JPS6111495Y2 - - Google Patents

Info

Publication number
JPS6111495Y2
JPS6111495Y2 JP5965483U JP5965483U JPS6111495Y2 JP S6111495 Y2 JPS6111495 Y2 JP S6111495Y2 JP 5965483 U JP5965483 U JP 5965483U JP 5965483 U JP5965483 U JP 5965483U JP S6111495 Y2 JPS6111495 Y2 JP S6111495Y2
Authority
JP
Japan
Prior art keywords
negative pressure
exhaust gas
throttle valve
orifice
gas recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5965483U
Other languages
Japanese (ja)
Other versions
JPS59562U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5965483U priority Critical patent/JPS59562U/en
Publication of JPS59562U publication Critical patent/JPS59562U/en
Application granted granted Critical
Publication of JPS6111495Y2 publication Critical patent/JPS6111495Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

【考案の詳細な説明】 本考案は排気ガス還流装置の負圧取り出し装置
に関するものである。
[Detailed Description of the Invention] The present invention relates to a negative pressure extraction device for an exhaust gas recirculation device.

第1図は従来の排気ガス還流装置の一例を示す
ものである。
FIG. 1 shows an example of a conventional exhaust gas recirculation device.

第1図において、吸気路3の一部を構成してい
る絞り弁室1には絞り弁2があり、この絞り弁2
の開度によつてエンジン4の吸気量は変化する。
エンジン4の排気路6と吸気路3との間には排気
還流路7がバイパス連通しており、その途中に設
置した排気還流弁(以後EGR弁と称する)10
によつて還流される排気量を調節してエンジン中
の燃焼状態を制御し、排気中に含まれるNOx量
を減少させている。
In FIG. 1, there is a throttle valve 2 in a throttle valve chamber 1 constituting a part of an intake passage 3.
The intake air amount of the engine 4 changes depending on the opening degree of the engine 4.
An exhaust gas recirculation path 7 is in bypass communication between the exhaust path 6 and the intake path 3 of the engine 4, and an exhaust gas recirculation valve (hereinafter referred to as an EGR valve) 10 is installed in the middle of the path.
By adjusting the amount of exhaust gas recirculated by the engine, combustion conditions in the engine are controlled, and the amount of NOx contained in the exhaust gas is reduced.

EGR弁10は排気還流路7の開放口に対向し
たニードル12を絞り弁2附近に発生する負圧に
比例して上下移動させ排気還流路7の断面積を変
化させている。即ち、吸気路3の吸気量に比例し
た排気還流量が得られるようにしている。EGR
弁10の構造を簡単に説明すると、ニードル12
はダイヤフラム13の中央部に固定されており、
このダイヤフラム13はその上部にある負圧作動
室15が負圧になると引上げられ圧縮ばね14の
力と釣合つた所まで移動するので、ニードル12
は排気還流路を開く方向に移動する。負圧作動室
15は第1図のごとく負圧管(以後EGR管と称
する)5によつて絞り弁2附近の吸気路3に設け
た開口に連通されているが、そのEGR管5の途
中にある2つの分岐管は制御弁20に連結されて
いる。
The EGR valve 10 changes the cross-sectional area of the exhaust gas recirculation path 7 by moving a needle 12 facing the opening of the exhaust gas recirculation path 7 up and down in proportion to the negative pressure generated near the throttle valve 2 . That is, an exhaust gas recirculation amount proportional to the amount of intake air in the intake passage 3 is obtained. EGR
To briefly explain the structure of the valve 10, the needle 12
is fixed to the center of the diaphragm 13,
This diaphragm 13 is pulled up when the negative pressure working chamber 15 in its upper part becomes negative pressure and moves to a place where the force of the compression spring 14 is balanced, so that the needle 12
moves in the direction of opening the exhaust gas recirculation path. As shown in FIG. 1, the negative pressure working chamber 15 is communicated with an opening provided in the intake passage 3 near the throttle valve 2 through a negative pressure pipe (hereinafter referred to as EGR pipe) 5. Two branch pipes are connected to a control valve 20.

