JPS61114067A - Refrigerant flow controller - Google Patents

Refrigerant flow controller

Info

Publication number
JPS61114067A
JPS61114067A JP23314184A JP23314184A JPS61114067A JP S61114067 A JPS61114067 A JP S61114067A JP 23314184 A JP23314184 A JP 23314184A JP 23314184 A JP23314184 A JP 23314184A JP S61114067 A JPS61114067 A JP S61114067A
Authority
JP
Japan
Prior art keywords
temperature sensor
refrigerant
temperature
evaporator
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23314184A
Other languages
Japanese (ja)
Inventor
敏彦 福島
作用 耕作
山森 平太郎
雄一 北原
江見 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23314184A priority Critical patent/JPS61114067A/en
Publication of JPS61114067A publication Critical patent/JPS61114067A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、冷媒流量制御装置に係り、特に冷凍空調装置
等の冷凍サイクルの起動に好適な冷媒流量制御装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a refrigerant flow rate control device, and particularly to a refrigerant flow rate control device suitable for starting a refrigeration cycle of a refrigeration air conditioner or the like.

〔発明の背景〕[Background of the invention]

冷凍サイクルにおける冷媒流量制御装置としては、従来
、特公昭58−47628号公報記載のものがある。
As a conventional refrigerant flow rate control device in a refrigeration cycle, there is one described in Japanese Patent Publication No. 58-47628.

すなわち、圧縮機、凝縮機、電気信号によって弁開度が
調整可能な膨脹弁および蒸発器を冷媒配管で接続してな
る冷凍サイクルにおいて、蒸発器入口部に設けた第1の
温度センサと蒸発器出口部に設けた第2の温度センサを
使用して蒸発器出口の冷媒の過熱度を検出し、この過熱
度を一定に保つように膨脹弁の弁開度を制御する電気信
号を出力して冷媒流量を制御していた。
That is, in a refrigeration cycle in which a compressor, a condenser, an expansion valve whose opening degree can be adjusted by an electric signal, and an evaporator are connected by refrigerant piping, a first temperature sensor provided at the inlet of the evaporator and the evaporator A second temperature sensor installed at the outlet section is used to detect the degree of superheating of the refrigerant at the outlet of the evaporator, and an electric signal is output to control the opening degree of the expansion valve to keep this degree of superheat constant. It controlled the refrigerant flow rate.

ここで冷媒の過熱度とは、ある点の冷媒圧力に対応した
飽和温度以上に過熱されたガスの温度と、その飽和温度
との差をいう。
Here, the degree of superheating of the refrigerant refers to the difference between the temperature of the gas that has been superheated to a saturation temperature or higher corresponding to the refrigerant pressure at a certain point, and the saturation temperature.

前記の特公昭58−47628号公報に記載された冷媒
流量制御装置では、蒸発器入口部の冷媒の温度が、蒸発
器出口部の冷媒圧力に対応した飽和温度にほぼ等しいこ
とを利用して蒸発器出口の過熱度を検出している。
The refrigerant flow rate control device described in Japanese Patent Publication No. 58-47628 utilizes the fact that the temperature of the refrigerant at the evaporator inlet is approximately equal to the saturation temperature corresponding to the refrigerant pressure at the evaporator outlet. The degree of superheat at the outlet of the container is detected.

しかし、例えば空気調和機等の冷凍サイクルの起動時に
は、冷凍サイクル内の冷媒の圧力は平衡しており、また
、蒸発器入口部と出口部における冷媒の温度もほぼ等し
いので、蒸発器入口部と出口部の温度差から冷媒の過熱
度を求めるとほぼ零となる。
However, for example, when starting up a refrigeration cycle such as an air conditioner, the pressure of the refrigerant in the refrigeration cycle is balanced, and the temperature of the refrigerant at the evaporator inlet and outlet are almost the same, so If the degree of superheating of the refrigerant is determined from the temperature difference at the outlet, it will be approximately zero.

