JPS6034766Y2 - Internal combustion engine exhaust gas recirculation control device - Google Patents

Internal combustion engine exhaust gas recirculation control device

Info

Publication number
JPS6034766Y2
JPS6034766Y2 JP1979083280U JP8328079U JPS6034766Y2 JP S6034766 Y2 JPS6034766 Y2 JP S6034766Y2 JP 1979083280 U JP1979083280 U JP 1979083280U JP 8328079 U JP8328079 U JP 8328079U JP S6034766 Y2 JPS6034766 Y2 JP S6034766Y2
Authority
JP
Japan
Prior art keywords
negative pressure
valve
pressure
exhaust gas
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979083280U
Other languages
Japanese (ja)
Other versions
JPS562055U (en
Inventor
利夫 森川
房治 大村
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP1979083280U priority Critical patent/JPS6034766Y2/en
Publication of JPS562055U publication Critical patent/JPS562055U/ja
Application granted granted Critical
Publication of JPS6034766Y2 publication Critical patent/JPS6034766Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

【考案の詳細な説明】 本考案は所謂背圧制御式の排気ガス再循環制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a so-called back pressure control type exhaust gas recirculation control device.

背圧制御式の排気ガス再循環(EGR)装置においては
、排気マニホルドと吸気マニホルドとを結ぶEGR通路
通路段けた負圧作動式排気ガス流量制御弁への信号負圧
のレベルをEGR通路に形成した定圧室内の排気ガス圧
力に応動する変圧弁によって制御する構造となっている
In a back pressure controlled exhaust gas recirculation (EGR) system, a signal negative pressure level is formed in the EGR passage to the negative pressure operated exhaust gas flow control valve in the EGR passage connecting the exhaust manifold and intake manifold. The structure is controlled by a variable pressure valve that responds to the exhaust gas pressure in the constant pressure chamber.

定圧室内の排気ガス圧力は大気圧に近い一定値に維持す
ることにより、周知の如く、循環される排気ガス量の割
合(EGR率)を一定に保つという効果が奏される。
By maintaining the exhaust gas pressure in the constant pressure chamber at a constant value close to atmospheric pressure, the effect of keeping the proportion of the amount of exhaust gas circulated (EGR rate) constant is achieved, as is well known.

しかしながら、エンジンの各運転領域にわたって常に一
定のEGR率とすると低負荷側でサージング等の運転性
の悪化の原因となる。
However, if the EGR rate is always constant over each operating range of the engine, it will cause deterioration in driveability such as surging on the low load side.

というのは、サージングの発生するEGR率の限界は低
負荷側程小さいからである。
This is because the limit of the EGR rate at which surging occurs is smaller on the lower load side.

従って、サージングを防止しつつ最大限のEGR効果を
得るにはEGR率を負荷に応じて制御することが必要と
なる。
Therefore, in order to obtain the maximum EGR effect while preventing surging, it is necessary to control the EGR rate according to the load.

この目的を遠戚するために本願出願人は先に共同出願人
の一人として特願昭53−78575号において、EG
R率を負荷に応じて制御することを可能ならしめた新規
な構造の排気ガス再循環制御装置を提案した。
In order to achieve this objective, the applicant of the present application, as one of the joint applicants, previously proposed EG
We proposed an exhaust gas recirculation control device with a new structure that makes it possible to control the R rate according to the load.

この先願発明によればEGR率を負荷に応じて変化させ
ることは可能であるが、EGRを行う作動範囲が加速時
又は定常走行時に限られ、例えば加速中にセカンドギヤ
からサードギヤにギヤシフトする際の如き変速時あるい
は減速時にはEGRを行うことはできなかった。
According to this prior invention, it is possible to change the EGR rate according to the load, but the operating range in which EGR is performed is limited to acceleration or steady driving, and for example, when shifting from second gear to third gear during acceleration. It was not possible to perform EGR during gear shifting or deceleration.

本考案はこの点を改良すべく変速時あるいは減速時にも
EGR制御を達威し得る構造となして排気ガス中のNO
xを一層低減せしめんとするものである。
In order to improve this point, the present invention has a structure that allows EGR control to be achieved even during gear shifting or deceleration.
The purpose is to further reduce x.

