JPS61114119A - Method for size measurement and temperature compensation - Google Patents

Method for size measurement and temperature compensation

Info

Publication number
JPS61114119A
JPS61114119A JP23633784A JP23633784A JPS61114119A JP S61114119 A JPS61114119 A JP S61114119A JP 23633784 A JP23633784 A JP 23633784A JP 23633784 A JP23633784 A JP 23633784A JP S61114119 A JPS61114119 A JP S61114119A
Authority
JP
Japan
Prior art keywords
temperature
time
measured
gear
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23633784A
Other languages
Japanese (ja)
Inventor
Toshio Hashimoto
橋本 利夫
Nakao Ishihara
石原 仲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP23633784A priority Critical patent/JPS61114119A/en
Publication of JPS61114119A publication Critical patent/JPS61114119A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0011Arrangements for eliminating or compensation of measuring errors due to temperature or weight
    • G01B5/0014Arrangements for eliminating or compensation of measuring errors due to temperature or weight due to temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure size speedily and accurately at standard temperature before a temperature sensor and a body to be measured become equal in temperature and when temperature and size are measured at different time by calculating the temperature of the object body from the variation rate of the output of the temperature sensor and correcting the size measured value. CONSTITUTION:The temperature sensor 32 is brought into contact with the body 13 to be measured to obtain the output of the sensor at the 1st time and the 2nd time and the size of the body 13 at the 3rd time within a section where the output of the sensor 32 attains to the temperature of the body 13. The variation rate of the sensor 32 between the 1st time and the 2nd time is calculated to calculate the temperature of the body 13, and the temperature of the body 13 at the 3rd time is calculated from the temperature difference between the 2nd time and the 3rd time. Then, the size measured value of the body 13 is corrected with the difference between the temperature of the body 13 at the 3rd time and standard temperature. Consequently, the size of the body 13 is at the standard temperature is measured speedily and accurately before the temperature of the sensor 32 attains to that of the body 13 and even if the temperature and size are measured at different time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、被測定物の寸法測定に係り、更に詳細には被
測定物の寸法を測定しその値を被測定物の温度と標準温
度との間の温度差に応じて補正づる寸法測定及び温度補
正方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to measuring the dimensions of an object to be measured, and more specifically, to measuring the dimensions of an object to be measured and comparing the measured value with the temperature of the object to be measured and a standard temperature. This relates to a dimension measurement and temperature correction method that corrects according to the temperature difference between the two.

従来の技術 ピストンや歯車の如くその構成材11の性質上温度変化
による寸法変化量が大きく、しかも高精度な寸法管理が
要求される被測定物に於ては、その標準の寸法は予め定
められた標#=温度に於ける寸法値として定められてい
る。従ってピストンや歯車の如き被測定物の寸法を加工
直後の被測定物の温度が高い時点で測定しても正確な寸
法測定はできず、そのため従来より一般に、加工完了後
の被測定物を冷却器やワークストッカの如き冷却手段に
よって標準温度まで冷却してから被測定物の寸法測定を
行うことが行われている。しかしかかる方法に於ては、
冷却手段が必要であり、従って設儀費が高くつくどいつ
問題があり、また被測定物が標準温度になるまで寸法測
定を行い得ないため、寸法測定に長時間を要するという
問題がある。
Conventional Technology For objects to be measured, such as pistons and gears, whose constituent materials 11 undergo large dimensional changes due to temperature changes and require highly accurate dimensional control, the standard dimensions are predetermined. It is defined as the dimensional value at the reference number=temperature. Therefore, even if the dimensions of a workpiece such as a piston or gear are measured immediately after machining when the temperature of the workpiece is high, it is not possible to accurately measure the dimensions. The dimensions of the object to be measured are measured after cooling the object to a standard temperature using a cooling means such as a workpiece stocker or a cooling device. However, in such a method,
A cooling means is required, which results in high installation costs, and there is also a problem in that dimension measurement cannot be performed until the object to be measured reaches a standard temperature, so dimension measurement takes a long time.

また上述の如き問題を解決する方法の一つとして、被測
定物の寸法を測定すると同時に被測定物の温度も測定し
、この測定された被測定物の温度と被測定物の材質によ
って定まる膨張係数とによって寸法測定値を補正するこ
とにより、被測定物の標準温度に於ける寸法値を算出す
る方法が考えられる。しかしかる方法に於ては、被測定
物の温度を測定する温度センサには、一般に、温度セン
サ自体の比熱、熱容量などによって定まる応答遅れがあ
り、温度センサを被測定物に接触させても温度センサの
温度がすぐには被測定物の温度と同じにはならず、両者
の湿度差が実用上許容し得る値になるには通常10秒若
しくはそれ以上の時間を要づる。従って上述の如き方法
によっても被測定物の寸法測定を能率よく行うことはで
きない。
In addition, one method to solve the above-mentioned problems is to measure the temperature of the object at the same time as measuring the dimensions of the object, and the expansion is determined by the measured temperature of the object and the material of the object. A possible method is to calculate the dimension value at the standard temperature of the object to be measured by correcting the dimension measurement value using the coefficient. However, in such a method, the temperature sensor that measures the temperature of the object to be measured generally has a response delay determined by the specific heat, heat capacity, etc. of the temperature sensor itself, and even if the temperature sensor is brought into contact with the object to be measured, the temperature will not change. The temperature of the sensor does not immediately become the same as the temperature of the object to be measured, and it usually takes 10 seconds or more for the humidity difference between the two to reach a practically acceptable value. Therefore, even with the method described above, it is not possible to efficiently measure the dimensions of the object to be measured.

本願発明者等は、従来の上述の如き被測定物の寸法測定
方法に於ける上述の如き種々の問題に鑑み、本願出願人
と他の出願人との共同出願に係る特開昭58−8640
9号に於て、被測定物の寸法を計測すると共に、前記被
測定物の調度を温度検出器を用いて計測し、この計測さ
れた前記被測定物の温度に応じて前記寸法計測値を補正
して前記被測定物の標準温度に於1ノる1法を算出づる
温度補正方法であって、前記温度検出器を前記被測定物
に接触させた後に於ける前記温度検出器用ツノの経過時
間に対する変化割合を前記被測定物と温度検出器との間
の濃度差を表わづデータとして検出し、この検出された
変化割合のデータと前記調度検出器の出力信号の大きさ
とにより前記被測定物の寸法計測値を補正して前記被測
定物の前記標準温度に於ける寸法を算出するようにした
ことを特徴とする寸法側定置に於ける温度補正方法を提
案した。
In view of the various problems mentioned above in the conventional methods for measuring the dimensions of objects to be measured, the inventors of the present application filed a joint application with the present applicant and another applicant in Japanese Patent Application Laid-Open No. 58-8640.
In No. 9, the dimensions of the object to be measured are measured, the preparation of the object to be measured is measured using a temperature detector, and the measured dimension value is determined according to the measured temperature of the object to be measured. A temperature correction method for calculating a standard temperature of the object to be measured by correcting the temperature, wherein the temperature sensor horn changes after the temperature sensor is brought into contact with the object to be measured. The rate of change with respect to time is detected as data representing the concentration difference between the object to be measured and the temperature sensor, and the data of the detected rate of change and the magnitude of the output signal of the temperature detector are used to determine the rate of change in the temperature sensor. We have proposed a temperature correction method for dimension-side fixation, which is characterized in that dimensions of the object to be measured at the standard temperature are calculated by correcting the measured dimensions of the object.

