JPS61113716A - Manufacture of 18% ni maraging steel - Google Patents

Manufacture of 18% ni maraging steel

Info

Publication number
JPS61113716A
JPS61113716A JP23647184A JP23647184A JPS61113716A JP S61113716 A JPS61113716 A JP S61113716A JP 23647184 A JP23647184 A JP 23647184A JP 23647184 A JP23647184 A JP 23647184A JP S61113716 A JPS61113716 A JP S61113716A
Authority
JP
Japan
Prior art keywords
solution treatment
temperature range
hot working
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23647184A
Other languages
Japanese (ja)
Inventor
Akihiro Matsuzaki
明博 松崎
Kiyohiko Nohara
清彦 野原
Osamu Tanigawa
谷川 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23647184A priority Critical patent/JPS61113716A/en
Publication of JPS61113716A publication Critical patent/JPS61113716A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the strength without deteriorating tensile strength, notch strength and high ductility, by performing the soln. treatment after heat working the titled steel contg. trace B by dividing it to 2 times at high and low temp. ranges. CONSTITUTION:To conventional 18% Ni maraging steel, >=0.005wt% B is added and incorporated. Said steel is hot worked usually at 600-1,200 deg.C range in hot working, soln. treating and aging thereof. In this case, said steel is hot worked at temp. range excluding 800-900 deg.C range, and at least >=1 pass of the hot working is carried out at >=900 deg.C by >=20% draft per one pass. In next soln. treatment, at first, said material is soln. treated primarily at 930-1,050 deg.C range, cooled then soln. treated secondarily at 750-850 deg.C range, at last, aged to manufacture the titled steel superior in both toughness and strength.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は硼素(8)を添加した18%Ni系マルエー
ジング鋼の製造方法に関し、特に靭性および強度が著し
く優れた硼素添加型18%Ni系マルエージング鋼を製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing 18% Ni-based maraging steel containing boron (8), and particularly to a boron-added 18% Ni-based maraging steel with outstanding toughness and strength. The present invention relates to a method of manufacturing aging steel.

従来の技術 一般に18%Ni系マルエージング鋼は、各種のマルエ
ージング鋼のうちでも比較的簡単な熱処理によって高い
強度と良好な靭性を得ることができるものであって、従
来から固体燃料ロケットモーターケースや、深海潜水艇
あるいはウラン遠心分離機の回転円筒などに使用されて
いる。
Conventional technology In general, 18% Ni-based maraging steel is one of the various maraging steels that can obtain high strength and good toughness through relatively simple heat treatment, and has traditionally been used in solid fuel rocket motor cases. It is used in deep-sea submarines and the rotating cylinders of uranium centrifuges.

この種の18%Ni系マルエージング鋼は、18%前後
のN1を含有するとともに、COとMOを主な時効硬化
元素として添加し、かつ小量のTI、Aji’などを添
加したものであって、通常は熱間加工後に、800〜9
50℃の範囲内の温度に加熱後常温に空冷する溶体化処
理を行なって時効硬化元素を充分に固溶させ、その後5
00℃前後に1〜10時間程時間熱して常温に空冷する
時効処理を施して金属間化合物を析出させ、その後使用
に供される。このような熱処理が施された状態で18%
Ni系マルエージング鋼は175〜245kof/−の
引張り強さと100〜450kof/ll1m94ノ破
壊靭性1 (KIC>を有する。
This type of 18% Ni-based maraging steel contains around 18% N1, and has CO and MO added as the main age hardening elements, as well as small amounts of TI, Aji', etc. Usually after hot working, 800 to 9
Solution treatment is performed by heating to a temperature within the range of 50°C and then air cooling to room temperature to fully dissolve the age hardening elements, and then
An aging treatment is performed in which the material is heated to around 00° C. for about 1 to 10 hours and air cooled to room temperature to precipitate intermetallic compounds, and then it is used. 18% after such heat treatment
Ni-based maraging steel has a tensile strength of 175 to 245 kof/- and a fracture toughness of 100 to 450 kof/ll1m94.

