JPS5822957B2 - Armature winding of rotating electrical machine - Google Patents

Armature winding of rotating electrical machine

Info

Publication number
JPS5822957B2
JPS5822957B2 JP52107060A JP10706077A JPS5822957B2 JP S5822957 B2 JPS5822957 B2 JP S5822957B2 JP 52107060 A JP52107060 A JP 52107060A JP 10706077 A JP10706077 A JP 10706077A JP S5822957 B2 JPS5822957 B2 JP S5822957B2
Authority
JP
Japan
Prior art keywords
winding
divided
windings
phase
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52107060A
Other languages
Japanese (ja)
Other versions
JPS5439807A (en
Inventor
辻義克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP52107060A priority Critical patent/JPS5822957B2/en
Publication of JPS5439807A publication Critical patent/JPS5439807A/en
Publication of JPS5822957B2 publication Critical patent/JPS5822957B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 本発明はインバータの如きサイリスクを用いた整流器変
換装置と組合わせて電源から給電を受けて運転される三
和式のサイリスク電動機、或いは整流器変換装置を介し
て負荷へ給電する交流発電機など、電機子巻線に整流器
変換装置を接続して組合せ使用される回転電機の電機子
巻線に関し、その目的は電機子巻線に通流する高調波成
分を含む方形波電流に基づいて発生する脈動トルクを消
去ないしは大巾に低減させることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a Sanwa-type Cyrisk motor that is operated by receiving power from a power supply in combination with a rectifier conversion device using Cyrisk such as an inverter, or a power supply to a load via a rectifier conversion device. Regarding the armature winding of rotating electric machines, such as alternating current generators, which are used in combination with a rectifier converter connected to the armature winding, the purpose is to control the square wave current containing harmonic components flowing through the armature winding. The objective is to eliminate or significantly reduce the pulsating torque generated due to the

頭記の如き回転電機の一例として第1図にサイリスタモ
ータを示す。
A thyristor motor is shown in FIG. 1 as an example of the above-mentioned rotating electric machine.

図において1は同期機としてなる電動機、2は三相電源
回路であり、電動機1の電機子巻線3は周知のコンバー
ターインバータからなる整流器変換装置4を介して電源
回路より給電されるよう接続されている。
In the figure, 1 is a motor serving as a synchronous machine, 2 is a three-phase power supply circuit, and the armature winding 3 of the motor 1 is connected to be supplied with power from the power supply circuit via a rectifier conversion device 4 consisting of a well-known converter/inverter. ing.

かかる回転電機では整流器変換装置4における整流素子
および直流回路の平滑リアクトルにより、電機子電流波
形は不連続の方形波状となる。
In such a rotating electric machine, the armature current waveform becomes a discontinuous square wave due to the rectifying element in the rectifier conversion device 4 and the smoothing reactor of the DC circuit.

かかる不連続方形波は周知のようにフーリエ級数分析か
ら明かなる如く基本波のほかに周波数の異なる6′?±
1(但しf:1,2・・・・・・)次の高調波成分を多
く含んでおり、このうち特に大きな割合を占める成分は
第5次、第7次、第11次、第13次などの高調波成分
である。
As is well known, such discontinuous square waves have 6′? waves with different frequencies in addition to the fundamental wave, as revealed by Fourier series analysis. ±
It contains many harmonic components of the 1st (however, f: 1, 2...) order, and among these, the components that occupy a particularly large proportion are the 5th, 7th, 11th, and 13th harmonics. These are harmonic components such as

即ち電機子巻線には周波数fの基本波電流のほかに上記
高調波電流が流れる。
That is, in addition to the fundamental current of frequency f, the harmonic current flows through the armature winding.

かかる高調波成分の電流によって生じる回転磁界のうち
、第5次、第11次高調波成分などの回転磁界φ5゜φ
11は基本波による回転磁界φ1と相順が逆で逆方向に
回転する。
Among the rotating magnetic fields generated by the current of such harmonic components, rotating magnetic fields such as the 5th and 11th harmonic components φ5゜φ
11 is in the opposite phase order to the rotating magnetic field φ1 due to the fundamental wave and rotates in the opposite direction.