発明が解決しようとする問題点 」二連の先の提案にかかる方法によれば、調度検出器が
被測定物に接触されてから温度検出器の温度が被測定物
の温度に等しくなるまでの時間的区間内に於ても被測定
物の寸法を測定し得るので、従来の寸法測定方法及び温
度補正方法に比して短時間のうちに正確に被測定物の標
tP温度に於ける寸法を求めることができる。しかしこ
の方法に於ては、温度検出器の経過時間に対する変化割
合を検出する過程と被測定物の寸法を計測する過程とが
同一の時刻に行われなければ、被測定物の寸法計測値を
被測定物の寸法計測時の温度にて補正することができな
いため、被測定物の19!準温度に於ける寸法を正確に
求めることができないという問題がある。特に被測定物
が例えば歯車であり、被測定物としての被検査歯車をマ
スタ歯車と噛合状態にて回転させながらその両歯車の軸
間距離の変化を測定し、その測定結采に基づいてオーバ
ボール径、m溝の振れ、噛合誤差などを検出する歯車の
噛合試験に於ては、被検査歯車を回転させつつその温度
を接触式に正確に測定することはできないため、前述の
先の提案にかかる方法によっては、歯車の噛合試験に於
て得られる寸法測定値を正確に補正することはできない
Problems to be Solved by the Invention According to the method proposed in the previous two series, the temperature from when the furniture detector is brought into contact with the object to be measured until the temperature of the temperature sensor becomes equal to the temperature of the object to be measured is Since the dimensions of the object to be measured can be measured even within a time interval, the dimensions at the target temperature of the object can be measured more accurately in a shorter time than with conventional dimension measurement methods and temperature correction methods. can be found. However, in this method, if the process of detecting the rate of change of the temperature sensor over elapsed time and the process of measuring the dimensions of the object to be measured are not performed at the same time, the measured values of the dimensions of the object to be measured will not be accurate. Since it is not possible to correct the temperature at the time of measuring the dimensions of the object to be measured, 19! There is a problem in that dimensions at quasi-temperature cannot be determined accurately. In particular, when the object to be measured is a gear, for example, the change in the distance between the axes of both gears is measured while rotating the gear to be inspected as the object to be measured while meshing with the master gear, and the overflow is determined based on the measurement result. In gear meshing tests that detect ball diameter, m-groove runout, meshing errors, etc., it is not possible to accurately measure the temperature of the gear being tested by contact while rotating it, so the above-mentioned proposal is not suitable. Depending on the method described above, it is not possible to accurately correct the dimensional measurements obtained in gear meshing tests.

5一 本発明は、従来の寸法測定方法や温度補正方法に於ける
上述の如き問題に鑑み、温度センサが被測定物に接触さ
れてから温度センサのIi度が被測定物の温度に等しく
なるまでの区間に於て、被測定物の寸法測定と被測定物
の温度測定とが同一時刻に行われなくても被測定物の1
91準渇度に於ける寸法を正確に且短時間の内に求める
ことができるよう改善された寸法測定及び温度補正方法
を提供することを目的としている。
51 In view of the above-mentioned problems in conventional dimension measurement methods and temperature correction methods, the present invention provides a method in which the Ii degree of the temperature sensor becomes equal to the temperature of the object to be measured after the temperature sensor is brought into contact with the object to be measured. Even if the dimension measurement of the measured object and the temperature measurement of the measured object are not performed at the same time,
It is an object of the present invention to provide an improved dimension measurement and temperature correction method that can accurately and quickly determine dimensions at 91 quasi-dryness.

問題点を解決するための手段 上述の如き目的は、本発明によれば、被測定物に接触し
て該被測定物の温度を測定する温度センサを前記被測定
物に接触させて前記温度センサの出力が前記被測定物の
温度になるまでの区間内の第一の時刻及び第二の時刻に
於【ノる前記温度センサの出力を求め、前記区間内の第
三の時刻に於て前記被測定物の寸法を測定し、前記第一
の時刻と前記第二の時刻との間に於ける前記温度センサ
の出力の変化率を算出し、該変化率より前記第二の時刻
に於ける前記被測定物の温度を算出し、前記−〇− 第二の時刻に於ける前記被測定物の温度及び前記第二の
時刻と前記第三の時刻どの間の時間差より前記第三の時
刻に於ける前記被測定物の温度を算出し、前記第三の時
刻に於ける前記被測定物の温度と樟へも温度との温度差
を弾出し、該温度差にて前記第三の時刻に於()る前記
被測定物の寸法測定値を補正覆ることを含む寸法測定及
び温度補正方法によって達成される。
Means for Solving the Problems According to the present invention, the above object is achieved by bringing a temperature sensor that measures the temperature of the object by contacting the object to be measured into contact with the object to be measured. Obtain the output of the temperature sensor at the first and second times in the interval until the output reaches the temperature of the measured object, and calculate the output at the third time in the interval. Measure the dimensions of the object to be measured, calculate the rate of change in the output of the temperature sensor between the first time and the second time, and calculate the rate of change in the output of the temperature sensor at the second time from the rate of change. Calculate the temperature of the object to be measured, and calculate the temperature at the third time from the temperature of the object at the second time and the time difference between the second time and the third time. The temperature of the measured object at the third time is calculated, and the temperature difference between the temperature of the measured object at the third time and the temperature of the camphor tree is calculated, and the temperature difference is calculated at the third time. This is achieved by a dimension measurement and temperature correction method that includes correcting the dimension measurement values of the object to be measured.

発明の作用及び効果 本発明によれば、被測定物に接触して該被測定物の温度
を測定する温度センサを被測定物に接触させて温度セン
サの出力が被測定物の温度になるまでの区間内の第一の
時刻及び第二の時刻に於ける温度センサの出力が求めら
れ、前記区間内の第三の時刻に於て被測定物の寸法が測
定され、第一の時刻と第二の時刻との間に於ける温度セ
ンサの出力の変化率が弾出され、該変化率に例えば実験
的に求められた係数を乗算づるなどの手段よって第二の
時刻に於ける被測定物の温度が算出され、第二の時刻に
於ける被測定物の温度及び第二の時刻と第三の時刻との
間の時間差より、例えば第二の時刻に於ける被測定物の
温度に第二の時刻と第三の時刻との間の時間差及び実験
的に求められた係数を乗算するなどの手段によって第三
の時刻に於ける被測定物の温度が算出され、第三の時刻
に於ける被測定物の温度と標準温度との温度差が斡出さ
れ、該温度差にて第三の時刻、即ち被測定物の寸法測定
が行われた時刻に於ける被測定物の寸法測定値が補正さ
れるので、従来の寸法測定方法や温度補正方法に比して
短時間の内に被測定物の標準温度に於ける寸法を求める
ことができ、また前述の先の提案にかかる温度補正方法
の場合に比して正確に被測定物の標*温度に於1プる寸
法を求めることができ、更には歯車の噛合試験による寸
法測定の如く被測定物の動態状態にてその寸法測定が行
われる場合にも、被測定物のa!準湯温度於ける寸法を
求めることができる。
Effects and Effects of the Invention According to the present invention, a temperature sensor that measures the temperature of a measured object by contacting the measured object is brought into contact with the measured object until the output of the temperature sensor reaches the temperature of the measured object. The output of the temperature sensor at a first time and a second time within the interval is determined, the dimensions of the object to be measured are measured at a third time within the interval, and The rate of change in the output of the temperature sensor between the two times is calculated, and the rate of change in the output of the temperature sensor at the second time is calculated by multiplying the rate of change by, for example, an experimentally determined coefficient. The temperature of the measured object at the second time is calculated, and from the temperature of the measured object at the second time and the time difference between the second time and the third time, for example, the temperature of the measured object at the second time is calculated. The temperature of the object to be measured at the third time is calculated by means such as multiplying the time difference between the second time and the third time by an experimentally determined coefficient, and the temperature of the object at the third time is calculated. The temperature difference between the temperature of the object to be measured and the standard temperature is determined, and the measured value of the dimensions of the object at a third time, that is, the time when the dimensions of the object to be measured are measured, is calculated based on the temperature difference. is corrected, it is possible to obtain the dimensions of the object to be measured at the standard temperature in a shorter time than with conventional dimension measurement methods and temperature correction methods. It is possible to more accurately determine the dimensions of the object to be measured at a reference temperature than with the conventional method, and it is also possible to measure the dimensions of the object in its dynamic state, such as in a gear meshing test. Even when a! of the measured object is performed, a! Dimensions at semi-hot water temperature can be determined.