しかるに18%Ni系マルエージング鋼においては、破
壊靭性値は引張り強さが轟くなるにつれて低下し、引張
り強さ175kgf/−で破壊靭性1 (KIG ) 
380〜450 kgf/ml19′&であったものが
、引張り強さ200kof/−では破壊靭性値が250
〜300 kof/am%に低下し、さらに引張り強さ
が230kof/−となれば破壊靭性値が130〜17
0 kof/u+%まで低下する。このような高強度化
に伴なう破壊靭性値の低下に起因して、18%Ni系マ
ルエージング鋼を前述の如き詰機器に使用する際におい
ては、破壊に対する信頼性、安全性の観点から強度をあ
る程度で抑えざるを得す、その結果、高強度が容易に得
られるという18%Ni系マルエージング鋼の最大の特
徴を充分に発揮させることができなかったのが実情であ
る。
However, in 18% Ni-based maraging steel, the fracture toughness value decreases as the tensile strength increases, and at a tensile strength of 175 kgf/-, the fracture toughness value is 1 (KIG).
The fracture toughness value was 380-450 kgf/ml19'&, but with a tensile strength of 200kof/-, the fracture toughness value was 250
If the tensile strength decreases to ~300 kof/am% and further becomes 230 kof/-, the fracture toughness value will be 130 to 17.
It decreases to 0 kof/u+%. Due to the decrease in fracture toughness that accompanies this increase in strength, when using 18% Ni-based maraging steel in the above-mentioned packing equipment, from the viewpoint of reliability and safety against fracture, it is necessary to The reality is that the strength has to be limited to a certain level, and as a result, the greatest feature of 18% Ni maraging steel, which is that high strength can be easily obtained, cannot be fully demonstrated.

そこで従来から、18%Ni系マルエージング鋼につい
ては、強度を抑えることなく、靭性を向上させる試みが
種々なされており、それらの方法は次の(1)〜(4)
に大別される。
Therefore, various attempts have been made to improve the toughness of 18% Ni maraging steel without reducing its strength, and these methods are as follows (1) to (4).
It is broadly divided into

(1)溶体化処理後冷却してマルテンサイト組織とした
状態で冷間加工を加え、それに読いてオーステナイト域
へ再加熱する方法。
(1) A method in which cold working is applied to the martensitic structure by cooling it after solution treatment, and then reheating to the austenitic region.

(2)再結晶温度以下のオーステナイト域で加工し、そ
れに続いてオーステナイト域へ再加熱する方法。
(2) A method of processing in the austenite region below the recrystallization temperature and then reheating to the austenite region.

(3)オーステナイト化とマルテンサイト化とを繰返す
方法。
(3) A method of repeating austenitization and martensitization.

(4)再結晶温度以上のオーステナイト域へ加熱し、続
いて再結晶温度以下のオーステナイト域へ再加熱する方
法。
(4) A method of heating to an austenite region above the recrystallization temperature, and then reheating to an austenite region below the recrystallization temperature.

発明が解決すべき問題点 上述のような各方法は、いずれもオーステナイ    
 9ト結晶粒やマルテンサイトラスの微細化を通じて靭
性の向上を図るものであるが、このような粒のam化に
よる靭性の改善には限界があり、これらの方法だけでは
未だ満足できる程度の強靭性は得られていなかった。
Problems to be Solved by the Invention Each of the above-mentioned methods is a
Although this method aims to improve toughness by making the grains finer and the martensite laths finer, there is a limit to the improvement of toughness by making these grains into am. was not obtained.

ところで一般に鋼の靭性劣化の要因としては、粗大析出
物の生成が挙げられる。そして実際に高Mo系のマルエ
ージング鋼、例えば「鉄と鋼」第66巻、第8号117
7頁に示されるような10%Ni−18%Co−14%
M o−0,2%7iの如きマルエージング鋼において
は、熱間加工中の歪によりFe2MO8の粗大析出物が
粒界に優先析出して靭性を劣化させることが知られてい
る。一方、18%Ni系マル工−ジング鋼程度のMO含
有量(高々6%程度)では、そのような粗大析出物は生
成しないものとされており、そのため18%Ni系マル
エージング鋼については、靭性向上のために粗大析出物
の生成を抑制することは特に考慮が払われていなかった
のが実情である。
Incidentally, the formation of coarse precipitates is generally cited as a factor in the deterioration of the toughness of steel. In fact, high-Mo maraging steels, such as "Tetsu to Hagane" Vol. 66, No. 8, 117
10%Ni-18%Co-14% as shown on page 7
It is known that in maraging steels such as Mo-0, 2% 7i, coarse precipitates of Fe2MO8 preferentially precipitate at grain boundaries due to strain during hot working, deteriorating toughness. On the other hand, it is said that such coarse precipitates do not form at an MO content similar to that of 18% Ni maraging steel (approximately 6% at most), and therefore, for 18% Ni maraging steel, The reality is that no particular consideration has been given to suppressing the formation of coarse precipitates in order to improve toughness.