制御弁20は平板状ダイヤフラム27とベロー
ズ状ダイヤフラム23を有し、その各々の中央部
は互いに密着固定され負圧室21と負圧室22を
形成している。負圧室21はEGR管5のEGR弁
10の負圧作動室15の入口側より分岐した管に
連通しており、負圧室22は絞り弁2の下流の吸
気路3と負圧管8によつて連通させられている。
ダイヤフラム27の中央上面にはゴム板よりなる
シール部材26が取付けられており、このシール
部材26に近接対向した大気開放口25を有する
管がEGR管5から分岐している。また、この大
気開放口25が挿入されている室は多孔性のフイ
ルタ28を介して外気が流通し大気圧になつてお
り、負圧室22内には圧縮ばね24が設置されて
いる。また11はオリフイスである。
The control valve 20 has a flat diaphragm 27 and a bellows-shaped diaphragm 23, whose central portions are closely fixed to each other to form a negative pressure chamber 21 and a negative pressure chamber 22. The negative pressure chamber 21 communicates with a pipe branched from the inlet side of the negative pressure working chamber 15 of the EGR valve 10 of the EGR pipe 5, and the negative pressure chamber 22 communicates with the intake path 3 downstream of the throttle valve 2 and the negative pressure pipe 8. It has been made to communicate with each other.
A sealing member 26 made of a rubber plate is attached to the upper central surface of the diaphragm 27, and a pipe having an air opening 25 closely facing the sealing member 26 branches off from the EGR pipe 5. In addition, outside air flows through a porous filter 28 into the chamber into which the atmosphere opening 25 is inserted, and the pressure is at atmospheric pressure. A compression spring 24 is installed in the negative pressure chamber 22. Further, 11 is an orifice.

上記のごとく構成された従来の排気還流装置に
おいてエンジン4が回転し絞り弁2が開いて吸気
がエンジンに流れると、絞り弁2附近に開口した
EGR管5内が負圧となり制御弁20の負圧室2
1および負圧作動室15の圧力が下り、ニードル
12を引上げて排気還流量を増加させる。しかし
その直後にダイヤフラム27と共にシール部材2
6は引下げられるので大気開放口25より離れ、
これより空気を導入して負圧室21および負圧作
動室15内の負圧を減少させる。したがつて、圧
縮ばね24のばね力で大気開放口25にシール部
材26が接近して空気の導入を抑制するので、負
圧室21および負圧作動室15内の負圧は再び増
大する。絞り弁2より下流の吸気路3の負圧は負
圧管8によつて制御弁20の負圧室22に伝達さ
れているので負圧室22は一応負圧にはなるが、
一般にこの負圧は絞り弁2附近の負圧よりも小さ
いので負圧室22の圧力は負圧室21の圧力より
も高い。したがつて負圧室22の比較的高い圧力
と圧縮ばね24の力によつてシール部材26と大
気開放口25との間隔を縮少させる力が働らき適
当の位置で大気開放口25とシール部材26の間
隙をバランスさせる結果となり、ニードル12の
開度も定まる。また、絞り弁2の開度が変化すれ
ば吸気量も変化し、それによつてEGR弁10の
ニードル12の位置が同様にして変化するので還
流排気量が吸気量に比例して得られることにな
る。
In the conventional exhaust gas recirculation system configured as described above, when the engine 4 rotates and the throttle valve 2 opens and intake air flows into the engine, the air opens near the throttle valve 2.
The inside of the EGR pipe 5 becomes negative pressure and the negative pressure chamber 2 of the control valve 20
1 and the pressure in the negative pressure working chamber 15 decreases, and the needle 12 is pulled up to increase the amount of exhaust gas recirculation. However, immediately after that, the seal member 2 along with the diaphragm 27
6 is pulled down, so it is away from the atmosphere opening 25,
Air is introduced from this to reduce the negative pressure in the negative pressure chamber 21 and the negative pressure working chamber 15. Therefore, the sealing member 26 approaches the atmosphere opening port 25 by the spring force of the compression spring 24 and suppresses the introduction of air, so that the negative pressure in the negative pressure chamber 21 and the negative pressure working chamber 15 increases again. Since the negative pressure in the intake passage 3 downstream of the throttle valve 2 is transmitted to the negative pressure chamber 22 of the control valve 20 by the negative pressure pipe 8, the negative pressure chamber 22 becomes a negative pressure for the time being.
Generally, this negative pressure is smaller than the negative pressure near the throttle valve 2, so the pressure in the negative pressure chamber 22 is higher than the pressure in the negative pressure chamber 21. Therefore, the relatively high pressure of the negative pressure chamber 22 and the force of the compression spring 24 act to reduce the distance between the sealing member 26 and the atmosphere opening 25, and the atmosphere opening 25 and the seal are sealed at an appropriate position. As a result, the gap between the members 26 is balanced, and the opening degree of the needle 12 is also determined. Additionally, if the opening degree of the throttle valve 2 changes, the intake air amount also changes, and the position of the needle 12 of the EGR valve 10 changes in the same way, so the recirculated exhaust amount can be obtained in proportion to the intake air amount. Become.