このとき、膨脹弁の弁開度を制御する電気信号は、(蒸
発器出口過熱度−過熱度の設定値)=(〇−過熱度の設
定値)に比例した負の値となり、膨脹弁は閉じる方向へ
制御される。
At this time, the electric signal that controls the valve opening of the expansion valve becomes a negative value proportional to (evaporator outlet superheat degree - superheat degree set value) = (〇 - superheat degree set value), and the expansion valve opens. Controlled in the closing direction.

そこで、例えばカーエアコンに使用される冷凍サイクル
のように、空気調和機の停止時に液冷媒が圧縮機へ流入
する現象を防止するために、W脹弁を閉止しておく方式
の冷凍サイクルでは、空気調和機を起動すると、膨脹弁
は閉じる方向へ制御されるので閉止したままとなり冷媒
は流れず、このため、蒸発器内の圧力および温度は低下
するが。
Therefore, in refrigeration cycles such as those used in car air conditioners, in which the W expansion valve is closed to prevent liquid refrigerant from flowing into the compressor when the air conditioner is stopped, When the air conditioner is started, the expansion valve is controlled in the closing direction, so it remains closed and no refrigerant flows, so the pressure and temperature inside the evaporator decrease.

蒸発器入口部と出口部冷媒に温度差は生じないので、蒸
発器出口部の温度と蒸発器入口部の温度の差として求め
た過熱度は常に零となって膨脹弁は閉止しつづけるとい
う問題があった。
Since there is no temperature difference between the refrigerant at the evaporator inlet and outlet, the degree of superheat determined as the difference between the temperature at the evaporator outlet and the evaporator inlet is always zero, and the expansion valve continues to close. was there.

そこで、前記の特公昭58−40628号公報記載の発
明では、冷凍サイクル停止後膨脹弁の弁開度を全開とす
る信号を制御回路が出力するとともに、一定時間の間は
圧縮機の再始動を禁止するようにして、常に安定した圧
縮機の再始動ができるという     へ効果を有して
いる6 しかし、当該発明では、以下に述べるような本発明の考
え方については配慮されていなかった。
Therefore, in the invention described in Japanese Patent Publication No. 58-40628, the control circuit outputs a signal to fully open the expansion valve after stopping the refrigeration cycle, and also restarts the compressor for a certain period of time. However, in this invention, the idea of the present invention as described below was not taken into consideration.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の問題点を解決するためになされたもの
で、温度センサのみを使用して蒸発器冷媒の過熱度を検
出して冷媒流量制御を行うに当り、冷凍サイクルの起動
時には膨脹弁を開く方向へ制御でき、膨脹弁が閉止しつ
づけることを防いで。
The present invention has been made to solve the above-mentioned problems, and when the refrigerant flow rate is controlled by detecting the degree of superheat of the evaporator refrigerant using only a temperature sensor, the expansion valve is The expansion valve can be controlled in the direction of opening, preventing the expansion valve from remaining closed.

熱負荷に応じた冷媒流量の制御を可能にする冷媒流量制
御装置の提供を、その目的としている。
The objective is to provide a refrigerant flow rate control device that enables control of refrigerant flow rate according to heat load.

〔発明の概要〕[Summary of the invention]