一方策7久、第13次高調波成分などの回転磁界φ7.
φ13は基本波と相順が同じで同方向に回転する。
On the other hand, the rotating magnetic field φ7.
φ13 has the same phase order as the fundamental wave and rotates in the same direction.

従って基本波成分による周波数fの回転磁界に対する前
記第5次、第7次回転磁界φ5.φ7の相対速度はいづ
れも6f、また第11次、第13次回転磁界φ11゜φ
13の相対速度はいずれも12fとなり、この結果、回
転電機には6f、12fの脈動トルクが発生する。
Therefore, the fifth-order and seventh-order rotating magnetic fields φ5. The relative speed of φ7 is 6f, and the 11th and 13th rotating magnetic fields φ11゜φ
The relative speeds of 13 are all 12f, and as a result, pulsating torques of 6f and 12f are generated in the rotating electric machine.

このように高次の高調波成分により周波数6Pfの脈動
トルクが生じる。
In this way, high-order harmonic components generate pulsating torque with a frequency of 6Pf.

かかる脈動トルクは回転電機軸の振動をもたらすだけで
有効トルクとはなり得す、このために共振を起した際に
は構造部品の破損に至る恐れもあり、できる限り脈動ト
ルクの発生を防止することが望まれる。
Such pulsating torque can be an effective torque only by causing vibration of the shaft of the rotating electric machine.Therefore, when resonance occurs, there is a risk of damage to structural parts, so generation of pulsating torque should be prevented as much as possible. It is hoped that

かかる点にかんがみ、電圧波形改善策として従来より知
られている多重インバータ方式を採用し、この多重イン
バータに多重巻線として構成された電機子の複数組の分
割巻線をそれぞれ接続して高調波成分の回転磁界を消滅
ないしは低減させて6fの整数倍の脈動トルクの発生を
防止ないしは大巾に低減するようにした方式が試みられ
ている6次にかかる多重インバータと組合わせて脈動ト
ルクの低減を図るようにした回転電機の電機子巻線の例
を図について述べる。
In view of this, we have adopted a multiple inverter method, which has been known for a long time, as a measure to improve voltage waveforms, and connect multiple sets of divided windings of the armature configured as multiple windings to this multiple inverter to reduce harmonics. A method has been attempted in which the rotational magnetic field of the component is eliminated or reduced to prevent or greatly reduce the generation of pulsating torque that is an integral multiple of 6f.Reduction of pulsating torque by combining with a 6th-order multiplex inverter An example of an armature winding of a rotating electric machine designed to achieve this will be described with reference to the figure.

第2図は従来方式の一例を示す電機子巻線の結線図で図
において電機子巻線3は三相巻線TJA。
FIG. 2 is a wiring diagram of an armature winding showing an example of a conventional method. In the figure, armature winding 3 is a three-phase winding TJA.

V、、WAからなる第1のA分割巻線と、三相巻線UB
、VB、WBからなる第2のB分割巻線と、以下同様に
U。
A first A-divided winding consisting of V, , WA, and a three-phase winding UB
, VB, WB, and similarly U.

、Vo、Woからなる第3のC分割巻線、UD、VD、
WDからなる第4のD分割巻線との4組の分割巻線から
構成されている。
, Vo, Wo, the third C-divided winding, UD, VD,
It is composed of four sets of divided windings including a fourth D-divided winding made of WD.

図示例では各組の分割巻線がスター結線となっているが
、デルタ結線でもよい。
In the illustrated example, the divided windings of each set are star-connected, but they may be delta-connected.

かかるA、B、C,Dの第1ないし第4分割巻線は、A
分割巻線を基準としてB、C,D各分割巻線がそれぞれ
空間的に基本波の回転磁界の進行方向へ向けて電気角で
αAB=15°、αAc−30°、αAD=45°だけ
進んだ相対位置に巻装置されている。
The first to fourth divided windings of A, B, C, and D are
With the divided winding as a reference, each of the divided windings B, C, and D spatially advances by αAB = 15°, αAc-30°, and αAD = 45° in electrical angle in the advancing direction of the rotating magnetic field of the fundamental wave. The winding device is installed in a relative position.

しかも各分割巻線はそれぞれ電源2に並列接続された4
基の整流器変換装置4より個別に給電を受けるように接
続されている。
Moreover, each divided winding is connected in parallel to the power supply 2.
The rectifier converter device 4 is connected to receive electric power individually from the base rectifier converter device 4.