第1図において、EGR弁10を作動させる負
圧信号源は絞り弁室1の絞り弁2附近より取り出
している。この負圧取出開口は1個であるが、場
合によつては絞り弁2に近接させて上下方向に2
個設けることもある。しかしいずれにしてもこの
負圧を直接EGR管に導きEGR弁10を作動させ
ている。したがつて、吸気路3の絞り弁2を急速
に開いたときは還流排気量が急増し運転状態に悪
影響を及ぼすという欠点があつた。即ち、急速な
発進又は加速時に細かくエンジンが振動するサー
ジング現象や排気の息付き現象等を生じ、運転性
能を低下させると共に運転者に不快感を与え排気
中の公害源となる物質の量を増加させていた。
In FIG. 1, the negative pressure signal source for operating the EGR valve 10 is taken out from the vicinity of the throttle valve 2 in the throttle valve chamber 1. There is only one negative pressure outlet opening, but in some cases there may be two openings in the vertical direction close to the throttle valve 2.
There may also be separate locations. However, in any case, this negative pressure is directly guided to the EGR pipe to operate the EGR valve 10. Therefore, when the throttle valve 2 of the intake passage 3 is opened rapidly, the amount of recirculated exhaust gas increases rapidly, which has a negative effect on the operating condition. In other words, when a vehicle starts or accelerates rapidly, a surging phenomenon in which the engine vibrates minutely or a breathing phenomenon in the exhaust gas occurs, which deteriorates driving performance, causes discomfort to the driver, and increases the amount of substances in the exhaust that are a source of pollution. I was letting it happen.

本考案は、急激な加速時においても円滑な運転
を行なうことができる排気還流装置を提供するこ
とを目的とし、エンジンの吸気路と排気路とを連
通する排気還流路、前記排気還流路の途中に設け
られた弁体、前記弁体と連結され前記弁体を駆動
するダイヤフラム、前記ダイヤフラムにより形成
された負圧作動室、及び前記負圧作動室に前記吸
気路の絞り弁付近に発生する負圧を導く負圧管と
よりなる排気ガス還流装置において、前記絞り弁
付近の前記吸気路の壁部に前記負圧管と接続され
た第1小室および前記第1小室と細孔よりなるコ
ンビネーシヨンオリフイスを介して連通された第
2小室を形成し、前記第2小室は前記絞り弁付近
の前記吸気路に第2オリフイスを介して連通し、
前記第1小室は第1オリフイスを介して前記第2
オリフイスの上流側の前記吸気路に連通している
ことを特徴とするものである。
The present invention aims to provide an exhaust gas recirculation device that can operate smoothly even during rapid acceleration, and includes an exhaust gas recirculation path that communicates an intake path and an exhaust path of an engine, and a midway point of the exhaust gas recirculation path. a diaphragm connected to the valve body and driving the valve body; a negative pressure working chamber formed by the diaphragm; and a negative pressure working chamber formed near the throttle valve of the intake passage. In an exhaust gas recirculation device comprising a negative pressure pipe for guiding pressure, a first small chamber connected to the negative pressure pipe and a combination orifice comprising the first small chamber and a pore are provided on the wall of the intake passage near the throttle valve. forming a second small chamber that communicates with the intake passage near the throttle valve through a second orifice;
The first chamber is connected to the second chamber through a first orifice.
It is characterized in that it communicates with the intake passage on the upstream side of the orifice.