本発明に係る冷媒流量制御装置の構成は、圧縮機、凝縮
器、電気信号によって弁開度が調整可能な膨脹弁および
蒸発器を冷媒配管で接続して冷凍サイクルを構成し、前
記蒸発器の入口部ないし中間部に設けた第1の温度セン
サと、前記蒸発器の出口部に設けた第2の温度センサと
、前記圧縮機の入口部または前記蒸発器と前記圧縮機と
を接続する冷媒配管の前記圧縮機近傍部に設けた第3の
温度センサと、前記第1の温度センサと前記第2の温度
センサとの各々の温度信号の差および前記第1の温度セ
ンサと前記第3の温度センサとの各各の温度信号の差を
、それぞれ設定値に保つように前記膨脹弁へ電気信号を
出力する制御回路とを備えるとともに、冷凍サイクルの
起動時には、前記第1の温度センサと前記第3の温度セ
ンサとの各々の温度信号の差を設定値に保つために前記
膨脹弁へ電気信号を出力せしめ、その後一定時間経過し
てからは、前記第1の温度センサと前記第3の温度セン
サとの各々の温度信号の差を設定値に保つために前記膨
脹弁へ電気信号を出力せしめるように、あらかじめ制御
手順を設定しうる演算制御装置を設けたものである。
The configuration of the refrigerant flow rate control device according to the present invention is such that a refrigeration cycle is configured by connecting a compressor, a condenser, an expansion valve whose opening degree can be adjusted by an electric signal, and an evaporator through refrigerant piping, and A first temperature sensor provided at an inlet or an intermediate portion, a second temperature sensor provided at an outlet of the evaporator, and a refrigerant connecting the inlet of the compressor or the evaporator and the compressor. A third temperature sensor provided in the vicinity of the compressor of the piping, a difference in temperature signal between the first temperature sensor and the second temperature sensor, and a difference between the temperature signals of the first temperature sensor and the third temperature sensor. and a control circuit that outputs an electric signal to the expansion valve so as to maintain the difference between each temperature signal with the temperature sensor at a set value, and at the time of starting the refrigeration cycle, the first temperature sensor and the An electric signal is output to the expansion valve in order to maintain the difference between the respective temperature signals with the third temperature sensor at a set value, and after a certain period of time has elapsed, the temperature signals between the first temperature sensor and the third temperature sensor are outputted. An arithmetic and control device is provided in which a control procedure can be set in advance so as to output an electric signal to the expansion valve in order to maintain the difference between each temperature signal from the temperature sensor at a set value.

なお1本発明を開発した考え方を付記すると、次のとお
りである。
Additionally, the idea behind developing the present invention is as follows.

空気調和機などの冷凍サイクル停止時には、蒸発器入口
部の冷媒温度より圧縮機入口部または蒸発器と圧縮機と
を接続する冷媒配管の圧縮機近傍部(以下これらをまと
めて圧縮機入口部という)の冷媒温度の方が高いことに
着目して、空気調和機を起動するときの膨脹弁の弁開度
を制御する電気信号を、(圧縮機入口部冷媒温度−蒸発
器入口部冷媒温度−過熱度の設定値)に比例した値とし
て起動時の冷媒流量の制御を行うことを考えたちのであ
る。
When the refrigeration cycle of an air conditioner, etc. is stopped, the temperature of the refrigerant at the evaporator inlet is lowered by the temperature at the compressor inlet or the area near the compressor of the refrigerant piping connecting the evaporator and compressor (hereinafter collectively referred to as the compressor inlet). ) is higher, and the electrical signal that controls the valve opening of the expansion valve when starting the air conditioner is set to (compressor inlet refrigerant temperature - evaporator inlet refrigerant temperature - The idea was to control the refrigerant flow rate at startup as a value proportional to the set value of the degree of superheat.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の各実施例を第1図ないし第4図を参照し
て説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

まず、第1図は1本発明の一実施例に係る冷媒流量制御
装置の構成図である。
First, FIG. 1 is a block diagram of a refrigerant flow rate control device according to an embodiment of the present invention.

第1図において、1は圧縮機、2は凝縮器、3は、1!
!気信号によって弁開度が調整可能な膨脹弁、4は蒸発
器で、これらを冷媒配管で接続して冷凍サイクルが構成
されている。
In FIG. 1, 1 is a compressor, 2 is a condenser, and 3 is 1!
! An expansion valve whose opening degree can be adjusted by a gas signal, and an evaporator 4 are connected by refrigerant piping to form a refrigeration cycle.

圧縮機1で圧縮され高温、高圧の過熱ガスとなった冷媒
は、凝縮器2で冷却され、凝縮して高圧液冷媒となって
流下し、膨脹弁3で流量制御されるとともに断熱膨張し
て低圧冷媒となり、蒸発器4で外部から熱を奪いながら
蒸発し、蒸発した冷媒ガスは再び圧縮機1に吸入される
The refrigerant compressed by the compressor 1 to become a high-temperature, high-pressure superheated gas is cooled by the condenser 2, condenses, becomes a high-pressure liquid refrigerant, flows down, is controlled in flow rate by the expansion valve 3, and expands adiabatically. The refrigerant becomes a low-pressure refrigerant and evaporates while taking heat from the outside in the evaporator 4, and the evaporated refrigerant gas is sucked into the compressor 1 again.