一方各整流器変換装置4は、制御角位相制御により、基
本波電圧を基準としてA分割巻線に対しB、C,D各分
割巻線にはそれぞれ時間的にθAB−15°、θAC−
30°、θAD=4.5°だけ遅れた位相の電圧が印加
されるように定□められている。
On the other hand, in each rectifier converter 4, by control angle phase control, with respect to the A-divided winding, the B, C, and D divided windings are temporally θAB-15° and θAC-
It is determined that a voltage with a phase delayed by 30° and θAD=4.5° is applied.

なお図示例におけるA、B、C。D各分割巻線の巻数比
WA : wB : WC: WD = 1 :1:1
:1に定められている。
Note that A, B, and C in the illustrated example. D Turn ratio of each divided winding WA: wB: WC: WD = 1:1:1
:1.

上記構成によれば、空間的に電気角15°。According to the above configuration, the electrical angle is 15° spatially.

300.45°の相対的な位相差が設定された第1ない
し第4のA、B、C,D各分割巻線のそれぞれに対し、
基本波を基準として15°、30°。
For each of the first to fourth divided windings A, B, C, and D with a relative phase difference of 300.45°,
15° and 30° based on the fundamental wave.

45°だけ位相のずれた各高調波成分の電流が通流する
ことになる。
Currents of each harmonic component whose phase is shifted by 45 degrees will flow.

従って各分割巻線には第5次。第7次、第11次、第1
3次および更に高次の回転磁界が生成される。
Therefore, each split winding has a fifth order. 7th, 11th, 1st
Tertiary and higher order rotating magnetic fields are generated.

しかして各次の高調波の回転磁界のベクトル図は第3図
a、bないし第6図a、bのようになる。
Therefore, the vector diagrams of the rotating magnetic field of each harmonic are as shown in FIGS. 3a, b to 6a, b.

即ち基本波に対して相順が逆である第5次成分による回
転磁界φ5Aに対して、φ5Cは第3図a、bの如く空
間的位相差αい。
That is, with respect to the rotating magnetic field φ5A due to the fifth-order component whose phase order is opposite to the fundamental wave, φ5C has a spatial phase difference α as shown in FIGS. 3a and 3b.

−30°に加えて時間的位相差θ肛×5−150°だけ
遅れるからφ5Aとφ5Cと間の位相差は180°とな
る。
In addition to -30°, there is a delay of time phase difference θ x 5-150°, so the phase difference between φ5A and φ5C is 180°.

同様にB分割巻線とD分割巻線との間でもφ5Bとφ5
Dは空間的位相差と時間的位相差の合計が180°とな
る。
Similarly, between the B-divided winding and the D-divided winding, φ5B and φ5
In D, the total of the spatial phase difference and the temporal phase difference is 180°.

一方、相順が基本波と同じ第7次成分による回転磁界に
対しては、第4図a、bの如<A、C分割巻線およびB
、D分割巻線の間にてそれぞれφ7Aとφ7C,φ7B
とφ7Dが互に180°の位相差となる。
On the other hand, for a rotating magnetic field due to the 7th order component whose phase order is the same as the fundamental wave, as shown in Figure 4 a and b,
, φ7A, φ7C, φ7B between the D-divided windings, respectively.
and φ7D have a phase difference of 180°.

なお第7次成分の回転磁界は第5次成分と回転方向が逆
向きであり、空間的な位相差と時間的な位相差とが逆向
きに加算される。
Note that the rotational direction of the seventh-order component of the rotating magnetic field is opposite to that of the fifth-order component, and the spatial phase difference and the temporal phase difference are added in opposite directions.

以下同様にして第11次、第13次の回転磁界に対して
は、第5図a、b、第6図a 、 ))に示す如<A、
B分割巻線の間およびC,D分割巻線の間でφ11Aと
φ11B、φ11Cとφ11D1およびφ13Aとφ1
3B1 φ13Cとφ13Dとの位相差がそれぞれ18
0°になる。
Similarly, for the 11th and 13th rotating magnetic fields, <A,
φ11A and φ11B, φ11C and φ11D1, and φ13A and φ1 between the B-divided winding and between the C and D-divided windings.
3B1 The phase difference between φ13C and φ13D is 18 each.
It becomes 0°.