また本発明によれば、歯車の噛合試験による寸法測定の
如く、被測定物の各部の寸法が微小時間毎に測定され、
従って被測定物の寸法測定にある時間を要する場合にも
、被測定物の各部の寸法測定値をそれぞれ各寸法測定値
が求められた時刻(第三の時刻)に於ける被測定物の温
度と標準温度との間の温度差にて補正することが可能で
あるので、1!準温度に於ける被測定物の各部の寸法を
正確に求めることができる。
Further, according to the present invention, the dimensions of each part of the object to be measured are measured at minute intervals, such as the dimension measurement by a gear meshing test,
Therefore, even if it takes a certain amount of time to measure the dimensions of an object to be measured, the measured values of each part of the object are calculated based on the temperature of the object at the time when each dimension measurement value was obtained (third time). Since it is possible to correct by the temperature difference between and the standard temperature, 1! It is possible to accurately determine the dimensions of each part of the object to be measured at a quasi-temperature.

尚本発明の方法に於ては、第一乃至第三の時刻はこの順
序である必要はなく、また第一の時刻及び第二の時刻に
於ける温度センサの出力を求める過程が、第一の時刻と
第二の時刻との間に於ける温度センサの出力の変化率を
算出する過程より第三の時刻にrAGプる被測定物の温
度と標準温度との温度差を算出する過程までの各過程よ
りも先に行われ、第三の時刻に於て被測定物の寸法を測
定する過程が第三の時刻に於ける被測定物の温度と標準
温度との温度差にて第三の時刻に於ける被測定物の寸法
測定値を補正する過程より先に行われる限り、本発明の
方法の各過程は何れの順序にて行われてもよい。
In the method of the present invention, the first to third times do not need to be in this order, and the process of determining the output of the temperature sensor at the first time and the second time is the first time. From the process of calculating the rate of change in the output of the temperature sensor between the second time and the second time to the process of calculating the temperature difference between the temperature of the object to be measured by rAG and the standard temperature at the third time. The process of measuring the dimensions of the object to be measured at the third time is carried out before each step of The steps of the method of the present invention may be performed in any order as long as they are performed before the step of correcting the dimensional measurements of the object at time .

以下に添付の図を参照しつつ本発明を実施例に9一 ついて詳細に説明する。The present invention will now be described in detail with reference to the accompanying drawings. This will be explained in detail.

実施例 まず第1図を参照して本発明の1法測定及び温度補正方
法の原理について説明する。
Embodiment First, the principle of the one-method measurement and temperature correction method of the present invention will be explained with reference to FIG.

第1図は、加工後に於ける被測定物の温度Twの変化と
、加工直後の時刻toに於て被測定物に接触された温度
センサの温度(出力>Tsの変化との関係を示している
。被測定物の温度Twは加工直後の温度Twoより自然
冷却によってゆっくりと低下し、温度センサのTSは温
度センサと被測定物との間の温度差が大きい時刻to角
付近於ては急激に上昇し、両者の間の温度差が小さくな
るに従って単位時間当りの昇温量は次第に小さくなる。
Figure 1 shows the relationship between the change in temperature Tw of the workpiece after machining and the change in temperature (output > Ts) of the temperature sensor that is in contact with the workpiece at time to immediately after machining. The temperature Tw of the object to be measured decreases slowly from the temperature Two immediately after processing due to natural cooling, and the TS of the temperature sensor rapidly decreases near the time to angle when the temperature difference between the temperature sensor and the object to be measured is large. As the temperature difference between the two becomes smaller, the amount of temperature increase per unit time gradually becomes smaller.

そして両者の温度が等しくなる時刻t6以降に於ては、
温度センサの温度TSは被測定物の温度Twに追従して
ゆっくりと低下する。
After time t6 when both temperatures become equal,
The temperature TS of the temperature sensor slowly decreases following the temperature Tw of the object to be measured.

この第1図より明らかである如く、温度センサと被測定
物との間の温度差Tdが大きい時刻t。
As is clear from FIG. 1, the time t when the temperature difference Td between the temperature sensor and the object to be measured is large.

付近に於ては、申位時間へを当りの温度センサ・の界温
邑Δ王は大きく、両者の間の温度差が小さくなるに従っ
て単位時間当りの温度センサの昇温量が小さくなり、温
度センサの単位時間当りの昇温量の大きさはその時の温
度センサと被測定物との間の温度差にほぼ比例すること
がわかる。従って温度センサの単位時間当りの昇温量の
大きさと、その時の温度センサと被測定物との量温度差
との間の比例定数を実験的に求め、該比例定数をに1と
し、第一の時刻1.及び第二の時刻t2に於ける温度セ
ンサの温度をそれぞれTS I 、TS !とすれば、 ΔT=TS 2  TS + T (1−へTXK+ が成立するので、時刻t2に於ける被測定物の温度TW
+は TWI−ΔTXKI +Ts 2 ・・・(1) として求められる。
In the vicinity, the boundary temperature of the temperature sensor per unit time is large, and as the temperature difference between the two becomes smaller, the amount of temperature rise of the temperature sensor per unit time becomes smaller, and the temperature increases. It can be seen that the amount of temperature rise of the sensor per unit time is approximately proportional to the temperature difference between the temperature sensor and the object to be measured at that time. Therefore, the proportionality constant between the amount of temperature rise per unit time of the temperature sensor and the amount temperature difference between the temperature sensor and the measured object at that time is experimentally determined, and the proportionality constant is set to 1. Time of 1. and the temperature of the temperature sensor at the second time t2, respectively, TSI and TS! Then, ΔT=TS 2 TS + T (1- to TXK+ holds, so the temperature TW of the measured object at time t2
+ is obtained as TWI-ΔTXKI +Ts 2 (1).

また第三の時刻t8に於て被測定物の寸法測定が行われ
るものと仮定すれば、時刻t2から時刻【3までに於て
は、被測定物の温度Twは実質的に線形的に低下するの
で、時刻t2から時刻【8までの区間に於ける被測定物
の温度変化率を実験的に求め、該変化率を係数に2とす
れば、第三の時刻t3に於ける被測定物の温度TWtは
TV2 =TW+  [1−(jg  jz >XK2
]・・・(2) として算出される。
Furthermore, assuming that the dimensions of the object to be measured are measured at the third time t8, the temperature Tw of the object to be measured decreases substantially linearly from time t2 to time [3]. Therefore, if the temperature change rate of the measured object in the interval from time t2 to time [8] is experimentally determined and the coefficient of change is set to 2, then the temperature change rate of the measured object at the third time t3 is The temperature TWt is TV2 = TW+ [1-(jg jz >XK2
]...(2) Calculated as follows.