第2図は本考案の一実施例である絞り弁室の断
面図であり、第1図と同一部材には同一符号を付
している。絞り弁2附近の吸気路3の壁部には絞
り弁2に近い所に第2オリフイス32を、絞り弁
2より比較的離れた所には第1のオリフイス31
を上下方向に近接させて設けている。第1オリフ
イス31と接続された第1小室35および第2オ
リフイス32と接続された第2小室36は隔壁で
仕切られており、この隔壁に設けられたコンビネ
ーシヨンオリフイス33によつてこれらの小室3
5,36は連通している。第1のオリフイス31
を開口した第1小室35にはEGR管5を接続さ
せている。なお、盲プラグ34は上記2個の小室
35,36およびコンビネーシヨンオリフイス3
3を加工した後に上下端を閉塞するために埋め込
まれたものである。
FIG. 2 is a sectional view of a throttle valve chamber according to an embodiment of the present invention, and the same members as in FIG. 1 are designated by the same reference numerals. A second orifice 32 is provided on the wall of the intake passage 3 near the throttle valve 2, and a first orifice 31 is located relatively far from the throttle valve 2.
are provided close to each other in the vertical direction. A first small chamber 35 connected to the first orifice 31 and a second small chamber 36 connected to the second orifice 32 are partitioned by a partition wall, and these small chambers 3 are separated by a combination orifice 33 provided on the partition wall.
5 and 36 are in communication. First orifice 31
The EGR pipe 5 is connected to the first small chamber 35 which is opened. Note that the blind plug 34 is connected to the two small chambers 35 and 36 and the combination orifice 3.
It was embedded to close the upper and lower ends after processing No. 3.

このような構造の絞り弁室1において、絞り弁
2が矢印方向に急激に回転して吸気量を増すと、
まず、第1オリフイス31には比較的弱い負圧が
発生し、第2オリフイス32には強い負圧が発生
する。しかるに第2オリフイス32の負圧はコン
ビネーシヨンオリフイス33を経由するのでその
強い負圧信号の伝達は遅らされ、EGR管5の負
圧は比較的ゆるやかな曲線を描いて上昇する。絞
り弁2が徐々に開いた場合には絞り弁部の負圧は
時間遅れなくEGR管5に導かれる。
In the throttle valve chamber 1 having such a structure, when the throttle valve 2 rapidly rotates in the direction of the arrow to increase the intake air amount,
First, a relatively weak negative pressure is generated in the first orifice 31, and a strong negative pressure is generated in the second orifice 32. However, since the negative pressure in the second orifice 32 passes through the combination orifice 33, transmission of the strong negative pressure signal is delayed, and the negative pressure in the EGR pipe 5 rises in a relatively gentle curve. When the throttle valve 2 gradually opens, the negative pressure in the throttle valve section is guided to the EGR pipe 5 without any time delay.

第3図は第2図の絞り弁室によるEGR管の負
圧上昇を急加速時と緩加速時とで比較して示した
線図で、縦軸はEGR管の負圧を−mmHgで示し、
横軸は絞り弁の開度を度で示している。実線40
で示す急加速時の絞り弁室の負圧上昇はゆるやか
であり、破線41が示す緩加速時の場合は絞り弁
開度に比例して負圧が上昇している。第1オリフ
イス31を省略し、第2オリフイス32を直接
EGR管5に連通させた従来のものは、加速の緩
急に拘らず破線41のような曲線を描いていたも
のである。
Figure 3 is a diagram comparing the increase in negative pressure in the EGR pipe due to the throttle valve chamber in Figure 2 during rapid acceleration and slow acceleration.The vertical axis indicates the negative pressure in the EGR pipe in -mmHg. ,
The horizontal axis indicates the opening degree of the throttle valve in degrees. solid line 40
The rise in the negative pressure in the throttle valve chamber during sudden acceleration, as shown by 41, is gradual, and in the case of slow acceleration, as shown by broken line 41, the negative pressure rises in proportion to the opening degree of the throttle valve. Omit the first orifice 31 and use the second orifice 32 directly.
The conventional type connected to the EGR pipe 5 draws a curve like the broken line 41 regardless of the speed or speed of acceleration.

したがつて、EGR還流率は急加速時において
は第3図の実線40で示すような緩い立上りを示
すことになり、良好なエンジンの運転性が得られ
ると共に排気中の公害物質の発生を抑制すること
ができるという利点を生じている。
Therefore, the EGR recirculation rate shows a gradual rise as shown by the solid line 40 in Figure 3 during sudden acceleration, which provides good engine drivability and suppresses the generation of pollutants in the exhaust gas. It has the advantage of being able to