しかるに18%Ni系マルエージング鋼においては従来
から時効処理後の強度向上および靭性改善を目的として
0.0005〜0.01%程度の硼素を添加することが
行なわれているが、本発明者等の実験によれば、18%
Ni系マルエージング鋼でも硼素を含有している場合に
は、熱間加工条件あるいはその後の溶体化処理条件によ
っては粗大析出物が生成されて靭性を低下させているこ
とが判明した。すなわち従来はこのような事実が知られ
ていなかったために、硼素添加型の18%Ni系マルエ
ージング鋼については粗大析出物の生成の抑制の観点か
ら熱間加工条件や熱処理条件を選定することがなされて
おらず、そのため靭性の高い硼素添加型18%Ni系マ
ルエージング鋼を安定して得ることができなかったので
ある。
However, in 18% Ni-based maraging steel, approximately 0.0005 to 0.01% boron has been added for the purpose of improving strength and toughness after aging treatment, but the present inventors et al. According to the experiment, 18%
It has been found that when Ni-based maraging steel contains boron, coarse precipitates are formed depending on hot working conditions or subsequent solution treatment conditions, reducing toughness. In other words, because this fact was not known in the past, it was necessary to select hot working conditions and heat treatment conditions for boron-added 18% Ni maraging steel from the viewpoint of suppressing the formation of coarse precipitates. Therefore, boron-added 18% Ni-based maraging steel with high toughness could not be stably obtained.

以上の事情を背景として、本発明者等は既に特願昭59
−137014号において、高強度を損うことなく、安
定して靭性が高い硼素添加型の18%Nl系マルエージ
ング鋼を製造し得る方法を提案している。すなわち本発
明者等は、前述の如く硼素添加型の18%Ni系マルエ
ージング鋼においては熱間加工条件やその後の溶体化処
理条件によっては粗大析出物が生成されて靭性を損うこ
とがあるとの知見を基礎に、安定して靭性を向上させ得
る条件を見出すべく鋭意実験・検討を重ねた結果、熱間
加工工程における適切な圧下スケジュールと、その後の
溶体化処理における適切な温度条件とを組合せることに
よって、粗大析出物の生成を抑制して、安定して高い靭
性を得ることができることを見出し、前記提案(特願昭
59−137014号)の方法を開発するに至っている
Against the background of the above circumstances, the present inventors have already filed a patent application in 1983.
No. 137014 proposes a method for producing a boron-added 18% Nl maraging steel that is stable and has high toughness without sacrificing its high strength. In other words, the present inventors have found that, as mentioned above, in boron-added 18% Ni-based maraging steel, coarse precipitates may be generated depending on hot working conditions and subsequent solution treatment conditions, which may impair toughness. Based on this knowledge, we conducted extensive experiments and studies to find conditions that could stably improve toughness, and as a result, we found an appropriate reduction schedule in the hot working process, and appropriate temperature conditions in the subsequent solution treatment. It was discovered that by combining these, the formation of coarse precipitates can be suppressed and high toughness can be stably obtained, leading to the development of the method proposed above (Japanese Patent Application No. 137014/1982).