以下、添付図面を参照して本考案の好ましい実施例につ
き説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

添付図面は本考案に係る排気ガス再循環制御装置の一実
施例を示し、同図において10は内燃機関のエンジン本
体、12は吸気マニホルド、14は気化器、16は排気
マニホルドである。
The accompanying drawing shows an embodiment of the exhaust gas recirculation control device according to the present invention, in which 10 is an engine body of an internal combustion engine, 12 is an intake manifold, 14 is a carburetor, and 16 is an exhaust manifold.

18は排気マニホルド16と吸気マニホルド12とを結
ぶ排気ガス再循環通路(EGR通路)である。
18 is an exhaust gas recirculation passage (EGR passage) connecting the exhaust manifold 16 and the intake manifold 12.

EGR通路18上に吸気マニホルド12に導入される循
環排気ガス流量を制御するための流量制御弁20が設け
られである。
A flow control valve 20 is provided on the EGR passage 18 to control the flow rate of circulating exhaust gas introduced into the intake manifold 12.

この流量制御弁20は負圧作動式であってダイヤフラム
22と、弁棒24を介してダイヤフラム22に連結した
弁体26とを備えている。
The flow rate control valve 20 is a negative pressure operated type and includes a diaphragm 22 and a valve body 26 connected to the diaphragm 22 via a valve stem 24.

ダイヤフラム22はばね28によって弁体26を弁座3
0に着座せしめる方向に付勢される。
The diaphragm 22 holds the valve body 26 against the valve seat 3 by the spring 28.
0 in the direction of seating.

ダイヤフラム22の上方に負圧室32が形成されており
、この室32内の負圧レベルによってEGR弁2弁内0
過する循環排気ガス流量が制御される。
A negative pressure chamber 32 is formed above the diaphragm 22, and depending on the negative pressure level within this chamber 32, the internal pressure of the EGR valve 2 is reduced.
The circulating exhaust gas flow rate is controlled.

EGR弁2弁内0座30の排気マニホルド側(即ち上流
側)に背圧制御絞り34が設けられ、かくして弁座30
とこの絞り34との間に循環ガス経路中に比較的小容積
の定圧室Sが形成される。
A back pressure control throttle 34 is provided on the exhaust manifold side (i.e., upstream side) of the zero seat 30 in the EGR valve 2, and thus the valve seat 30
A constant pressure chamber S having a relatively small volume is formed in the circulating gas path between the aperture 34 and the aperture 34 .

36は気化器14のスロットル弁14aの図示アイドル
位置の少し上流に穿設した第1の負圧信号取出ポート(
所謂EGRポート)であり、このポート36からの負圧
信号によって流量制御弁20は作動される。
Reference numeral 36 denotes a first negative pressure signal extraction port (
The flow control valve 20 is operated by a negative pressure signal from this port 36 (so-called EGR port).

38はEGRポート36からEGR弁2弁内0圧室32
に負圧信号通路40a、40bを介し導入される負圧信
号のレベルを定圧室S内の排気ガス圧力に応じて制御す
る変圧弁である。
38 is the zero pressure chamber 32 in the EGR valve 2 from the EGR port 36
This is a variable pressure valve that controls the level of a negative pressure signal introduced through the negative pressure signal passages 40a and 40b in accordance with the exhaust gas pressure in the constant pressure chamber S.

変圧弁38ばばね42によって付勢されるダイヤフラム
44を備えており、その下側の背圧室46は第3の絞り
ないしはオリフィス74を有する背圧取出通路48を介
して定圧室Sに通じており上側の大気室50は空気清浄
フィルタ52を介し大気開放となっている。
The variable pressure valve 38 includes a diaphragm 44 biased by a spring 42, and a back pressure chamber 46 below the diaphragm 44 communicates with the constant pressure chamber S via a back pressure outlet passage 48 having a third restriction or orifice 74. The atmospheric chamber 50 on the upper side of the cage is opened to the atmosphere through an air purifying filter 52.