5は、蒸発器4の入口部ないし中間部(第1図では入口
部)に設けた第1の温度センサ、6は、蒸発器4の出口
部に設けた第2の温度センサ、7は、圧縮機1の入口部
に設けた第3の温度センサ、9は過熱度演算回路で、こ
の過熱度演算回路9は、第1の温度センサ5と第2の温
度センサ6との各各の温度信号の差として検出される蒸
発器4出口部における冷媒の過熱度および第1の温度セ
ンサ5と第3の温度センサ7との各々の温度信号の差と
して検出される圧縮機1人口部における冷媒の過熱度を
求めるものである。
5 is a first temperature sensor provided at the inlet or intermediate portion of the evaporator 4 (the inlet in FIG. 1); 6 is a second temperature sensor provided at the outlet of the evaporator 4; 7; A third temperature sensor 9 provided at the inlet of the compressor 1 is a superheat degree calculation circuit, and this superheat degree calculation circuit 9 calculates the respective temperatures of the first temperature sensor 5 and the second temperature sensor 6. The degree of superheat of the refrigerant at the outlet of the evaporator 4 detected as a difference in signals, and the refrigerant at the outlet of the compressor 1 detected as a difference between the temperature signals of the first temperature sensor 5 and the third temperature sensor 7. This is to find the degree of superheat.

10は過熱度設定回路、11は、前記各温度センサが検
出した冷媒の過熱度SHとあらかじめ定めた過熱度の設
定値S・H″との偏差を求める差動増幅器、12は、こ
の偏差に応じて膨脹弁3の弁開度を決める制御演算回路
、13は、制御演算回路12の演算結果により膨脹弁3
に電気信号を出力する弁駆動回路で、これらをもって一
点鎖線で示される演算制御装置に係る冷媒流量演算制御
装う 置8が構成されている。
10 is a superheat degree setting circuit; 11 is a differential amplifier that calculates the deviation between the superheat degree SH of the refrigerant detected by each temperature sensor and a predetermined superheat degree setting value S.H''; A control calculation circuit 13 determines the valve opening degree of the expansion valve 3 according to the calculation result of the control calculation circuit 12.
A valve drive circuit that outputs an electric signal to the valve drive circuit constitutes a refrigerant flow rate calculation and control device 8 related to the calculation and control device shown by the dashed line.

前記冷凍サイクルの通常の運転状態では、蒸発器4にお
いて外部の熱負荷に応じて冷媒を過不足なく蒸発させる
ために、第1の温度センサ5と第2の温度センサ6との
温度信号の差により蒸発器4の出口における冷媒の過熱
度SHを過熱度演算回路9で求め、この値と、過熱度設
定回路10にあらかじめ記憶させた設定値SH″との偏
差を差動増幅器11で求め、この偏差・に応じて制御演
算回路12で膨脹弁3の開度を決定し、弁駆動回路13
から膨脹弁3のアクチュエータ(図示せず)に電気信号
を送り、SHとSH″の偏差が零となるように膨脹弁3
の弁開度を調整し冷媒流量を制御している。
In the normal operating state of the refrigeration cycle, in order to evaporate just the right amount of refrigerant in the evaporator 4 according to the external heat load, the difference between the temperature signals between the first temperature sensor 5 and the second temperature sensor 6 is determined. The superheat degree SH of the refrigerant at the outlet of the evaporator 4 is determined by the superheat degree calculation circuit 9, and the deviation between this value and a set value SH'' stored in advance in the superheat degree setting circuit 10 is determined by the differential amplifier 11. The control calculation circuit 12 determines the opening degree of the expansion valve 3 according to this deviation, and the valve drive circuit 13
An electric signal is sent to the actuator (not shown) of the expansion valve 3 so that the deviation between SH and SH'' becomes zero.
The valve opening is adjusted to control the refrigerant flow rate.