すなわち前記i案による18%Ni系マルエージング鋼
の製造方法は、o、ooos重量%以上、通常は0.0
1重1%以下の硼素を含有する18%Ni系マルエージ
ング鋼の素材を熱間加工後、溶体化処理し、さらに時効
処理する方法において、1200〜600℃の範囲内で
熱間加工するに際して900〜800℃を除く温度域(
但し900℃、800℃を含まない)で加工を加え、か
つその熱間加工工程において900℃を越える温度域で
1パス当り20%以上の加工率のパスを少なくとも1回
以上行ない、さらに1050〜750℃の範囲内で溶体
化処理するに際して930〜850℃を除く温度域(但
し930℃、850℃を含まない)に加熱して溶体化処
理することを特徴とするものである。
That is, in the method for producing 18% Ni-based maraging steel according to plan i, o,ooos weight% or more, usually 0.0
In a method of hot working 18% Ni-based maraging steel material containing 1% or less boron per weight, solution treatment, and further aging treatment, when hot working within the range of 1200 to 600 ° C. Temperature range excluding 900-800℃ (
(excluding 900℃ and 800℃), and in the hot processing process, at least one pass with a processing rate of 20% or more per pass is performed in a temperature range exceeding 900℃, and further When performing solution treatment within the range of 750°C, the solution treatment is performed by heating to a temperature range excluding 930 to 850°C (however, excluding 930°C and 850°C).

しかるに本発明者等がさらに検討を重ねた結果、前記提
案の方法でも熱間加工後の溶体化処理の条件によっては
、引張り強さの若干の低下を招いたり、引火強度の若干
の低下を招いたりすることがあることが判明した。
However, as a result of further studies by the present inventors, it was found that even with the method proposed above, depending on the solution treatment conditions after hot working, the tensile strength may slightly decrease or the flammability strength may decrease slightly. It turns out that there are times when it happens.

したがってこの発明は、前記提案の方法をさらに改良し
、高靭性を損うことなくより一層高強度を有する硼素添
加型の18%Ni系マルエージング鋼を安定して製造し
得る方法を提供することを目的とするものである。
Therefore, it is an object of this invention to further improve the proposed method and provide a method capable of stably producing boron-added 18% Ni-based maraging steel having even higher strength without impairing high toughness. The purpose is to

問題点を解決するための手段 本発明者は前述の特願昭59−137014号で提案し
ている方法についてさらに検討を加えた結果、その方法
における熱間加工後の溶体化処理を高温域での第1次溶
体化処理と、低温域での第    :パ2次溶体化処理
との2回の処理に分割して行なうことにより、引張り強
さや切欠き強さの低下を招くことなく、高靭性を損うこ
となく高強度を有する18%Nl系マルエージング鋼が
得られることを見出し、この発明をなすに至った。
Means for Solving the Problems As a result of further study on the method proposed in the above-mentioned Japanese Patent Application No. 137014/1987, the inventor of the present invention has determined that the solution treatment after hot working in that method is carried out in a high temperature range. By dividing the treatment into two processes: the first solution treatment at low temperatures and the second secondary solution treatment at low temperatures, high tensile strength and notch strength are not reduced. It was discovered that a 18% Nl-based maraging steel having high strength can be obtained without impairing toughness, and the present invention was completed.

すなわちこの発明は、o、ooos重量%以上の硼素を
含有する18%Ni系マルエージング鋼を、熱間加工後
に溶体化処理し、さらに時効処理して製造するにあたり
、 1200〜600’Cの範囲内で熱間加工するに際して
、900℃以下800℃以上の温度域を除く温度域で加
工を加え、かつその熱間加工の少くとも1パス以上を、
900℃を越える温度域で1パス当り加工率20%以上
で行ない、 さらに溶体化処理を行なうにあたって、先ず1050℃
以下930℃を越える温度域で第1次溶体化処理を行な
い、冷却後に850℃未1!750℃以上の温a域で第
2次溶体化処理を行なうことを特徴とするものである。
That is, the present invention provides a method for manufacturing 18% Ni-based maraging steel containing o, ooos weight percent or more of boron by solution treatment after hot working and further aging treatment. When performing hot working within a temperature range excluding the temperature range of 900°C or lower and 800°C or higher, and at least one pass or more of the hot working,
It is carried out at a processing rate of 20% or more per pass in a temperature range exceeding 900°C, and when further solution treatment is performed, it is first heated at 1050°C.
It is characterized in that the first solution treatment is performed in a temperature range exceeding 930°C, and after cooling, the second solution treatment is performed in a temperature range of 850°C to 1.750°C or higher.

発明の詳細な説明 以下にこの発明の方法についてさらに具体的に説明する
DETAILED DESCRIPTION OF THE INVENTION The method of the present invention will be described in more detail below.