ダイヤフラム44には弁体54が設けられていてこの弁
体54は負圧信号通路40aと40bとの間を結ぶ背圧
制御パイプ56の枝管56aを開閉するべく作動する。
The diaphragm 44 is provided with a valve element 54, which operates to open and close a branch pipe 56a of a back pressure control pipe 56 connecting the negative pressure signal passages 40a and 40b.

パイプ56中の第1の絞りないしオリフィス60はEG
Rポート36から流量制御弁20の負圧室32に向う負
圧流量を制御する。
The first restriction or orifice 60 in the pipe 56 is EG.
The negative pressure flow rate from the R port 36 toward the negative pressure chamber 32 of the flow control valve 20 is controlled.

80は負圧信号通路40aに設けられたEGRカット用
の感温式切換弁であり、例えばエンジン冷却水温を検知
してオン−オフ作動し、これがオフのときにはEGRポ
ート36の負圧がEGR弁2弁内0圧室32に作用しな
くなるからEGRは行われなくなる。
Reference numeral 80 denotes a temperature-sensitive switching valve for EGR cut provided in the negative pressure signal passage 40a. For example, it detects the engine cooling water temperature and operates on and off, and when it is off, the negative pressure of the EGR port 36 is applied to the EGR valve. EGR is no longer performed because it no longer acts on the two-valve zero-pressure chamber 32.

以上述べた流量制御弁20と変圧弁38とにより戒る所
謂背圧制御式のEGRシステムでは、EGR通路18上
の定圧室S内の循環排気ガス圧力Pが小となると変圧弁
38のダイヤフラム44はばね42によって押下げられ
てパイプ56aは開放される結果、フィルタ52を介し
て大気室50内に入る空気は第2の絞りないしはオリフ
ィス62の寸法に応じ定まる流速で負圧ライン40bに
導入されて、EGR弁2弁内0圧室32に作用する負圧
レベルを弱めてダイヤフラム22はばね28によって弁
体26を弁座30に向う方向に動かす。
In the so-called back pressure controlled EGR system using the flow rate control valve 20 and the pressure variable valve 38 described above, when the circulating exhaust gas pressure P in the constant pressure chamber S on the EGR passage 18 becomes small, the diaphragm 44 of the pressure variable valve 38 As a result, the pipe 56a is opened by being pushed down by the spring 42, and the air entering the atmospheric chamber 50 through the filter 52 is introduced into the negative pressure line 40b at a flow rate determined according to the dimensions of the second restriction or orifice 62. Then, the negative pressure level acting on the zero-pressure chamber 32 in the EGR valve 2 is weakened, and the diaphragm 22 moves the valve body 26 toward the valve seat 30 by the spring 28 .

この結果定圧室S内の循環排気ガス圧力が大となり、そ
の結果変圧弁38のダイヤフラム44はばね42に抗し
押し上げられてパイプ56aは閉とされる。
As a result, the pressure of the circulating exhaust gas in the constant pressure chamber S increases, and as a result, the diaphragm 44 of the variable pressure valve 38 is pushed up against the spring 42, and the pipe 56a is closed.

従ってパイプ56aへの大気の導入は停止され、EGR
ポート36より第2オリフイス60の寸法に応じ負圧ラ
イン40bを介してEGR弁2弁内0圧室32に入る負
圧信号のレベルは強まりダイヤフラム22はばね28に
抗して引き上げられて弁体26は弁座30から離れる方
向に動かされ、かくして定圧室S内の排気ガス圧力は再
び低下する。
Therefore, the introduction of atmospheric air into the pipe 56a is stopped, and the EGR
The level of the negative pressure signal that enters the zero pressure chamber 32 in the EGR valve 2 from the port 36 via the negative pressure line 40b in accordance with the dimensions of the second orifice 60 increases, and the diaphragm 22 is pulled up against the spring 28 and the valve body 26 is moved away from the valve seat 30, and thus the exhaust gas pressure in the constant pressure chamber S decreases again.