従って標t¥温度をTr、被測定物の寸法補正定数(被
測定物を構成する材料の線膨張係数に実質的に等しい)
をαとし、時刻t8に於て測定された被測定物の寸法測
定値をDwすれば、4M準澹度Trに於りる被測定物の
寸法Dwrは下記の式(3)の如く算出される。
Therefore, the reference t\temperature is Tr, and the dimension correction constant of the object to be measured (substantially equal to the coefficient of linear expansion of the material constituting the object to be measured)
If α is the dimension value of the object to be measured measured at time t8, then Dw is the dimension value of the object to be measured at 4M semi-degree Tr. Ru.

[)wr−Dw  [1(X (Tw 2−’T’r 
) ]・・・(3) 上記式(3)によって寸法測定値の温度補正を行うこと
により、被測定物の温度測定時刻と被測定物の寸法測定
時刻とが相違する場合にも、all準温度に於ける被測
定物の寸法を正確に求めることができる。
[)wr-Dw [1(X (Tw 2-'T'r
]...(3) By performing temperature correction on the dimension measurement values using the above formula (3), even when the temperature measurement time of the object to be measured and the dimension measurement time of the object to be measured are different, all standards can be achieved. The dimensions of the object to be measured at different temperatures can be determined accurately.

尚被測定物の各部について寸法測定が行われ、それらの
寸法測定に例えば時刻t8より時刻t4までの如く比較
的長い時間を要する場合には、上述の式(2)に於ける
時刻t8を時刻t8から時刻t4までの所定の微小時間
毎の各時刻t工とすることにより、各時刻毎の被測定物
の81!I Tw及び標準温度Trに於ける被測定物の
各部の寸法Dwxをを下記の式(2′)及び式(3′)
の如く算出することができる。
Note that when the dimensions of each part of the object to be measured are measured and it takes a relatively long time to measure the dimensions, for example from time t8 to time t4, time t8 in equation (2) above is replaced by time. By setting each time t at every predetermined minute time from t8 to time t4, 81! The dimensions Dwx of each part of the measured object at I Tw and standard temperature Tr can be calculated using the following equations (2') and (3').
It can be calculated as follows.

Twx−Tw I  (1−Nエ −tg)XK2)・
・・(2′) 1)wx=[)w (1−(1(TV t −Tr )
 )・・・(3′) 次に上述の如き原理による本発明の寸法測定及び温度補
正方法の一つの実施例を、噛合試験により測定された歯
車のオーバボール径の温度補正に対し適用された実施例
について説明する。
Twx-Tw I (1-N-tg)XK2)・
...(2') 1)wx=[)w (1-(1(TV t -Tr)
)...(3') Next, one embodiment of the dimension measurement and temperature correction method of the present invention based on the principle as described above was applied to temperature correction of the overball diameter of a gear measured by a meshing test. An example will be explained.

第2図及び第3図はそれぞれ本発明による寸法測定及び
温度補正方法が適用される歯車の噛合試験装置の一つの
実施例を示す平面図及び簡略化された正面図、第4図は
第2図のmrv−rvに沿う断面図である。これらの図
に於て、1は基台を示しており、該基台上には支持台2
〜5が固定されている。支持台2上には支持部材6が固
定されており、該支持部材はセンタストック部7にて図
には示されていない軸受を介してセンタ8を軸線9の周
りに回転可能に支持している。支持台3上には支持部0
10が軸線9に沿って往復動可能に装着されており、必
要に応じて支持台3に対し所定の位置に固定されるよう
になっている。支持部材10はセンタストック部11に
て図には示されていない軸受を介してセンタ12を軸線
9の周りに回転可能に支持している。センタ8及び12
は互いに共働して被検査歯車13を有する歯車軸14を
軸線9の周りに回転可能に支持するようになっている。
2 and 3 are a plan view and a simplified front view, respectively, showing one embodiment of a gear meshing test device to which the dimension measurement and temperature correction method according to the present invention is applied, and FIG. It is a sectional view along mrv-rv of a figure. In these figures, 1 indicates a base, and a support base 2 is mounted on the base.
~5 is fixed. A support member 6 is fixed on the support base 2, and the support member supports a center 8 rotatably around an axis 9 at a center stock portion 7 via a bearing (not shown). There is. There is a support part 0 on the support stand 3.
10 is mounted so as to be reciprocally movable along the axis 9, and can be fixed at a predetermined position with respect to the support base 3 as required. The support member 10 rotatably supports the center 12 around the axis 9 at the center stock portion 11 via a bearing (not shown). Center 8 and 12
The gear shafts 14 having the gears 13 to be inspected are rotatably supported around the axis 9 in cooperation with each other.

歯車軸14は支持台3に固定されたモータ15により歯
車軸の他の歯車16と噛合う駆動歯車17を介して軸線
9の周りに回転駆動されるようになっている。
The gear shaft 14 is rotatably driven around the axis 9 by a motor 15 fixed to the support base 3 via a drive gear 17 that meshes with another gear 16 on the gear shaft.

支持台4には1字形をなす枢動レバ一部材18が軸線9
に平行な軸線19の周りに枢動可能に支持されている。
A pivot lever member 18 in the shape of a letter 1 is attached to the support base 4 along an axis 9.
It is pivotably supported about an axis 19 parallel to .

レバ一部材18の一方のアーム20の先端にはマスク歯
車支持部材21が固定されている。マスク歯車支持部材
21は被検査歯車13とノーバックラッシュにて噛合う
マスク歯車22を軸線9に平行な軸線23の周りに回転
可能に支持するようになっている。この場合マスク歯車
22と被検査歯車13とがノーバックラッシュにて噛合
った状態に於ては、第4図に示されている如く、それら
の軸線9及び23を通る直線9aと軸線19及び23を
通る直線20aとが直交するようになっている。
A mask gear support member 21 is fixed to the tip of one arm 20 of the lever member 18 . The mask gear support member 21 is adapted to rotatably support a mask gear 22 that meshes with the gear to be inspected 13 without backlash around an axis 23 parallel to the axis 9. In this case, when the mask gear 22 and the gear to be inspected 13 are meshed with each other with no backlash, as shown in FIG. The straight line 20a passing through 23 is orthogonal to the straight line 20a.

またマスク歯車支持部材21にはマスク歯車の回転角(
回転位相)を検出するロークリエンコーダ24が取付け
られている。ロータリエンコーダ24はマスク歯車の回
転角を光電気式に検出し、それに応じた電気信号を後述
Jる演算制御装置40へ出力するようになっている。ま
たレバ一部材18の他方のアーム25と基台21との間
にはレバ一部材18を軸線19の周りに第4図で見て反
時計回り方向へ付勢する圧縮コイルはね26が介装され
ており、レバ一部材18はマスク歯車22が被検査歯車
13とノーバックラッシュにて噛合う図示の第一の位置
と、マスク歯車が被検査歯巾との噛合いを解除する図に
は示されていない第二の位置との間に支持台3に設()
られた位置決め装置27により選択的に位置決めされる
ようになっている。
In addition, the mask gear support member 21 has a rotation angle (
A rotary encoder 24 is attached to detect the rotational phase. The rotary encoder 24 photoelectrically detects the rotation angle of the mask gear and outputs an electric signal corresponding to the rotation angle to an arithmetic and control device 40, which will be described later. Also, a compression coil spring 26 is interposed between the other arm 25 of the lever member 18 and the base 21, which biases the lever member 18 in a counterclockwise direction around the axis 19 when viewed in FIG. The lever member 18 is placed in the first position shown, where the mask gear 22 meshes with the gear to be inspected 13 with no backlash, and in the first position shown, where the mask gear disengages from the tooth width to be inspected. is installed on the support base 3 between the second position (not shown)
The positioning device 27 is provided for selective positioning.