このことは、前記の特公昭58−47628号公報に記
載されている従来の冷媒流量制御装置と同じである。
This is the same as the conventional refrigerant flow rate control device described in Japanese Patent Publication No. 58-47628.

本実施例では、既に述べたように、さらに圧縮機1の入
口部にも第3の温度センサ7を設けており、空気調和機
等の起動時には、第3の温度センサ7と第1の温度セン
サ5とを使用して冷媒過熱度の演算を行うように構成さ
れている。
In this embodiment, as already mentioned, the third temperature sensor 7 is also provided at the inlet of the compressor 1, and when the air conditioner etc. is started, the third temperature sensor 7 and the first temperature The refrigerant superheat degree is calculated using the sensor 5.

このように構成された冷媒流量演算制御装置8の動作を
第1図と第2図を参照して説明する。
The operation of the refrigerant flow rate calculation and control device 8 configured as described above will be explained with reference to FIGS. 1 and 2.

ここに第2図は、第1図の冷媒流量制御装置の動作を説
明するフローチャートである。
FIG. 2 is a flowchart illustrating the operation of the refrigerant flow rate control device shown in FIG. 1.

空気調和機などの起動後、タイマー(図示せず)で起動
後の時間を計測し、一定時間(8秒)経過するまでは、
圧縮機1の入口部に設けた第3の温度センサ7と蒸発器
4の入口部に設けた第1の温度センサ5との各々の温度
信号T、、T、を使用して、過熱度演算回路9で過熱度
SHを5H=T、−T5として求める。この過熱度SH
と過熱度設定回路10に設定された設定値SH″との偏
差e=sH−8H″を差動増幅器11で求め、この信号
を制御演算回路12および弁駆動回路13を使用して処
理し偏差eに応じた電気信号V=f (e)を膨脹弁3
に送る。
After starting the air conditioner, etc., measure the time after starting with a timer (not shown), and wait until a certain period of time (8 seconds) has elapsed.
The degree of superheating is calculated using the temperature signals T, , T, of the third temperature sensor 7 provided at the inlet of the compressor 1 and the first temperature sensor 5 provided at the inlet of the evaporator 4. A circuit 9 determines the degree of superheating SH as 5H=T, -T5. This degree of superheating SH
The difference e=sH-8H'' between the set value SH'' set in the superheat degree setting circuit 10 is obtained by the differential amplifier 11, and this signal is processed using the control calculation circuit 12 and the valve drive circuit 13 to calculate the deviation. The electric signal V=f (e) according to e is sent to the expansion valve 3
send to

一定時間S秒経過後は、蒸発器4の出口部に設けた第2
の温度センサ6と蒸発器4の入口部に設けた第1の温度
センサ5との各々の温度信号T6゜T、を使用して、過
熱度SHを5H=T、−T。
After a certain period of time S seconds has elapsed, the second
The degree of superheating SH is determined as 5H=T, -T by using the temperature signals T6°T of the temperature sensor 6 and the first temperature sensor 5 provided at the inlet of the evaporator 4, respectively.

として求め、以後前述と同様の信号処理を行う。After that, the same signal processing as described above is performed.

このように冷媒流量制御を行うと1例えば自動車のエン
ジンルーム内に設置されているカーエアコンの圧縮機1
の入口部の温度T7は、空気調和機起動前も蒸発器4の
入口部の温度Tsより十分大きいので、偏差eは正とな
り、膨脹弁3は開く。
When refrigerant flow rate control is performed in this way, 1. For example, the compressor 1 of a car air conditioner installed in the engine room of a car.
Since the temperature T7 at the inlet of the evaporator 4 is sufficiently higher than the temperature Ts at the inlet of the evaporator 4 even before the air conditioner is started, the deviation e becomes positive and the expansion valve 3 opens.