以上述べた排圧制御式EGRシステムの基本的原理から
明らかな如く、定圧室Sの循環排気ガス圧力は大気圧に
近い所定値に一定維持されるから、当業者には周知の通
り、EGR通路18より吸気マニホルドに導入される排
気ガスの割合であるEGR率はスロットル弁14a即ち
エンジンの負荷に拘らず実質上一定に保つことができる
As is clear from the basic principle of the exhaust pressure controlled EGR system described above, the circulating exhaust gas pressure in the constant pressure chamber S is maintained constant at a predetermined value close to atmospheric pressure. The EGR rate, which is the proportion of exhaust gas introduced into the intake manifold through the throttle valve 14a, can be kept substantially constant regardless of the load of the throttle valve 14a, that is, the engine.

しかしながら、前述の如くこのようにEGR率を一定に
保つと、最大限のEGR効果即ちNOx低減効果を得る
ため、EGR率を高く設定した場合に低負荷側でサージ
ング等の運転性不良が発生し易いという欠点がある。
However, as mentioned above, if the EGR rate is kept constant in this way, in order to obtain the maximum EGR effect, that is, the NOx reduction effect, if the EGR rate is set high, poor driveability such as surging may occur on the low load side. It has the disadvantage of being easy.

これを解決するために前述の如く特願昭53−7857
5号において、EGRポート36の少し上流に、エンジ
ンの負荷に応じた負圧信号を取り出す第2の負圧ポート
70を設けることを提案した。
In order to solve this problem, as mentioned above, the patent application No. 53-7857
In No. 5, it was proposed to provide a second negative pressure port 70 slightly upstream of the EGR port 36 from which a negative pressure signal corresponding to the engine load is taken out.

この第2の負圧ポート70は負圧ライン72を介して変
圧弁38の大気室50に接続していると共に、空気フィ
ルタ52を介し大気室50に入る空気流入速度を規制す
る第4の絞りないしはオリフィス75を設けている。
This second negative pressure port 70 is connected to the atmospheric chamber 50 of the pressure changing valve 38 via a negative pressure line 72, and also has a fourth restrictor that regulates the speed of air entering the atmospheric chamber 50 through the air filter 52. Alternatively, an orifice 75 is provided.

このように構成することにより、スロットル弁14aが
実線で示すアイドル開度θ、からEGRポート36に丁
度被る図の一点鎖線で示す開度θ2までの低負荷領域で
は第2の負圧ポート70は略々大気圧であるため、変圧
弁38の大気室50の圧力はフィルタ52及び第2オリ
フイス62を介しての空気の導入により大気圧に維持さ
れる。
With this configuration, the second negative pressure port 70 is in a low load range from the idle opening θ shown by the solid line to the opening θ2 shown by the dashed-dotted line in the figure that just overlaps the EGR port 36. Since the pressure is approximately atmospheric, the pressure in the atmospheric chamber 50 of the variable pressure valve 38 is maintained at atmospheric pressure by introducing air through the filter 52 and the second orifice 62.

その結果、定圧室S内の排気ガス圧力Pは前に述べた原
理で略大気圧に近い一定圧に維持される。
As a result, the exhaust gas pressure P in the constant pressure chamber S is maintained at a constant pressure substantially close to atmospheric pressure based on the principle described above.

スロットル弁14aが図の二点鎖線θ3で示すように負
圧ポート70に被る中負荷領域まで開放されるとポート
70に負圧が現われ、この負圧は変圧弁38の大気室5
0に導入されその結果、大気室50の圧力を負圧側に補
正する。
When the throttle valve 14a is opened to a medium load region covering the negative pressure port 70 as shown by the two-dot chain line θ3 in the figure, negative pressure appears at the port 70, and this negative pressure is transferred to the atmospheric chamber 5 of the pressure variable valve 38.
As a result, the pressure in the atmospheric chamber 50 is corrected to the negative pressure side.

ポート70の負圧レベルはポート70に対するスロット
ル弁14aの被り具合に応じてスロットル開度θ2から
03の間で増大するから、変圧弁38の大気室50は徐
々に負圧が強まる。
Since the negative pressure level of the port 70 increases between the throttle opening degrees θ2 and 03 depending on the extent to which the throttle valve 14a overlaps the port 70, the negative pressure in the atmospheric chamber 50 of the pressure variable valve 38 gradually increases.