支持台5には変位センサ28が取付けられている。変位
センサ28は差動トランスの如き線形変位を電気量に変
換する型式のセンサであり、その測定子29はアーム2
5の先端の当接点25a及び軸線19を通る直線25(
)に垂直な軸線30に 、沿って延在しており、アーム
25の先端に当接してレバ一部+118の枢動に伴なう
アーム25の先端の軸線30に沿う変位邑を検出するよ
うになっている。アーム25の先端の変位聞は被検査i
!liI巾13とマスク歯車22の軸間距離、即ち軸線
19と軸線23との間の距離の変化量に比例するので、
変位センサ28は実質的に軸間距離の変化量を測定する
ことになる。変位センサ28が発生する電気信号は演算
制御装置40へ出力される。
A displacement sensor 28 is attached to the support base 5. The displacement sensor 28 is a type of sensor such as a differential transformer that converts linear displacement into an electrical quantity, and its measuring point 29 is connected to the arm 2.
A straight line 25(
), and extends along the axis 30 perpendicular to the axis 30, and comes into contact with the tip of the arm 25 to detect the displacement of the tip of the arm 25 along the axis 30 due to pivoting of the lever part +118. It has become. The displacement of the tip of the arm 25 is inspected i.
! Since it is proportional to the amount of change in the distance between the liI width 13 and the mask gear 22, that is, the distance between the axis 19 and the axis 23,
The displacement sensor 28 essentially measures the amount of change in the distance between the axes. The electric signal generated by the displacement sensor 28 is output to the arithmetic and control unit 40 .

更に支持台2には支持部材7に近接した位置にて温度測
定ユニット31が設【ノられている。温度測定ユニット
31は温度センサ32及びアクチュエータ33を含んで
おり、温度センサはアクチュエータにより、被検査歯車
13に当接して被検査歯車温度を測定する図示の第一の
位置と、被検査歯車より離れ被検査歯車の回転を阻害し
ない図には示されていない第二の位置とに選択的に位置
決めされるようになっている。温度センサは被検査歯車
温度を示す信号を演算制御装置40へ出力するようにな
っており、演算制御装置よりの指令信号により第一の位
置に選択的に位置決めされ、通常時は第二の位置に維持
されるようになっている。
Further, a temperature measuring unit 31 is installed on the support base 2 at a position close to the support member 7. The temperature measurement unit 31 includes a temperature sensor 32 and an actuator 33, and the temperature sensor is moved by the actuator to a first position shown in the figure where it comes into contact with the gear to be inspected 13 to measure the temperature of the gear to be inspected, and a position away from the gear to be inspected. It is configured to be selectively positioned at a second position, not shown in the drawings, which does not inhibit the rotation of the gear to be inspected. The temperature sensor outputs a signal indicating the temperature of the gear to be inspected to the arithmetic and control unit 40, and is selectively positioned at the first position by a command signal from the arithmetic and control unit, and is normally positioned at the second position. It is designed to be maintained.

また支持部材6にはセンタ8とは反対の側にてロータリ
エンコーダ31!Iが取付けられており、該ロークリエ
ンコーダはセンタ8の回転角、従って被検査歯車13の
回転角を光電気式に検出し、それに応じた信号を演算制
御装置40へ出力するようになっている。
Further, the support member 6 has a rotary encoder 31 on the side opposite to the center 8! I is attached, and the rotary encoder photoelectrically detects the rotation angle of the center 8 and, therefore, the rotation angle of the gear 13 to be inspected, and outputs a corresponding signal to the arithmetic and control unit 40. There is.

第5図は第2図乃至第4図に示された噛合試験装置の電
気回路を示すブロック線図である。演算制御]!!i置
40は交流増幅回路41を含んでおり、該交流増幅回路
にて変位センサ28が発生する出力信号(AM信号)を
入力される。交流増幅回路41の出力信号は同期整流回
路42へ出力され、該回路にて整流され、直流増幅回路
43とバンドパスフィルタ44に入力される。また演I
F 11制御装@40は交流増幅回路45を含んでおり
、該交流増幅回路にて温度センサ32が発生する出力信
号を入力される。直流増幅回路43、バンドパスフィル
タ44、交流増幅回路45の出力信号は各々A/D変換
器46の互いに異なる入力端子に入力される。変換器4
6は内部にマルチプレクサを有しており、該マルチプレ
クサにて変換器に入力される信号の切換え制御を行うよ
うになっている。
FIG. 5 is a block diagram showing the electric circuit of the meshing test device shown in FIGS. 2 to 4. Arithmetic control]! ! The i-position 40 includes an AC amplifier circuit 41, and the output signal (AM signal) generated by the displacement sensor 28 is input to the AC amplifier circuit. The output signal of the AC amplifier circuit 41 is output to a synchronous rectifier circuit 42, rectified by the circuit, and input to a DC amplifier circuit 43 and a bandpass filter 44. Also performance I
The F 11 control device @40 includes an AC amplifier circuit 45, into which the output signal generated by the temperature sensor 32 is input. The output signals of the DC amplifier circuit 43, bandpass filter 44, and AC amplifier circuit 45 are input to different input terminals of the A/D converter 46, respectively. converter 4
6 has a multiplexer therein, and the multiplexer controls switching of signals input to the converter.

尚直流増幅回路43の出力信号は歯車のオーバボール径
や歯溝の振れなどの評価に用いられ、バンドパスフィル
タ44の出力信号は歯車の噛合wA差の評価などに用い
られ、交流増幅回路45の出力信号はこれらの出力信号
の温度補正に用いられる。
The output signal of the DC amplifier circuit 43 is used to evaluate the overball diameter of the gear and the runout of the tooth space, and the output signal of the bandpass filter 44 is used to evaluate the mesh wA difference of the gears. The output signals of are used for temperature correction of these output signals.

A/D変換器46の出力信号はコモンバス47を経て中
央処理ユニット(CPU)48に入力される。中央処理
ユニット48はリードオンリメモリ49が記憶している
プログラムに従って信号の処理を行い、必要に応じてA
/D変換器46よりの信号をランダムアクセスメモリ(
RAM)50へ出力づるようになっている。
The output signal of the A/D converter 46 is input to a central processing unit (CPU) 48 via a common bus 47. The central processing unit 48 processes the signals according to the program stored in the read-only memory 49, and processes the signals as necessary.
The signal from the /D converter 46 is transferred to a random access memory (
RAM) 50.

演算制W装置40はディジタル入出力回路51を含んで
おり、該ディジタル入出力回路にてO−タリエンコーダ
24及び34の出力信号を入力さ、 れるようになって
いる。ディジタル入出力回路51に入力されたロータリ
エンコーダ24及び34よりの信号はコモンバス47を
経て中央処理ユニット・48に入力される。またディジ
タル入出力回路51はシーケンス制御装@52と接続さ
れている。シーケンス制御装置52が発生する信号はデ
ィジタル入出力回路51よりコモンバス47を経て中央
処理ユニット48へ入力される。シーケンス制御装置5
2はオペレータによるスイッヂ操作により指令力信号を
発生し、それに応じてリードオンリメモリ49に記憶さ
れているプログラムの作動を制御するようになっている
The arithmetic control W device 40 includes a digital input/output circuit 51, and the output signals of the O-tary encoders 24 and 34 are input to the digital input/output circuit. Signals from the rotary encoders 24 and 34 that are input to the digital input/output circuit 51 are input to the central processing unit 48 via the common bus 47. Further, the digital input/output circuit 51 is connected to a sequence control device @52. Signals generated by the sequence control device 52 are input from the digital input/output circuit 51 to the central processing unit 48 via the common bus 47. Sequence control device 5
2 generates a command force signal through a switch operation by an operator, and controls the operation of a program stored in a read-only memory 49 in response to the command force signal.