しかも各分割巻線の巻数比は等しく、従って第5.7,
11.13次の回転磁界は消滅する。
Moreover, the turns ratio of each divided winding is equal, so the 5.7th,
11. The 13th order rotating magnetic field disappears.

更に高次の高調波成分についても前記と同様に各分割巻
線の相互で相殺される。
Further, higher harmonic components are also canceled out by each divided winding in the same manner as described above.

以上により(62±1)fの高周波回転磁界のうち6v
±1においてグが奇数である場合は第3図。
As a result of the above, 6v out of the high frequency rotating magnetic field of (62±1)f
Figure 3 when G is an odd number at ±1.

第4図の如く小□−一か。Small □-1 as shown in Figure 4.

、φB−<’Dとなり、1が偶数でかつ? = 4 n
+ 2である場合は第5図。
, φB-<'D, and 1 is an even number and? = 4 n
Figure 5 if +2.

第6図の如くφ□−(I’s 、 <6゜−−a。As shown in Fig. 6, φ□-(I's, <6°--a.

となる。これにより周波数6f、12f、18fの如き
脈動トルクの発生は防止される。
becomes. This prevents the generation of pulsating torques such as those at frequencies 6f, 12f, and 18f.

加えて前述の如く高周波の回転磁界が消滅されることに
より、回転電機の銅損、鉄損も減少し効率が向上する。
In addition, as mentioned above, since the high frequency rotating magnetic field is eliminated, the copper loss and iron loss of the rotating electric machine are also reduced, and the efficiency is improved.

ところで上記した第2図の方式では、電機子の各A、−
D分割巻線の相互間に基本波を基準とした15°、30
°、45°の時間的位相差を設定するためには、分割巻
線の組数に相応する4基の整流器変換装置を必要とする
ので、全体としての設備費が極めて高価になる経済的な
不利点がある。
By the way, in the method shown in FIG. 2 described above, each of the armatures A, -
The distance between the D-divided windings is 15° and 30° with respect to the fundamental wave.
In order to set a time phase difference of 45° and 45°, four rectifier converters are required, which corresponds to the number of divided windings, making the overall equipment cost extremely high. There are disadvantages.

また回転電機子形のものでは、電機子巻線3から引出し
た外部導出端子として合計12個ものスリップリングが
必要となる。
Further, in the rotating armature type, a total of 12 slip rings are required as external lead-out terminals drawn out from the armature winding 3.

本発明は上記の点にかんがみなされたものであり、その
目的は電機子の分割巻線の相互結線に工夫を凝らし、そ
の巧みな相互接続の仕方により、第2図の多重インバー
タを採用した方式と較べて、1基の整流器変換装置と組
合わせるだけで高調波成分の回転磁界を相殺して脈動ト
ルクを大巾に低減できるようにした回転電機の電機子巻
線を提供することにある。
The present invention has been made in consideration of the above points, and its purpose is to develop a system in which the multiplex inverter shown in Fig. 2 is adopted by devising the interconnection of the divided windings of the armature, and by utilizing the clever interconnection method. In comparison, an object of the present invention is to provide an armature winding for a rotating electrical machine that can cancel out the rotating magnetic field of harmonic components and greatly reduce pulsating torque by simply combining it with one rectifier converter.