そして、膨脹弁3が開き一定時間S秒後、蒸発器4の出
口部で冷媒が過熱度を持つようになったのち、蒸発器4
の出口部における冷媒の過熱度信号を使用して冷媒流量
制御を行うので、空気調和機の起動時に膨脹弁3が閉じ
続けることなく冷媒流量制御を行うことができる。
After the expansion valve 3 opens and after a certain period of time S seconds, the refrigerant reaches a degree of superheat at the outlet of the evaporator 4, and then the evaporator 4
Since the refrigerant flow rate is controlled using the refrigerant superheat degree signal at the outlet of the refrigerant, the refrigerant flow rate can be controlled without the expansion valve 3 remaining closed when the air conditioner is started.

次に、本発明の他の実施例を第3図および第4図を参照
して説明する。
Next, another embodiment of the present invention will be described with reference to FIGS. 3 and 4.

第3図は、本発明の他の実施例に係る冷媒流量制御装置
の構成図、第4図は、第3図の冷媒流量制御装置の動作
を説明するフローチャートである。
FIG. 3 is a block diagram of a refrigerant flow rate control device according to another embodiment of the present invention, and FIG. 4 is a flowchart illustrating the operation of the refrigerant flow rate control device of FIG. 3.

第3,4図において、第1,2図と同一符号または同一
記号のものは前述の実施例と同等部分であるから、その
説明を省略する。
In FIGS. 3 and 4, the same reference numerals or symbols as those in FIGS. 1 and 2 are the same parts as in the above-mentioned embodiment, so the explanation thereof will be omitted.

第3図の実施例は、先の第1図の実施例におけろ過熱度
演算回路9.過熱度設定回路10.差動増幅器11.制
御演算回路12をマイクロコンピュータに置き換えたも
のである。一点鎖線で示す8Aは、マイクロコンピュー
タを中心とした冷媒流量演算制御装置である6 マイクロコンピュータは、CPU15.メモリユニット
16.AD変換器14から構成されている。
The embodiment shown in FIG. 3 is similar to the filtration heat calculation circuit 9 in the embodiment shown in FIG. Superheat degree setting circuit 10. Differential amplifier 11. The control calculation circuit 12 is replaced with a microcomputer. 8A indicated by a dashed line is a refrigerant flow rate calculation and control device centered on a microcomputer 6. The microcomputer is a CPU 15. Memory unit 16. It is composed of an AD converter 14.

第1の温度センサ5で検知された蒸発器4人口冷媒の温
度信号と、第2の温度センサ6で検知された蒸発器4出
口冷媒の温度信号および第3の温度センサ7で検知され
た圧縮機1人口冷媒の温度信号は、それぞれAD変換器
14でディジタル信号に変換されたのち、CPU15で
処理される。
The temperature signal of the evaporator 4 artificial refrigerant detected by the first temperature sensor 5, the temperature signal of the evaporator 4 outlet refrigerant detected by the second temperature sensor 6, and the compression detected by the third temperature sensor 7. The temperature signals of the machine 1 artificial refrigerant are each converted into digital signals by the AD converter 14, and then processed by the CPU 15.

CPUl5はこれらの信号を基に、メモリユニット16
に記憶されている手順に従い過熱度を演算し、あらかじ
め定められている過熱度の設定値ら との偏差を求め制御演算を行って弁開度を決定し弁駆動
回路13Aに信号を出す。
Based on these signals, the CPU 15 controls the memory unit 16.
The degree of superheat is calculated according to the procedure stored in the controller, the deviation from the predetermined set value of the degree of superheat is determined, control calculations are performed, the valve opening degree is determined, and a signal is sent to the valve drive circuit 13A.

このように構成すると、先に第2図で示した演算は、演
算回路を構成することなく、プログラム上で処理できる
のでタイマーを別置する必要がな、い。
With this configuration, the arithmetic operations shown in FIG. 2 can be processed on a program without configuring an arithmetic circuit, so there is no need to provide a separate timer.

第4図は、タイマーを使用しない場合の処理の流れを示
している。
FIG. 4 shows the flow of processing when no timer is used.