第4図は第2図に示す実施例と従来装置との急
加速時の特性を比較する線図で、横軸は絞り弁開
度を度で、縦軸は上半部はEGR還流率(%)
を、下半部をEGR管の負圧を−mmHgで示してい
る。実線42,43は本実施例による急加速時の
状態を示す曲線で、一点鎖線44,45はEGR
管を1つのオリフイスと連通させた従来装置の急
加速時の状態を示す曲線である。図より判るよう
に従来装置においては絞り弁部の負圧が直接
EGR管によつて伝達されEGR弁を開くので、還
流排気量は急速に増加しエンジンの運転性能を低
下させていたものである。
Fig. 4 is a diagram comparing the characteristics of the embodiment shown in Fig. 2 and the conventional device during sudden acceleration. %)
The lower half shows the negative pressure of the EGR tube in -mmHg. Solid lines 42 and 43 are curves showing the state during sudden acceleration according to this embodiment, and dashed-dotted lines 44 and 45 are EGR curves.
This is a curve showing the state of a conventional device in which a pipe is communicated with one orifice during sudden acceleration. As can be seen from the figure, in the conventional device, the negative pressure at the throttle valve directly
Since the signal was transmitted through the EGR pipe to open the EGR valve, the amount of recirculated exhaust gas increased rapidly, degrading the engine's operating performance.

第5図は第2図に示す実施例と従来装置との急
加速時の他の特性を比較する線図で、縦軸は
EGR還流率を%で、横軸は時間をsecで示してい
る。本実施例による急加速時のEGR還流率%は
実線46で示すごとく、従来装置による急加速時
のEGR還流率を示す一点鎖線47よりも立上り
が緩やかで0.9〜1.2secの遅れを生じている。
Figure 5 is a diagram comparing other characteristics during sudden acceleration between the embodiment shown in Figure 2 and the conventional device, where the vertical axis is
The EGR reflux rate is shown in %, and the horizontal axis shows time in seconds. As shown by the solid line 46, the EGR recirculation rate % during sudden acceleration according to this embodiment has a slower rise than the dashed-dotted line 47 indicating the EGR recirculation rate during sudden acceleration according to the conventional device, resulting in a delay of 0.9 to 1.2 seconds. .

以上本実施例は、オリフイスを2個設けてその
間を細孔で連通させるという比較的簡単な構造の
改良によつて、急加速時の排気還流量を緩やかに
増加させることができるという効果が実験結果か
らも得られている。
As described above, this example demonstrates the effect of gradually increasing the amount of exhaust gas recirculation during rapid acceleration through a relatively simple structural improvement in which two orifices are provided and a pore communicates between them. This is also obtained from the results.

第2図の実施例の絞り弁室は2個のオリフイス
を設けているが、例えば、第2のオリフイス32
の上部に近接して更に1個のオリフイスを追加し
て設けることも可能である。この場合はEGR還
流率曲線の形状をより細かく調節できる利点があ
る。
The throttle valve chamber of the embodiment shown in FIG. 2 is provided with two orifices. For example, the second orifice 32
It is also possible to provide one additional orifice close to the top of the. In this case, there is an advantage that the shape of the EGR reflux rate curve can be adjusted more finely.