リードオンリメモリ49は前述の式(1)、式(2′)
及び(3″)の係数に+及びに2、定数α、標準温度T
rの値を記憶している。またランダムアクセスメモリ5
0はロークリエンコーダ34の出力信号、換言すれば被
検査歯車13の回転角に相当する??J@を番地として
A/D変換器46の出力信号を記憶するようになってい
る。
The read-only memory 49 is based on the above formula (1) and formula (2').
and (3″) coefficient + and 2, constant α, standard temperature T
The value of r is memorized. Also random access memory 5
0 corresponds to the output signal of the row encoder 34, in other words, the rotation angle of the gear 13 to be inspected? ? The output signal of the A/D converter 46 is stored using J@ as an address.

中央処理ユニットはリードオンリメモリ49に記憶され
ているプログラムに従って式(1)、(2′)及び(3
′)の如き各種の演算及び信号処理を行い、被測定物の
標準温度に於ける寸法DW×を表わす信号をコモンバス
47を経てディジタル入出力回路55より判定表示装置
53の表示器56に出力し、また判定表示装置1r53
の設定器54により発生され比較基準信号としてディジ
タル入出力回路55よりコモンバス47を経て入力され
た比較基準値と前記演算結果の値[)WXとを比較し、
その比較結束を表わす信号をコモンバス47を経てディ
ジタル入出力回路55より表示器56に出力するように
なっている。
The central processing unit executes equations (1), (2') and (3) according to the program stored in the read-only memory 49.
'), and outputs a signal representing the dimension DW× of the measured object at standard temperature from the digital input/output circuit 55 to the display 56 of the judgment display device 53 via the common bus 47. , and the judgment display device 1r53
Compare the comparison reference value generated by the setting device 54 and input as a comparison reference signal from the digital input/output circuit 55 via the common bus 47 with the value [)WX of the calculation result,
A signal representing the comparative unity is outputted from the digital input/output circuit 55 to the display 56 via the common bus 47.

次に第2図乃至第5図に示された噛合試験装置の制御系
のルーチンを示す第6図及び第7図の70−ヂャートを
参照して、本発明の寸法測定及び温度補正方法の一つの
実施例について説明する。
Next, referring to chart 70 in FIGS. 6 and 7 showing the routine of the control system of the meshing test device shown in FIGS. 2 to 5, one of the dimension measurement and temperature correction methods of the present invention will be explained. Two embodiments will be described.

まず歯車軸14が歯車16にて駆動歯車17と噛合った
状態にて軸線9の周りに回転可能にセンタ8と12との
間に装着され、次いで位置決め装置27によりレバ一部
材18が図示の第一の位置にもたらされることにより、
被検査歯車13とマスタ歯車22とがノーバラクラシュ
にて噛合わされる。次いでシーケンスRIlI111装
置52からの指令入力信号に応じて第6図に示された各
ステップが順次実行される。
First, the gear shaft 14 is mounted between the centers 8 and 12 so as to be rotatable around the axis 9 with the gear 16 meshing with the drive gear 17, and then the lever member 18 is moved by the positioning device 27 as shown in the figure. By being brought into the first position,
The gear to be inspected 13 and the master gear 22 are meshed with each other in a normal crash. The steps shown in FIG. 6 are then sequentially executed in response to command input signals from the sequence RIlI 111 device 52.

最初のステップ1に於ては、時刻toに於て温度測定ユ
ニット31の温度センサ32がその第一の位置へ駆動さ
れる。次のステップ2に於てはソフトタイマーにより時
刻1.まで時間持ちが行われ、次のステップ3に於て時
刻t1に於ける温度センサ28の出力TSIの読込みが
行われ、該出力がランダムアクセスメモリ50に記憶さ
れる。
In the first step 1, at time to, the temperature sensor 32 of the temperature measuring unit 31 is driven to its first position. In the next step 2, the soft timer sets time 1. In the next step 3, the output TSI of the temperature sensor 28 at time t1 is read, and the output is stored in the random access memory 50.

次のステップ4に於ては時刻t2まで所定時間6丁だけ
時間待ちが行われ、次のステップ5に於て時刻t2に於
ける温度センサ28の出カフs2の読込みが行われ、該
出力がランダムアクセスメモリに記憶される。次のステ
ップ6に於ては、温度センサ28がその第二の位置へ戻
される。
In the next step 4, a predetermined period of time is waited until time t2, and in the next step 5, the output cuff s2 of the temperature sensor 28 at time t2 is read, and the output is Stored in random access memory. In the next step 6, temperature sensor 28 is returned to its second position.

次のステップ7に於ては、時刻t8に於てモータ15に
通電が行われることにより、駆動m車17により歯車軸
14、従って被検査歯車13の回転が開始される。次の
ステップ8に於ては被検査歯車13の微小回転角度毎に
その回転角度及びレバ一部材18のアーム25の先端の
変位量の情報の読込みが行われ、8値がランダムアクセ
スメモリ50に記憶される。次のステップ9に於ては、
被検査歯車13の回転角度及びアーム25の先端の変位
量の読込みが完了したか否か、即ち被検査歯1’(13
が360℃回転して時刻t4となったか否かの判別が行
われる。このステップに於て被検査歯車13が360゛
未満しか回転していない旨の判別が行われた場合にはス
テップ8へ戻り、被検査歯巾の回転角度及びアーム25
の先端の変位量の読込みが繰り返される。ステップ9に
於て被検査歯車13が360゛回転した旨の判別が行わ
れた場合には次のステップ10へ進む。
In the next step 7, the motor 15 is energized at time t8, so that the drive m wheel 17 starts rotating the gear shaft 14, and thus the gear 13 to be inspected. In the next step 8, information on the rotation angle and the displacement amount of the tip of the arm 25 of the lever member 18 is read for each minute rotation angle of the gear 13 to be inspected, and the 8 values are stored in the random access memory 50. be remembered. In the next step 9,
Whether or not reading of the rotation angle of the gear 13 to be inspected and the amount of displacement of the tip of the arm 25 has been completed, that is, the tooth 1' (13
A determination is made as to whether or not the point has rotated by 360 degrees and reached time t4. If it is determined in this step that the gear 13 to be inspected has rotated less than 360 degrees, the process returns to step 8, and the rotation angle of the tooth width to be inspected and the rotation angle of the arm 25 are determined.
The reading of the displacement amount of the tip of is repeated. If it is determined in step 9 that the gear 13 to be inspected has rotated 360 degrees, the process proceeds to step 10.

ステップ10に於ては、モータ15への通電が停止され
、これにより被検査歯車13の回転が停止される。次の
ステップ11に於ては、ランダムアクセスメモリ50に
記憶されているデータに基づき、被検査歯車の微小回転
角度毎に被検査歯車13とマスタ歯車22との間の軸間
距離の変化m1即ちオーバボール径[)Wが算出され、
各[)Wの値が時刻t工を番地としてランダムアクセス
メモリ50に記憶される。この算出結果を視覚的に表わ
すと第7図に示されている如くなる。尚第7図に於て、
DW、FW)EVはそれぞれ温度補正前の被検査歯車の
A−バボール径、歯溝の振れ、噛合誤差を示している。
In step 10, the power supply to the motor 15 is stopped, thereby stopping the rotation of the gear 13 to be inspected. In the next step 11, based on the data stored in the random access memory 50, a change m1 in the distance between the shafts between the gear to be inspected 13 and the master gear 22 for each minute rotation angle of the gear to be inspected, that is, The overball diameter [)W is calculated,
The value of each [)W is stored in the random access memory 50 with time t as the address. This calculation result is visually represented as shown in FIG. In addition, in Figure 7,
DW, FW) EV respectively indicate the A-baball diameter, tooth space runout, and meshing error of the gear to be inspected before temperature correction.