マイクロコンピュータでは、計測、演算処理をシリーズ
に行い、各処理に有限の時間を必要とする。そこで、第
4図に示すように、起動後の過熱度検出、演算、偏差演
算、制御演算、弁制御のルーチンを何回行ったかカウン
トする。すなわち8回ループか否かの判断をなすことに
よりタイマーの代りとすることができる。
Microcomputers perform measurement and calculation processing in series, and each processing requires a finite amount of time. Therefore, as shown in FIG. 4, the number of times the routine of superheat degree detection, calculation, deviation calculation, control calculation, and valve control has been performed after startup is counted. In other words, it can be used in place of a timer by determining whether the loop is 8 times or not.

なお前記の実施例では、カーエアコンの起動時における
冷媒流量制御の例を説明したが、本発明は、カーエアコ
ンに限るものでなく、同等の効果が期待される製品機器
の冷凍サイクルにおける冷媒流量制御装置の範囲で汎用
的なものである。
In the above embodiment, an example of refrigerant flow rate control at the time of starting a car air conditioner was explained, but the present invention is not limited to car air conditioners, but can be applied to refrigerant flow rate control in the refrigeration cycle of product equipment that is expected to have the same effect. It is a general-purpose device within the range of control devices.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、温度センサのみを
使用して蒸発器冷媒の過熱度を検出して冷媒流量制御を
行うに当り、冷凍サイクルの起動時には膨脹弁を開く方
向へ制御でき、膨脹弁が閉止しつづけることを防いで、
熱負荷に応じた冷媒流量の制御を可能にする冷媒流量制
御装置を提供することができる。
As described above, according to the present invention, when controlling the refrigerant flow rate by detecting the degree of superheating of the evaporator refrigerant using only the temperature sensor, the expansion valve can be controlled in the direction of opening when the refrigeration cycle is started. , preventing the expansion valve from remaining closed,
A refrigerant flow rate control device that enables control of refrigerant flow rate according to heat load can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る冷媒流量制御装置の
構成図、第2図は、第1図の冷媒流量制御装置の動作を
説明するフローチャート、第3図は1本発明の他の実施
例に係る冷媒流量制御装置の構成図、第4図は、第3図
の冷媒流量制御装置の動作を説明するフローチャートで
ある。・1・・・圧縮機、2・・・凝縮器、3・・・膨
脹弁、4・・・蒸発器、5・・・第1の温度センサ、6
・・・第2の温度センサ、7・・・第3の温度センサ、
8,8A・・・冷媒流量演算制御装置、9・・・過熱度
演算回路、10・・・過熱度設定回路、11・・・差動
増幅器、12・・・制御演算回路、13,13A・・・
弁駆動回路、14・・・AD変換器、15・・・CPU
、16・・・メモリユニット。 竿I(2) 第 31!11
FIG. 1 is a configuration diagram of a refrigerant flow rate control device according to an embodiment of the present invention, FIG. 2 is a flowchart explaining the operation of the refrigerant flow rate control device of FIG. 1, and FIG. FIG. 4 is a flowchart illustrating the operation of the refrigerant flow control device of FIG. 3, which is a block diagram of the refrigerant flow control device according to the embodiment.・1... Compressor, 2... Condenser, 3... Expansion valve, 4... Evaporator, 5... First temperature sensor, 6
... second temperature sensor, 7... third temperature sensor,
8, 8A... Refrigerant flow rate calculation control device, 9... Superheat degree calculation circuit, 10... Superheat degree setting circuit, 11... Differential amplifier, 12... Control calculation circuit, 13, 13A.・・・
Valve drive circuit, 14... AD converter, 15... CPU
, 16... memory unit. Rod I (2) No. 31!11

Claims (1)