かかる目的はこの発明により、電機子巻線をそれぞれが
正相巻線である第1.第2.第3.第4の4組の分割巻
線より構成し、かつ第1分割巻線に対して第2.第3お
よび第4分割巻線をそれぞれ空間的に電気角で15°、
30°および45°だけ進めた相対位置に巻装置して各
分割巻線の相互間に空間的位相差を設定するとともに、
整流器変換装置との接続を行う電機子巻線の外部導出端
子間で第1分割巻線の各相巻線をデルタ結線に、第3分
割巻線の各相巻線をスター形結線としてこれらを並列接
続するとともに、更に第2および第4分割巻線をそれぞ
れ前記第1分割巻線との間で基本波を基準としたほぼ1
5°、45°の時間的な遅れ位相差を設定するようにそ
の各相巻線が一端を前記第1分割巻線と第3分割巻線と
の並列接続された外部導出端子と接続し、他端を第3分
割巻線における異相の相巻線の途中箇所に接続された三
相巻線として構成したことにより達成される。
This object is achieved by the present invention, in which the armature windings are divided into first . Second. Third. The fourth set is composed of four divided windings, and the second divided winding is connected to the first divided winding. The third and fourth divided windings are each spatially 15° electrical angle,
The winding devices are placed at relative positions advanced by 30° and 45° to set a spatial phase difference between each divided winding, and
Between the external lead-out terminals of the armature winding that connects to the rectifier converter, each phase winding of the first divided winding is connected in a delta connection, and each phase winding of the third divided winding is connected in a star configuration. In addition to connecting in parallel, the second and fourth divided windings are connected to the first divided winding at approximately 1 volts with respect to the fundamental wave.
one end of each phase winding is connected to an external lead-out terminal connected in parallel to the first divided winding and the third divided winding so as to set a time delay phase difference of 5° and 45°; This is achieved by configuring the other end as a three-phase winding connected to a midway point of the phase winding of different phases in the third divided winding.

以下本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

第7図において、電機子巻線3はそれぞれが三相巻線U
A、■え、WA・・・、UD、vD、WDからなるA〜
D4絹の分割巻線から構成されており、かつこれ等4組
の分割巻線は外部導出端子U、V、Wの間で図示のよう
な結線の仕方で相互に接続されている。
In FIG. 7, each armature winding 3 is a three-phase winding U.
A~ consisting of A, ■E, WA..., UD, vD, and WD.
It is composed of divided windings of D4 silk, and these four sets of divided windings are interconnected between external lead-out terminals U, V, and W in the manner shown in the figure.

すなわち第1分割巻線は三相巻線、UA。vA、WAか
らなるデルタ結線のA分割巻線としてなり、更に第3分
割巻線は端子U 、 V 、Wの間にて前記A−分割巻
線と並列接続されたスター結線の三相巻線Uc、■c、
WoからなるC分割巻線としてなる。
That is, the first divided winding is a three-phase winding, UA. It is a delta-connected A-divided winding consisting of vA and WA, and the third divided winding is a star-connected three-phase winding connected in parallel with the A-divided winding between terminals U, V, and W. Uc,■c,
It is a C-divided winding made of Wo.

これに対し第2.第4分割巻線は、それぞれ図示の如く
端子U、V、Wと、前記C分割巻線における端子相とは
別な異相側の相巻線の中間点との間に跨って接続された
三相巻線UB、vB。
On the other hand, the second. As shown in the figure, the fourth divided winding is a three-way winding connected between the terminals U, V, and W and the midpoint of the phase winding on the different phase side, which is different from the terminal phase in the C-divided winding. Phase winding UB, vB.

WBおよびUD、VD、WDのC,D分割巻線としてな
る。
The windings are divided into C and D for WB, UD, VD, and WD.

この結線により、デルタ結線とスター結線されたAとC
分割巻線との間には、A分割巻線を基準にして時間的遅
れ位相差θ□、−30°が設定される。
With this connection, A and C are connected in delta connection and star connection.
A time delay phase difference θ□, −30° is set between the divided windings and the divided windings with respect to the A divided windings.

またB、D分割巻線のC分割巻線上における中間接続点
を適宜選定することにより、A分割巻線に対してB、C
分割巻線との間にそれぞれ基本波を基準とした時間的遅
れ位相差θ肩=15°、θAD−45°が設定される。
In addition, by appropriately selecting the intermediate connection point on the C-divided winding of the B- and D-divided winding, B and C can be connected to the A-divided winding.
Time delay phase differences θ shoulder=15° and θAD−45° are set between the divided windings and the fundamental wave, respectively.

なお実際に鉄心に巻線を巻装するに当って、巻線の構成
上の制約からθAB=15°、θAD−45°を厳密に
設定できない場合には、15°、45°に近い値が得ら
れるように定めればよい。
In addition, when actually winding the winding around the iron core, if it is not possible to set θAB = 15° and θAD - 45° strictly due to constraints on the winding configuration, values close to 15° and 45° may be used. Just set it so that you can get it.