この結果、変圧弁の弁体54はパイプ56aを閉とする
時間がスロットル弁14aの開放とともに長くなり、E
GR弁2弁内0圧室32の負圧レベルはスロットル弁の
開放とともに増加する特性が得られる。
As a result, the time for the valve element 54 of the pressure variable valve to close the pipe 56a becomes longer as the throttle valve 14a opens, and the E
A characteristic is obtained in which the negative pressure level in the zero-pressure chamber 32 within the GR valve 2 increases as the throttle valve opens.

かくして、循環排気ガス量の割合であるEGR率はスロ
ットル開度θ2と03との間では負荷に応じて増加する
特性となる。
Thus, the EGR rate, which is a proportion of the amount of circulating exhaust gas, has a characteristic that increases depending on the load between the throttle openings θ2 and 03.

スロットル弁14aの開度が03となると、変圧弁38
の大気室の負圧はこれを常に閉とするまでに強まるから
、これ以後の開度では変圧弁38による、EGR弁2弁
内0導入負圧の制御は行われず、EGR弁2弁内0量即
ちEGR率はEGRポート36の負圧のみで定まり、周
知の負圧制御式のEGR特性に変る。
When the opening degree of the throttle valve 14a becomes 03, the pressure transformer valve 38
Since the negative pressure in the atmospheric chamber increases to the point where it is always closed, the pressure change valve 38 does not control the negative pressure introduced into the EGR valve 2 at the opening after this point, and the The amount, that is, the EGR rate, is determined only by the negative pressure of the EGR port 36, and changes to the well-known negative pressure control type EGR characteristics.

スロットル弁の開放とともにEGR率は低下する。The EGR rate decreases as the throttle valve opens.

以上の構成によれば変圧弁38にエンジン負荷に対応し
て増大する吸気負圧を導入することによりEGR率の負
荷制御を行うことができる。
According to the above configuration, the load control of the EGR rate can be performed by introducing the intake negative pressure that increases in accordance with the engine load into the pressure variable valve 38.

その結果、軽負荷域のサージング限界に対し必要十分な
余裕を保ちつつ中乃至高負荷域のEGR率を高くとれる
という効果を奏する。
As a result, it is possible to achieve a high EGR rate in the medium to high load range while maintaining a necessary and sufficient margin for the surging limit in the light load range.

本考案は斯かる効果を維持しつつ、排気ガスの浄化効率
を更に高めようとするものである。
The present invention aims to further improve exhaust gas purification efficiency while maintaining such effects.

即ち上述の構成では、スロットル弁14aが03の開度
位置にあるときに、この状態から例えば一段上のスピー
ドギヤに変速するためにアクセルペダルを離すとスロッ
トル弁14aは一旦アイドル開度θ1まで戻る結果、そ
れまで負圧が作用していた第2負圧ポート70は再び略
大気圧に戻り変圧弁38の弁体54は開放せしめられる
That is, in the above configuration, when the throttle valve 14a is at the opening position of 03, when the accelerator pedal is released from this state in order to shift to a higher speed gear, for example, the throttle valve 14a returns to the idle opening position θ1. As a result, the second negative pressure port 70, on which negative pressure had been applied until then, returns to substantially atmospheric pressure again, and the valve body 54 of the variable pressure valve 38 is opened.

その結果EGR弁20の負圧室32は大気によってブリ
ードされ、EGR弁2弁内0鎖する。
As a result, the negative pressure chamber 32 of the EGR valve 20 is bled by the atmosphere, and the EGR valve 2 becomes zero-chain.

即ち、スロットル弁14aが03の開度から01の開度
に移行するや否やEGRはカットされてしまう。
That is, as soon as the throttle valve 14a changes from the opening degree of 03 to the opening degree of 01, EGR is cut off.