【特許請求の範囲】[Claims] 1.圧縮機,凝縮器,電気信号によつて弁開度が調整可
能な膨脹弁および蒸発器を冷媒配管で接続して冷凍サイ
クルを構成し、前記蒸発器の入口部ないし中間部に設け
た第1の温度センサと、前記蒸発器の出口部に設けた第
2の温度センサと、前記圧縮機の入口部または前記蒸発
器と前記圧縮機とを接続する冷媒配管の前記圧縮機近傍
部に設けた第3の温度センサと、前記第1の温度センサ
と前記第2の温度センサとの各各の温度信号の差および
前記第1の温度センサと前記第3の温度センサとの各々
の温度信号の差を、それぞれ設定値に保つように前記膨
脹弁へ電気信号を出力する制御回路とを備えるとともに
、冷凍サイクルの起動時には、前記第1の温度センサと
前記第3の温度センサとの各々の温度信号の差を設定値
に保つために前記膨脹弁へ電気信号を出力せしめ、その
後一定時間経過してからは、前記第1の温度センサと前
記第3の温度センサとの各々の温度信号の差を設定値に
保つために前記膨脹弁へ電気信号を出力せしめるように
、あらかじめ制御手順を設定しうる演算制御装置を設け
たことを特徴とする冷媒流量制御装置。
1. A refrigeration cycle is constructed by connecting a compressor, a condenser, an expansion valve whose opening degree can be adjusted by an electric signal, and an evaporator through refrigerant piping, and a first a second temperature sensor provided at the outlet of the evaporator, and a second temperature sensor provided at the inlet of the compressor or near the compressor of a refrigerant pipe connecting the evaporator and the compressor. The difference between the temperature signals of the third temperature sensor, the first temperature sensor, and the second temperature sensor, and the difference between the temperature signals of the first temperature sensor and the third temperature sensor. and a control circuit that outputs an electric signal to the expansion valve so as to maintain the difference at a set value, and at the time of startup of the refrigeration cycle, the temperature of each of the first temperature sensor and the third temperature sensor An electric signal is output to the expansion valve in order to maintain the difference between the signals at a set value, and after a certain period of time has elapsed, the difference between the temperature signals of the first temperature sensor and the third temperature sensor is determined. 1. A refrigerant flow rate control device comprising an arithmetic and control device capable of setting a control procedure in advance so as to output an electric signal to the expansion valve in order to maintain the expansion valve at a set value.
JP23314184A 1984-11-07 1984-11-07 Refrigerant flow controller Pending JPS61114067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23314184A JPS61114067A (en) 1984-11-07 1984-11-07 Refrigerant flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23314184A JPS61114067A (en) 1984-11-07 1984-11-07 Refrigerant flow controller

Publications (1)

Publication Number Publication Date
JPS61114067A true JPS61114067A (en) 1986-05-31

Family

ID=16950366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23314184A Pending JPS61114067A (en) 1984-11-07 1984-11-07 Refrigerant flow controller

Country Status (1)

Country Link
JP (1) JPS61114067A (en)

Similar Documents

Publication Publication Date Title
US4878355A (en) Method and apparatus for improving cooling of a compressor element in an air conditioning system
JPS61175458A (en) Controller for flow rate of refrigerant
JPH05106922A (en) Control system for refrigerating equipment
JPS63131967A (en) Refrigeration cycle device
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
JPS61114067A (en) Refrigerant flow controller
JP2008290017A (en) Compressed air dehumidifier
CN106595145A (en) Control system and method for preventing compressor from liquid returning
KR100557038B1 (en) Method for Controlling Expansion Valve of Heat pump
JP2646917B2 (en) Refrigeration equipment
JPS5912942B2 (en) Refrigeration equipment
JP3178453B2 (en) Refrigeration equipment
JPH03213957A (en) Air conditioner
JPH11201572A (en) Multiroom air conditioner
JP2757900B2 (en) Air conditioner
JPS62299660A (en) Air conditioner
JPH10197110A (en) Frosted state discriminating device
JPS6189455A (en) Flow controller for refrigerant in refrigeration cycle
JP2785546B2 (en) Refrigeration equipment
JPH0345857A (en) Overheating preventing device for compressor for ice making machine
JPS63297973A (en) Refrigeration cycle device
JPS59109748A (en) Air conditioner
JPS6346347A (en) Refrigerant flow controller
JPS59180264A (en) Refrigeration cycle device
JPS6345030B2 (en)