更にA、B、C。D各分割巻線の相互間には第2図と同
様に空間的位相差αAB−15°、αAc=30°、α
AD=45°がそれぞれ設定されるように各分割巻線は
相対的に位置をずらして鉄心上に巻装配置されている。
Furthermore, A, B, and C. D There is a spatial phase difference αAB-15°, αAc=30°, α between each divided winding as in FIG.
The divided windings are wound on the core at relatively shifted positions so that AD=45° is set.

ここでA、B、C,D各分割巻線の巻数比をWA:WB
:WC:WD−V’丁: 1.22 : 1 :1.2
2に選定すれば、各分割巻線に生じる回転磁界の強さは
同じとなり、かくして第2図と同様に(6?±1)次の
高調波成分の回転磁界を消去させることができる。
Here, the turns ratio of each divided winding A, B, C, D is WA:WB
:WC:WD-V'T: 1.22: 1:1.2
If 2 is selected, the strength of the rotating magnetic field generated in each divided winding will be the same, thus making it possible to eliminate the rotating magnetic field of the (6?±1)th harmonic component as in FIG.

また設計上の巻線構成、条件から各分割巻線の巻数比を
前記値に選定できない場合にも、それに近い値を選定す
ることにより高周波回転磁界、従って脈動トルクを大巾
に低減させることができる。
In addition, even if it is not possible to select the turns ratio of each divided winding to the above value due to the designed winding configuration and conditions, by selecting a value close to that value, it is possible to significantly reduce the high frequency rotating magnetic field and therefore the pulsating torque. can.

以上述べたように本発明によれば、第2図で述べたよう
な多重インバータを採用する必要がなく、僅かに1基の
整流器変換装置に組合わせるだけで脈動トルクの発生要
因となる各次の高調波成分の回転磁界を巧みに分割巻線
の間で相殺し、消滅ないしは大巾低減させて6fおよび
6fの整数倍の周波数の脈動トルクの発生を良好に抑制
できる優れた効果が奏せられる。
As described above, according to the present invention, there is no need to employ multiple inverters as described in FIG. The rotating magnetic field of the harmonic components of is skillfully canceled out between the divided windings, and is eliminated or greatly reduced, producing an excellent effect of suppressing the generation of pulsating torque at frequencies of 6f and integral multiples of 6f. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象となる回転電機の例として示した
サイリスタモータの回路図、第2図は従来方式の一例を
示す電機子巻線の結線図、第3図a、bないし第6図a
、bは高調波成分の回転磁界相殺動作説明のためのベク
トル図、第7図は本発明の実施例を示す電機子巻線の結
線図である。 1・・・回転電機、2・・・電源回路、3・・・電機子
巻線、4・・・整流子変換装置、UA、■い、WA・・
・第1分割巻線、UB、VB、WB・・・第2分割巻線
、U■o、Wo・・・第3分割巻線、Ul)、VD、W
D−・・第4分割巻線、α。 、αよ。、αAD・・・空間的な位相差、θ。
Fig. 1 is a circuit diagram of a thyristor motor shown as an example of a rotating electric machine to which the present invention is applied, Fig. 2 is a wiring diagram of an armature winding showing an example of a conventional system, and Figs. 3 a, b to 6 Diagram a
, b is a vector diagram for explaining the rotating magnetic field canceling operation of harmonic components, and FIG. 7 is a wiring diagram of an armature winding showing an embodiment of the present invention. 1... Rotating electric machine, 2... Power supply circuit, 3... Armature winding, 4... Commutator conversion device, UA, ■i, WA...
・First divided winding, UB, VB, WB...Second divided winding, U■o, Wo...Third divided winding, Ul), VD, W
D-...Fourth divided winding, α. , α. , αAD...Spatial phase difference, θ.