このことはスロットル弁14aが03の開度から02の
開度に移行する減速時にも当て嵌まる。
This also applies when the throttle valve 14a is decelerating from the opening degree of 03 to the opening degree of 02.

これを防止するために本考案によれば負圧信号通路72
内に負圧遅延弁82が設けられる。
In order to prevent this, according to the present invention, the negative pressure signal path 72
A negative pressure delay valve 82 is provided within.

負圧遅延弁82はそれ自体公知の如く第5の絞り84と
かさ状の一方向弁86とから構成される。
The negative pressure delay valve 82 is composed of a fifth throttle 84 and an umbrella-shaped one-way valve 86, as is known per se.

一方向弁86は変圧弁38の大気室50に対して第2負
圧ポート70側の圧力レベルが低いときのみ開放し第2
負圧ポート70の大きな負圧を大気室50に伝えること
ができる。
The one-way valve 86 opens only when the pressure level on the second negative pressure port 70 side is low relative to the atmospheric chamber 50 of the pressure variable valve 38.
A large negative pressure of the negative pressure port 70 can be transmitted to the atmospheric chamber 50.

従って第2負圧ポート70が上述の如く例えば変速時に
一時的に大気圧になると一方向弁86は閉鎖位置を占め
ているのでこの大気圧は絞り84を介してのみ大気室5
0に伝えられる。
Therefore, when the second negative pressure port 70 temporarily reaches atmospheric pressure, for example, during gear shifting as described above, the one-way valve 86 is in the closed position, and this atmospheric pressure is applied only to the atmospheric chamber 5 through the throttle 84.
0 can be communicated.

即ち、大気圧は遅延して大気室50に伝えられその遅延
時間分だけEGRカットが遅延される。
That is, atmospheric pressure is transmitted to the atmospheric chamber 50 with a delay, and EGR cut is delayed by the delay time.

そのため、特に変速時の如くスロットル弁14aが03
からθ、に移行した後すぐに再度θ3に復帰せしめられ
るような場合にはEGRカットは実質上行われず間断な
(EGRを行うことができる。
Therefore, especially when changing gears, the throttle valve 14a is
In the case where the temperature is immediately returned to θ3 after shifting from θ to θ, EGR cut is not substantially performed and intermittent EGR can be performed.

遅延時間は絞り84の大きさにより任意に設定できる。The delay time can be arbitrarily set depending on the size of the aperture 84.