次のステップ12に於ては、ランダムアクセスメモリ5
0に記憶されている温度TS2と温度TSIのデータよ
りそれらの間の温度差ΔT=T!i t  Ts lが
算出され、該温度差へTの値がランダムアクセスメモリ
50に配憶され、次のステップ13に於ては、ランダム
アクセスメモリ50より温度差6丁、係数に+%温度T
S2の値が続出され、式(1)により時刻t2に於ける
被検査歯車の温度TWIが算出され、該温度の値がラン
ダムアクセスメモリ50に記憶される。
In the next step 12, the random access memory 5
From the data of temperature TS2 and temperature TSI stored in 0, the temperature difference between them ΔT=T! i t Ts l is calculated, and the value of T for the temperature difference is stored in the random access memory 50. In the next step 13, the random access memory 50 calculates the temperature difference 6 and +% temperature T for the coefficient.
The value of S2 is successively obtained, and the temperature TWI of the gear to be inspected at time t2 is calculated using equation (1), and the temperature value is stored in the random access memory 50.

次のステップ111に於ては、ランダムアクセスメモリ
より温度TI”+を時刻【2及びtχ、係数に2の値が
読出され、前述の式(2′)に従って時刻t工に於ける
被検査歯車の温度Twxが算出され、該温度の値がラン
ダムアクセスメモリに記憶される。次のステップ15に
於ては、ランダムアクセスメモリより被検査歯車の温度
補正前のA−パボール径DW1定数α、温度Twx及び
Trの値が読出され、前述の式(3′ )に従って被検
査歯巾の温度補正後のオーバボール径、即ち被検査歯車
の標*i度に於けるオーバボール径DWXが算出される
。次のステップ16に於ては、ステップ15に於て算出
された温度補正後のオーバボール径Dwxを示す信号が
ディジタル入出力回路55より表示器56に出力される
ことにより、オーバボール径[)WXの値が表示器56
に表示される。次のステップ17に於ては、ステップ1
5に於て算出された温度補正後のA−バボール径[)W
Xと設定器54より入力されるオーバボール径の比較基
準値との比較が行われ、これにより合否結果が表示器5
6に表示されると共に、必要に応じて歯車加工工程へ補
正指令信号が出力される。
In the next step 111, the temperature TI"+ is read out from the random access memory at time [2 and tχ, a value of 2 is read out for the coefficient, and the gear to be inspected at time t is read out according to the above equation (2'). The temperature Twx is calculated, and the temperature value is stored in the random access memory.In the next step 15, the A-Pa ball diameter DW1 constant α of the gear to be inspected before temperature correction is stored in the random access memory. The values of Twx and Tr are read out, and the overball diameter after temperature correction of the tooth width to be inspected, that is, the overball diameter DWX at standard *i degrees of the gear to be inspected, is calculated according to the above formula (3'). In the next step 16, a signal indicating the overball diameter Dwx after temperature correction calculated in step 15 is output from the digital input/output circuit 55 to the display 56, so that the overball diameter [ ) The value of WX is displayed on the display 56.
will be displayed. In the next step 17, step 1
A-Baboor diameter after temperature correction calculated in 5 [)W
A comparison is made between X and a comparison reference value of the overball diameter inputted from the setting device 54, and the pass/fail result is displayed on the display 5.
6, and a correction command signal is output to the gear machining process as necessary.

以上の説明より本発明によれば、温度センサと被測定物
との温度が等しくなる以前に於ても、また被測定物の温
度測定時刻と被測定物の寸法測定時刻とが異なる場合に
も、被測定物の標準温度に於ける寸法を迅速に且正確に
求めることができることが理解されよう。
From the above explanation, according to the present invention, even before the temperatures of the temperature sensor and the object to be measured become equal, and even when the time of measuring the temperature of the object to be measured and the time of measuring the dimensions of the object to be measured are different, It will be understood that the dimensions of the object to be measured at standard temperature can be determined quickly and accurately.

尚上述の噛合試験に於ても、本願出願人と同一の出願人
に係る特願昭55−99091号に開示されている如く
、マスク歯車として代用マスク歯車が使用されてもよい
。また本発明の方法に於ては、被測定物の寸法の測定が
時刻t8に於て瞬間的に行われる場合や時刻t8から時
刻t4までの間隔が短い場合には、寸法測定値[)Wが
時刻t8に於ける被測定物の温度1”w2又は時刻t8
と時刻t4との中間の時刻に於ける被測定物の温度にて
補正されてよい。更に本発明の方法に於ては、時刻to
から時刻t5までの区間、好ましくは時刻1.から時刻
t8までの区間の時刻LIst2.1.1に於て温度セ
ンサ28の出力TS+ 、TSt、Ts2’を求め、 ΔT=”rs 2−Ts 1 ΔT1.TS21  TS2 TW+ −八TXK+ +Ts 2 TW、l −ΔT’ XK+ +TS 2 ’に2 −
 (TV  I    Tw  鵞’)/(t+≧’−
Lりより係数に2が計算により求められてもよい。
In the above meshing test, a substitute mask gear may be used as the mask gear, as disclosed in Japanese Patent Application No. 55-99091 filed by the same applicant as the present applicant. Furthermore, in the method of the present invention, when the measurement of the dimensions of the object to be measured is instantaneously performed at time t8 or when the interval from time t8 to time t4 is short, the dimension measurement value [)W is the temperature of the measured object at time t8 1"w2 or time t8
The temperature of the object to be measured may be corrected at an intermediate time between the time t4 and the time t4. Furthermore, in the method of the present invention, the time to
to time t5, preferably time 1. At time LIst2.1.1 in the interval from to time t8, the outputs TS+, TSt, and Ts2' of the temperature sensor 28 are determined, and ΔT=”rs 2−Ts 1 ΔT1.TS21 TS2 TW+ −8TXK+ +Ts 2 TW, l −ΔT' XK+ +TS 2' to 2 −
(TV I Tw Goose')/(t+≧'-
A coefficient of 2 may be calculated based on L.