本考案の排気還流装置の負圧取り出し装置によ
れば急激な加速時においても円滑な運転ができる
という効果を有し、その工業的効果は大きいもの
がある。
The negative pressure extraction device of the exhaust gas recirculation device of the present invention has the effect of allowing smooth operation even during rapid acceleration, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排気還流装置の一例を説明する
図、第2図は本考案の一実施例である絞り弁室の
断面図、第3図は第2図の絞り弁室によるEGR
管の負圧上昇を急加速時と緩加速時とで比較して
示した線図、第4図および第5図を第2図に示す
実施例と従来装置との急加速時における特性を比
較した線図である。 1……絞り弁室、2……絞り弁、3……吸気
路、4……エンジン、5……負圧管(EGR管)、
6……排気路、7……排気還流路、10……排気
還流弁(EGR弁)、20……制御弁、31……第
1オリフイス、32……第2オリフイス、33…
…コンビネーシヨンオリフイス。
Fig. 1 is a diagram explaining an example of a conventional exhaust gas recirculation device, Fig. 2 is a sectional view of a throttle valve chamber that is an embodiment of the present invention, and Fig. 3 is an EGR using the throttle valve chamber of Fig. 2.
Figures 4 and 5 are diagrams showing a comparison of the rise in negative pressure in the tube during rapid acceleration and slow acceleration. Compare the characteristics of the embodiment shown in Figure 2 and the conventional device during rapid acceleration. This is a line diagram. 1... Throttle valve chamber, 2... Throttle valve, 3... Intake path, 4... Engine, 5... Negative pressure pipe (EGR pipe),
6... Exhaust path, 7... Exhaust recirculation path, 10... Exhaust recirculation valve (EGR valve), 20... Control valve, 31... First orifice, 32... Second orifice, 33...
...Combination orifice chair.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] エンジンの吸気路と排気路とを連通する排気還
流路、前記排気還流路の途中に設けられた弁体、
前記弁体と連結され前記弁体を駆動するダイヤフ
ラム、前記ダイヤフラムにより形成された負圧作
動室、及び前記負圧作動室に前記吸気路の絞り弁
付近に発生する負圧を導く負圧管よりなる排気ガ
ス還流装置において、前記絞り弁付近の前記吸気
路の壁部に前記負圧管と接続された第1小室およ
び前記第1小室と細孔よりなるコンビネーシヨン
オリフイスを介して連通された第2小室を形成
し、前記第2小室は前記絞り弁付近の前記吸気路
に第2オリフイスを介して連通し、前記第1小室
は第1オリフイスを介して前記第2オリフイスの
上流側の前記吸気路に連通していることを特徴と
する排気ガス還流装置の負圧取り出し装置。
an exhaust gas recirculation path that communicates an intake path and an exhaust path of the engine; a valve body provided in the middle of the exhaust gas recirculation path;
A diaphragm that is connected to the valve body and drives the valve body, a negative pressure working chamber formed by the diaphragm, and a negative pressure pipe that guides the negative pressure generated near the throttle valve in the intake passage to the negative pressure working chamber. In the exhaust gas recirculation device, a first small chamber is connected to the negative pressure pipe on a wall of the intake passage near the throttle valve, and a second small chamber is communicated with the first small chamber via a combination orifice formed of a pore. The second small chamber communicates with the intake passage near the throttle valve via a second orifice, and the first small chamber communicates with the intake passage upstream of the second orifice via the first orifice. A negative pressure extraction device for an exhaust gas recirculation device, characterized in that the device is in communication with the exhaust gas recirculation device.
JP5965483U 1983-04-21 1983-04-21 Negative pressure extraction device for exhaust gas recirculation system Granted JPS59562U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5965483U JPS59562U (en) 1983-04-21 1983-04-21 Negative pressure extraction device for exhaust gas recirculation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5965483U JPS59562U (en) 1983-04-21 1983-04-21 Negative pressure extraction device for exhaust gas recirculation system

Publications (2)

Publication Number Publication Date
JPS59562U JPS59562U (en) 1984-01-05
JPS6111495Y2 true JPS6111495Y2 (en) 1986-04-11

Family

ID=30189896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5965483U Granted JPS59562U (en) 1983-04-21 1983-04-21 Negative pressure extraction device for exhaust gas recirculation system

Country Status (1)

Country Link
JP (1) JPS59562U (en)

Also Published As

Publication number Publication date
JPS59562U (en) 1984-01-05

Similar Documents

Publication Publication Date Title
US3884200A (en) Exhaust gas recirculation control system for internal combustion engines
JPS6125904B2 (en)
US4111172A (en) System to feed exhaust gas into the induction passage of an internal combustion engine
JPS5848712A (en) Air inlet device of internal-combustion engine
GB1475349A (en) Exhaust gas recirculation system of an internal combustion engine
JPS6111495Y2 (en)
GB1578195A (en) Air-fuel ratio regulator for internal combustion engine
JPS6315452B2 (en)
GB1485208A (en) Exhaust gas recirculation system
JPS5930904B2 (en) Internal combustion engine exhaust gas recirculation device
JPS6032369Y2 (en) Exhaust gas recirculation device
JPS6011667A (en) Oxygen rich air feeder
JPS6034766Y2 (en) Internal combustion engine exhaust gas recirculation control device
JPH0622138Y2 (en) Variable venturi vaporizer
JPS6018610Y2 (en) Internal combustion engine exhaust gas recirculation control device
JPH0435558Y2 (en)
JPS5823976Y2 (en) Exhaust gas recirculation device
JPS6337492Y2 (en)
JPH0139890Y2 (en)
JPS5827084Y2 (en) Exhaust gas recirculation control device
JPS5817334B2 (en) Atsuriyoku Houtou Bensouchi
JPS6124684Y2 (en)
JPS6320853Y2 (en)
JPS621375Y2 (en)
US4328774A (en) Device for controlling negative pressure in suction pipe of internal combustion engine