以上に記載した如く本考案によればエンジン負荷に対応
してEGR率を制御するという要求を充足しつつ更に減
速時ないしは変速時にも一定時間EGRを保持すること
により排気ガス中のNOxの一層の低減を遠戚するもの
である。
As described above, the present invention satisfies the requirement of controlling the EGR rate in accordance with the engine load, and further reduces NOx in exhaust gas by maintaining EGR for a certain period of time even during deceleration or gear shifting. It is a distant relative of reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本考案に係る排気ガス再循環制御装置の基本
的構成を示す図。 12・・・・・・吸気マニホルド、14・・・・・・気
化器、16・・・・・・排気マニホルド、18・・・・
・・EGR通路、20・・・・・・流量制御弁、36・
・・・・・EGRポート、38・・・・・・変圧弁、5
0・・・・・・大気室、70・・・・・・負圧ポート、 84・・・・・・負圧遅延弁、 S・・・・・・定圧室。
The accompanying drawings are diagrams showing the basic configuration of an exhaust gas recirculation control device according to the present invention. 12...Intake manifold, 14...Carburizer, 16...Exhaust manifold, 18...
...EGR passage, 20...Flow control valve, 36.
...EGR port, 38...Transformer valve, 5
0... Atmospheric chamber, 70... Negative pressure port, 84... Negative pressure delay valve, S... Constant pressure chamber.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 機関排気系と吸気系とを連結する排気ガス再循環通路に
負圧作動式排気ガス流量制御弁を設けると共に該排気ガ
ス流量制御弁の負圧室をスロットル弁上流に臨ませた第
1の負圧ポートに負圧信号通路を介して連通せしめ、か
つ上記負圧信号通路に再循環排気ガスの背圧に応じて作
動する大気室付変圧弁を設けて上記排気ガス流量制御弁
の負圧室を変圧弁の大気室を介して選択的に大気に開放
し得るようにした内燃機関の排気ガス再循環制御装置に
おいて、上記変圧弁の大気室を上記第1負圧ポートの更
に上流に臨ませた第2の負圧ポートに負圧信号通路を介
して連通せしめると共に該負圧信号通路内に変圧弁の大
気圧に対して第2負圧ポート側の圧力レベルが低いとき
のみ開放する負圧遅延弁を設けたことを特徴とする排気
ガス再循環制御装置。
A negative pressure-operated exhaust gas flow control valve is provided in the exhaust gas recirculation passage connecting the engine exhaust system and the intake system, and a first negative pressure valve is provided in which the negative pressure chamber of the exhaust gas flow control valve faces upstream of the throttle valve. The negative pressure chamber of the exhaust gas flow rate control valve is connected to the pressure port via a negative pressure signal passage, and the negative pressure signal passage is provided with a pressure variable valve with an atmospheric chamber that operates according to the back pressure of the recirculated exhaust gas. In the exhaust gas recirculation control device for an internal combustion engine, the atmospheric chamber of the pressure variable valve is arranged to face further upstream of the first negative pressure port. A negative pressure is communicated with the second negative pressure port via a negative pressure signal passage, and a negative pressure is released within the negative pressure signal passage only when the pressure level on the second negative pressure port side is lower than the atmospheric pressure of the pressure variable valve. An exhaust gas recirculation control device characterized by being provided with a delay valve.
JP1979083280U 1979-06-20 1979-06-20 Internal combustion engine exhaust gas recirculation control device Expired JPS6034766Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979083280U JPS6034766Y2 (en) 1979-06-20 1979-06-20 Internal combustion engine exhaust gas recirculation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979083280U JPS6034766Y2 (en) 1979-06-20 1979-06-20 Internal combustion engine exhaust gas recirculation control device

Publications (2)

Publication Number Publication Date
JPS562055U JPS562055U (en) 1981-01-09
JPS6034766Y2 true JPS6034766Y2 (en) 1985-10-16

Family

ID=29316485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979083280U Expired JPS6034766Y2 (en) 1979-06-20 1979-06-20 Internal combustion engine exhaust gas recirculation control device

Country Status (1)

Country Link
JP (1) JPS6034766Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191359U (en) * 1982-06-14 1983-12-19 ダイハツ工業株式会社 Internal combustion engine exhaust gas recirculation control device
JPS5913753U (en) * 1982-07-20 1984-01-27 キ−パ−株式会社 Oil seal with backup spring

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630683Y2 (en) * 1976-06-09 1981-07-21

Also Published As

Publication number Publication date
JPS562055U (en) 1981-01-09

Similar Documents

Publication Publication Date Title
JPS6125904B2 (en)
JPS6039863B2 (en) Internal combustion engine exhaust gas purification device
US4583363A (en) Secondary air supply control device in internal combustion engine
JPS6034766Y2 (en) Internal combustion engine exhaust gas recirculation control device
US4144856A (en) Exhaust gas recirculation system
US3996905A (en) Vacuum controls for internal combustion engines
JPS6157465B2 (en)
JPS595845A (en) Method of controlling restriction of intake air of diesel engine
JPS6018610Y2 (en) Internal combustion engine exhaust gas recirculation control device
US4222355A (en) Exhaust gas recirculation apparatus for an internal combustion engine
JPS6032370Y2 (en) Exhaust recirculation control device
US4282847A (en) Exhaust gas recirculation system for internal combustion engine
JPH0343405Y2 (en)
JPS6364627B2 (en)
JPS6136768Y2 (en)
JPS6231657Y2 (en)
JPS5856381Y2 (en) Internal combustion engine ignition timing control system
JPS6235876Y2 (en)
JPS6321718Y2 (en)
JPS6231656Y2 (en)
JPS6320853Y2 (en)
JPS6111481Y2 (en)
JPS628351Y2 (en)
JPS6221985B2 (en)
JPH0433401Y2 (en)