected and configured as in the embodiment shown in Fig. 4, so that only three external lead-out terminals U, V, and W are required. It is easy to use, and only requires one thyristor conversion device. In other words, in the embodiment shown in FIG. 4, the first divided winding includes each phase winding U A , V A , W
It is a star-connected A-divided winding consisting of A , and for this A-divided winding, the second and third B, C
As shown in the figure, each of the divided windings is connected between the center point of each phase winding U A , V A , W A in the A divided winding and the adjacent external lead-out terminals U, V, W of different phases. Each phase winding U B , V B , W B , and U
It consists of C , Vc , and Wc . Note that the A, B, and C divided windings have spatial phase differences in electrical angle of α AB = 20° and α AC = It is set at 40°. According to the wiring connection of this embodiment, the temporal phase difference between the A-divided winding and the B and C-divided windings is θ AB =19.1° and θ AC =40.9°, with the fundamental wave as a reference.
A phase difference of approximately 20° and close to 40° is set. In the embodiment shown in FIG. 4, the turns ratio of each of the divided windings A, B, and C is set to W A :W B :W C =1:1.35:1.35 or a value close to it. As an example, the practical turns ratio W A , W B , W C =3 for the connection shown in FIG. 4:
According to the trial calculation of the degree of reduction of each harmonic rotating magnetic field for the 4:4 example, compared to the conventional armature winding, φ5 = 4.8%, φ7 = 6.7%, φ11 = 9.2
%, φ13=10.7%. As described above, according to the present invention, the rotating magnetic field of harmonic components that cause pulsating torque is skillfully canceled out by the divided windings, and is eliminated or greatly reduced. ,
The excellent effect of suppressing the generation of pulsating torque of 6(3n+1) and 6(3n+2) such as 12 can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象となる回転電機の例とし
て示したサイリスタモータの回路図、第2図は本
発明一実施例の結線図、第3図a,bは本発明実
施例による動作説明のためのベクトル図、第4図
は本発明の他の実施例を示す結線図である。 1:回転電機、2:電源回路、3:電機子巻
線、4:整流器回路としてのサイリスタ変換装
置、UA,VA,WA:第1分割巻線、UB,VB
B:第2分割巻線、UC,VC,WC:第3分割巻
線、αAB,αAC:空間的な位相差、θAB,θAC
時間的な位相差。
Fig. 1 is a circuit diagram of a thyristor motor shown as an example of a rotating electric machine to which the present invention is applied, Fig. 2 is a wiring diagram of an embodiment of the present invention, and Fig. 3 a and b are explanations of operation according to an embodiment of the present invention. FIG. 4 is a wiring diagram showing another embodiment of the present invention. 1: Rotating electric machine, 2: Power supply circuit, 3: Armature winding, 4: Thyristor conversion device as a rectifier circuit, U A , V A , W A : First divided winding, U B , V B ,
W B : Second divided winding, U C , V C , W C : Third divided winding, α AB , α AC : Spatial phase difference, θ AB , θ AC :
Temporal phase difference.

Claims (1)

【特許請求の範囲】 1 電機子巻線に整流器回路を接続して組合せ使
用される回転電機において、電機子巻線が第1、
第2、第3の3組からなる分割巻線より構成さ
れ、空間的に第1分割巻線に対して第2、第3分
割巻線をそれぞれ電気角で20゜、40゜の位相差だ
けずれた位置に配置するとともに、時間的には基
本波を基準として第1分割巻線に対し第2、第3
分割巻線との間にそれぞれほぼ20゜、40゜の位相
差を設定して通電する如くしたことを特徴とする
回転電機の電機子巻線。 2 特許請求の範囲第1項記載の電機子巻線にお
いて、相互間に電気角で20゜、40゜の空間的位相
差を定めて配設された3組の分割巻線が、スター
形結線の第1分割巻線と、第1分割巻線に対しそ
れぞれほぼ20゜、40゜の時間的位相差を設定する
よう前記第1分割巻線を構成する各相巻線の中央
部と異相の外部導出端子との間に跨つて接続され
た第2、第3分割巻線とより構成されていること
を特徴とする回転電機の電機子巻線。
[Claims] 1. In a rotating electric machine that is used in combination with a rectifier circuit connected to an armature winding, the armature winding has a first
Consisting of three sets of divided windings, the second and third, the second and third divided windings have a spatial phase difference of 20° and 40° in electrical angle, respectively, with respect to the first divided winding. In addition, the second and third divided windings are placed at different positions, and the second and third divided windings are placed at different positions relative to the first divided winding with respect to the fundamental wave.
An armature winding for a rotating electrical machine characterized by having a phase difference of approximately 20° and 40° between the divided windings so as to conduct electricity. 2. In the armature winding described in claim 1, three sets of divided windings arranged with spatial phase differences of 20° and 40° in electrical angle are arranged in a star configuration. The first divided winding of 1. An armature winding for a rotating electrical machine, comprising a second and third divided winding connected across an external lead-out terminal.
JP10705977A 1977-09-06 1977-09-06 Armature winding of revolving electrical machinery Granted JPS5439806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10705977A JPS5439806A (en) 1977-09-06 1977-09-06 Armature winding of revolving electrical machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10705977A JPS5439806A (en) 1977-09-06 1977-09-06 Armature winding of revolving electrical machinery

Publications (2)

Publication Number Publication Date
JPS5439806A JPS5439806A (en) 1979-03-27
JPS6111560B2 true JPS6111560B2 (en) 1986-04-03

Family

ID=14449446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10705977A Granted JPS5439806A (en) 1977-09-06 1977-09-06 Armature winding of revolving electrical machinery

Country Status (1)

Country Link
JP (1) JPS5439806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158470U (en) * 1988-04-20 1989-11-01
JPH0228473U (en) * 1988-08-10 1990-02-23
JPH047104Y2 (en) * 1986-02-04 1992-02-26

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047104Y2 (en) * 1986-02-04 1992-02-26
JPH01158470U (en) * 1988-04-20 1989-11-01
JPH0228473U (en) * 1988-08-10 1990-02-23

Also Published As

Publication number Publication date
JPS5439806A (en) 1979-03-27

Similar Documents

Publication Publication Date Title
JP3489106B2 (en) Brushless three-phase synchronous generator
JP2929694B2 (en) Three-phase multiple voltage PWM inverter
JPS611270A (en) Load wiring method with inverter
US4723202A (en) Converter-fed AC machine without damper winding
JPS6111560B2 (en)
JP2939914B2 (en) Brushless self-excited synchronous generator
JP4513185B2 (en) Three-phase half-voltage output type rectifier
JPS5822956B2 (en) Armature winding of rotating electrical machine
JPS62100191A (en) Drive system for multiplex-winding ac motor
JPH03245755A (en) Brushless self-excitation synchronous electric motor
JP3539148B2 (en) Cylindrical synchronous generator
JPS60245471A (en) Inverter device
US5717586A (en) Single winding power converter
JP4186179B2 (en) DC power generator
JPS5822957B2 (en) Armature winding of rotating electrical machine
US4307328A (en) AC Motor apparatus
KR860000925B1 (en) Self-excited generator
US2380668A (en) Arc-welding converter
JPH089607A (en) Engine-driven arc welding machine
SU879710A1 (en) Synchronous electric machine
JP3100096B2 (en) Multi-winding induction motor drive
JP2753721B2 (en) Brushless self-excited synchronous generator
JP2753900B2 (en) Multi-phase inverter device
JPS59110356A (en) Structure of rotary electric machine
JPS6126490A (en) Field current supply system of commutatorless motor