以上に於ては本発明を特定の実施例について詳26一 細に説明したが、本発明はかかる実施例に限定されるも
のではなく、本発明の範囲内にて種々の実施例が可能で
あることは当業者にとって明らかであろう。
Although the present invention has been described above in detail with reference to specific embodiments, the present invention is not limited to such embodiments, and various embodiments are possible within the scope of the present invention. This will be obvious to those skilled in the art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加工直後に於ける被測定物の温度変化と加工直
後の被測定物に接触された温度廿ンサのila度変比変
化関係を示ずグラフ、第2図及び第3図は本発明による
歯車の噛合試験装置の一つの実施例を示す平面図及び簡
略化された正面図、第4図は第2図の線IV−IVに沿
う断面図、第5図は第2図乃至第4図に示された噛合試
験装置の電気回路を示すブロック線図、第6図は第2図
乃至第4図に示された噛合試験装置の制御系のルーチン
を示すフローチャート、第7図は温度補正前の被検査歯
車とマスク歯車との間の軸間距離の値と被検査歯車の回
転角との関係を示すグラフである。 1・・・基台、2〜5・・・支持台、6・・・支持部材
、7・・・センタスト・ツタ部、8・・・センタ、9・
・・軸線、10・・・支持部材、11・・・センタスト
ック部、12・・・センタ、13・・・被検査歯車、1
4・・・6!i1車軸、15・・・モータ、16・・・
歯車、17・・・駆動歯車、18・・・枢動レバ一部材
、19・・・軸線、20・・・アーム、21・・・マス
タ歯車支持部材、22・・・マスク歯車、23・・・軸
線、24・・・ロークリエンコーダ、25・・・アーム
、26・・・圧縮コイルばね、27・・・位置決め装置
、28・・・変位センサ、29・・・測定子、30・・
・軸線、31・・・温度測定ユニット、32・・・濡麿
センサ、33・・・アクチュエータ、34・・・ロータ
リエンコーダ、40・・・演算l1I1111装置、4
1・・・交流増幅回路、42・・・同期整流回路、43
・・・直流増幅回路、44・・・バンドパスフィルタ、
45・・・交流増幅回路、46・・・A/D変換器、4
7・・・コモンパス、48・・・中央処理ユニツ1−(
CPU)、49・・・リードオンリメモリ(ROM> 
、50・・・ランダムアクセスメモリ(RAM)、51
・・・ディジタル入出力回路、52・・・シーケンス制
御装置、53・・・判定表示装置、54・・・設定器、
55・・・ディジタル入出力回路、56・・・表示器 特開昭6l−114119(11) 第6図
Figure 1 is a graph showing the relationship between the temperature change of the workpiece immediately after machining and the change in the temperature ratio of the temperature sensor that is in contact with the workpiece immediately after machining. A plan view and a simplified front view showing one embodiment of the gear mesh test device according to the invention, FIG. 4 is a sectional view taken along line IV-IV in FIG. 2, and FIG. 5 is a cross-sectional view taken along line IV-IV in FIG. Fig. 4 is a block diagram showing the electric circuit of the meshing test device shown in Fig. 6, a flowchart showing the routine of the control system of the meshing testing device shown in Figs. 2 to 4, and Fig. 7 shows the temperature It is a graph showing the relationship between the value of the inter-axle distance between the gear to be inspected and the mask gear before correction and the rotation angle of the gear to be inspected. DESCRIPTION OF SYMBOLS 1... Base, 2-5... Support stand, 6... Supporting member, 7... Center stud vine part, 8... Center, 9...
... Axis line, 10... Support member, 11... Center stock part, 12... Center, 13... Gear to be inspected, 1
4...6! i1 axle, 15... motor, 16...
Gear, 17... Drive gear, 18... Pivoting lever member, 19... Axis line, 20... Arm, 21... Master gear support member, 22... Mask gear, 23...・Axis line, 24...Rotary encoder, 25...Arm, 26...Compression coil spring, 27...Positioning device, 28...Displacement sensor, 29...Measuring head, 30...
- Axis line, 31...Temperature measurement unit, 32...Nurimaro sensor, 33...Actuator, 34...Rotary encoder, 40...Calculation l1I1111 device, 4
1... AC amplifier circuit, 42... Synchronous rectifier circuit, 43
...DC amplifier circuit, 44...Band pass filter,
45... AC amplifier circuit, 46... A/D converter, 4
7... Common path, 48... Central processing unit 1-(
CPU), 49...Read-only memory (ROM>
, 50...Random access memory (RAM), 51
... Digital input/output circuit, 52 ... Sequence control device, 53 ... Judgment display device, 54 ... Setting device,
55...Digital input/output circuit, 56...Display device JP-A-6L-114119 (11) Fig. 6

Claims (1)

【特許請求の範囲】[Claims] (1)被測定物に接触して該被測定物の温度を測定する
温度センサを前記被測定物に接触させて前記温度センサ
の出力が前記被測定物の温度になるまでの区間内の第一
の時刻及び第二の時刻に於ける前記温度センサの出力を
求め、前記区間内の第三の時刻に於て前記被測定物の寸
法を測定し、前記第一の時刻と前記第二の時刻との間に
於ける前記湿度センサの出力の変化率を算出し、該変化
率より前記第二の時刻に於ける前記被測定物の温度を算
出し、前記第二の時刻に於ける前記被測定物の温度及び
前記第二の時刻と前記第三の時刻との間の時間差より前
記第三の時刻に於ける前記被測定物の温度を算出し、前
記第三の時刻に於ける前記被測定物の温度と標準温度と
の温度差を算出し、該温度差にて前記第三の時刻に於け
る前記被測定物の寸法測定値を補正することを含む寸法
測定及び温度補正方法。
(1) A temperature sensor that measures the temperature of the object by contacting the object to be measured is placed in contact with the object to be measured until the output of the temperature sensor reaches the temperature of the object to be measured. Obtain the output of the temperature sensor at a first time and a second time, measure the dimensions of the object at a third time within the section, and measure the output of the temperature sensor at a third time within the section. Calculate the rate of change in the output of the humidity sensor between the two times, calculate the temperature of the object at the second time from the rate of change, and calculate the temperature of the object at the second time. The temperature of the object to be measured at the third time is calculated from the temperature of the object to be measured and the time difference between the second time and the third time, and the temperature of the object at the third time is calculated. A dimension measurement and temperature correction method comprising calculating a temperature difference between a temperature of an object to be measured and a standard temperature, and correcting a dimension measurement value of the object to be measured at the third time using the temperature difference.
JP23633784A 1984-11-09 1984-11-09 Method for size measurement and temperature compensation Pending JPS61114119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23633784A JPS61114119A (en) 1984-11-09 1984-11-09 Method for size measurement and temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23633784A JPS61114119A (en) 1984-11-09 1984-11-09 Method for size measurement and temperature compensation

Publications (1)

Publication Number Publication Date
JPS61114119A true JPS61114119A (en) 1986-05-31

Family

ID=16999307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23633784A Pending JPS61114119A (en) 1984-11-09 1984-11-09 Method for size measurement and temperature compensation

Country Status (1)

Country Link
JP (1) JPS61114119A (en)

Similar Documents

Publication Publication Date Title
JPS61114119A (en) Method for size measurement and temperature compensation
CN116046335A (en) Rod type strain balance working in normal-temperature to low-temperature wide temperature range and application method
JPH031801Y2 (en)
JPH09119853A (en) Method and apparatus for correction of output value of sensor
JPS6166143A (en) Rotary viscosimeter
KR20120121821A (en) Inspection apparatus
JPS60228911A (en) Automatic hardness corrector for thickness gauge
JPH0323552Y2 (en)
JP2988204B2 (en) Spline fitting error measurement method
JPH0454167B2 (en)
SU892381A1 (en) Device for measuring magnetic induction
JPH034885Y2 (en)
JPS5929381B2 (en) Automatic control system for workpiece dimensions in machine tools
JPS6142099Y2 (en)
RU1789914C (en) Method of graduation of heat conduction meter
SU677902A1 (en) Stand for testing active control instruments
JPH0768451A (en) Shape measuring method and device therefor
JPS639829A (en) Electronic clinical thermometer capable of short-time measurement
JPH041448Y2 (en)
JPH0130402B2 (en)
JPS591984B2 (en) Operational amplifier inspection equipment
JPS6396515A (en) Measuring and testing device
JPS62195544A (en) Deterioration diagnosing device for electronic substrate
JPS5919282B2 (en) How to calibrate a plate thickness profile measurement device
JPH11211645A (en) Method for correcting machine frame distortion of dynamic type hardness testing machine and correction expression calculation method