Claims (1)

【特許請求の範囲】[Claims] 1 整流器変換装置と組合わせて運転される回転電機の
電機子巻線が、互に空間的にある角度をずらせて配置し
た第1.第2.第3.第4の4組の分割巻線よりなり、
各組の分割巻線には基本波を基準として相互間にある時
間的位相差を設定して通電するものにおいて、電機子巻
線を構成する4組の分割巻線を、空間的に第1分割巻線
に対して第2.第3.第4分割巻線をそれぞれ電気角で
15°、30°、45°だけ進めた相対位置に配置して
、第1分割巻線をデルタ形結線とし、第3分割巻線をス
ター形結線としてこれらを並列接続するとともに、第2
分割巻線および第4分割巻線を基本波を基準として第1
分割巻線に対してそれぞれほぼ15°および45°の時
間的な遅れ位相差を設定するように、第2分割巻線およ
び第4分割巻線の一端を前記第1分割巻線と第3分割巻
線との並列接続された各相の導出端子に接続し、他端を
異相の第3分割巻線の途中箇所に接続された三相巻線と
して構成したことを特徴とする回転電機の電機子巻線。
1. The armature windings of a rotating electrical machine operated in combination with a rectifier converter are arranged spatially at a certain angle from each other. Second. Third. Consisting of a fourth set of four divided windings,
In a device in which each set of divided windings is energized with a temporal phase difference between them based on the fundamental wave, the four sets of divided windings constituting the armature winding are spatially connected to the first 2nd for split winding. Third. The fourth divided windings are arranged at relative positions advanced by 15 degrees, 30 degrees, and 45 degrees in electrical angle, and the first divided winding is configured as a delta type connection, and the third divided winding is configured as a star type connection. are connected in parallel, and the second
The divided winding and the fourth divided winding are connected to the first
One end of the second divided winding and the fourth divided winding are connected to the first divided winding and the third divided winding so as to set a time delay phase difference of approximately 15° and 45° with respect to the divided winding, respectively. A rotating electric machine characterized in that it is configured as a three-phase winding in which the winding is connected to a lead-out terminal of each phase connected in parallel with the winding, and the other end is connected to a midway point of a third divided winding of a different phase. Child winding.
JP52107060A 1977-09-06 1977-09-06 Armature winding of rotating electrical machine Expired JPS5822957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52107060A JPS5822957B2 (en) 1977-09-06 1977-09-06 Armature winding of rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52107060A JPS5822957B2 (en) 1977-09-06 1977-09-06 Armature winding of rotating electrical machine

Publications (2)

Publication Number Publication Date
JPS5439807A JPS5439807A (en) 1979-03-27
JPS5822957B2 true JPS5822957B2 (en) 1983-05-12

Family

ID=14449472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52107060A Expired JPS5822957B2 (en) 1977-09-06 1977-09-06 Armature winding of rotating electrical machine

Country Status (1)

Country Link
JP (1) JPS5822957B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2717578B2 (en) * 1989-07-27 1998-02-18 株式会社小松製作所 Steel material for quenching hardened gears

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839919A (en) * 1971-09-23 1973-06-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839919A (en) * 1971-09-23 1973-06-12

Also Published As

Publication number Publication date
JPS5439807A (en) 1979-03-27

Similar Documents

Publication Publication Date Title
JP5391541B2 (en) Power conversion apparatus and method, and multiphase AC motor system
JP3489106B2 (en) Brushless three-phase synchronous generator
JPH0442759A (en) Ac generator for vehicle
WO2014207858A1 (en) Rotating machine and rotating machine driving system
US7928683B2 (en) High phase order AC machine with short pitch winding
JPWO2017141513A1 (en) Power converter
JP2929694B2 (en) Three-phase multiple voltage PWM inverter
Lin et al. An innovative multiphase PWM control strategy for a PMSM with segmented stator windings
JPH04347566A (en) Brushless synchronous machine
JPS5822956B2 (en) Armature winding of rotating electrical machine
JPS5822957B2 (en) Armature winding of rotating electrical machine
JP3042204B2 (en) Control device for synchronous motor
JPH1084700A (en) Generator
JP2000324891A (en) Inverter drive motor
JP2005086879A (en) Stator structure of motor
JP2000139097A (en) Variable speed induction electric rotating machine device
JPS6111560B2 (en)
JPH05176584A (en) Controller for power converter
JP2753900B2 (en) Multi-phase inverter device
JPS60245471A (en) Inverter device
SU879710A1 (en) Synchronous electric machine
JPS6137875B2 (en)
JPH1155912A (en) Cylindrical synchronous generator
JPS59110356A (en) Structure of rotary electric machine
JPS5967858A (en) Structure of rotary electric machine