この発明で対象とする鋼は、前述のように硼素(B)を
含有する18%Ni系マルエージング鋼である。具体的
には、N117〜19%、Gd2.0〜10.0%、M
o3.0〜6.0%、Ti0.1〜1.0%、AiFo
、05〜0.20%を主成分とし、さらにBをo、oo
os%以上含有するものである。このような18%Ni
系マルエージング鋼は、溶製後、熱間圧延もしくは熱間
鍛造を施した後、溶体化処理を施し、さらに時効処理を
施して使用に供される。この発明の方法は、上述のよう
な硼素添加型18%Ni系マルエージング鋼の製造工程
のうち、特に熱間圧延もしくは熱間鍛造(これらを熱間
加工と総称する)の工程条件、およびその侵の溶体化処
理の条件を規定したものである。すなわち、この種のマ
ルエージング鋼の熱間加工は、通常1200〜600℃
の温度域で行なわれるが、この発明では熱間加工を加え
る温度域を、1200〜600℃の温[域から900〜
800℃の範囲を除いた温度域、したがって1200〜
900℃、800〜600℃の温度域で加工を行なうも
のとする。さらに熱間加工においては通常所要の厚みと
なるまで複数パスで加工を施すが、その複数パスのうち
、少なくとも1パス以上は、900℃を越える温度域に
おける圧下率20%以上のパスとする。一方、熱間加工
後の溶体化処理は、通常1050〜750℃の温度域に
加熱して冷却するが、この発明では1050〜750℃
の温度域から930〜850℃の範囲を除いた温度域で
溶体化処理するものとし、かつその溶体化処理を1次、
2次に分割して、第1次の溶体化処理を高温側の105
0〜930℃の温度域で、また第2次の溶体化処理を低
温側の850〜750℃の温度域で行なう。このように
熱間加工工程条件および溶体化処理条件の両者を規制す
ることによって、粗大析出物が少なくかつ比較的小】の
析出物が均一に分布し、しかも結晶粒が微細な、破@靭
性値が高くしかも高強度を有する硼素添加型18%Ni
系マルエージング鋼が得られるのである。
The steel targeted by this invention is an 18% Ni-based maraging steel containing boron (B) as described above. Specifically, N117-19%, Gd2.0-10.0%, M
o3.0~6.0%, Ti0.1~1.0%, AiFo
, 05 to 0.20% as the main component, and B as o, oo
It contains os% or more. 18%Ni like this
After melting, maraging steel is subjected to hot rolling or hot forging, followed by solution treatment, and further aging treatment before use. The method of the present invention particularly focuses on the process conditions of hot rolling or hot forging (these are collectively referred to as hot working) among the manufacturing processes of boron-added 18% Ni-based maraging steel as described above, and the process conditions thereof. This specifies the conditions for solution treatment of corrosion. In other words, hot working of this type of maraging steel is usually carried out at temperatures of 1200 to 600°C.
However, in this invention, the temperature range for hot working is from 1200 to 600 °C [range to 900 to 900 °C].
Temperature range excluding the range of 800℃, therefore 1200~
Processing shall be performed at a temperature range of 900°C and 800 to 600°C. Furthermore, in hot working, processing is usually performed in multiple passes until the required thickness is achieved, and at least one of the multiple passes is a pass with a reduction rate of 20% or more in a temperature range exceeding 900°C. On the other hand, solution treatment after hot working is usually heated to a temperature range of 1050 to 750°C and then cooled, but in this invention, the temperature range is 1050 to 750°C.
The solution treatment shall be carried out in a temperature range excluding the range of 930 to 850 °C from the temperature range of
It is divided into two stages, and the first solution treatment is carried out at 105 on the high temperature side.
The second solution treatment is carried out in the temperature range of 0 to 930°C, and the second solution treatment is carried out in the lower temperature range of 850 to 750°C. By regulating both the hot working process conditions and the solution treatment conditions in this way, we are able to achieve fracture @ toughness with few coarse precipitates and relatively small precipitates evenly distributed, and with fine crystal grains. Boron-added 18%Ni with high value and high strength
As a result, a maraging steel based on this type can be obtained.

上述のような熱間加工条件および溶体化処理条件は本発
明者等の詳細な実験により見出されたものであり、そこ
で先ず熱間加工条件を見出す基礎となった実験について
次に説明する。
The above-mentioned hot working conditions and solution treatment conditions were discovered through detailed experiments by the present inventors, and therefore, first, the experiments that served as the basis for finding the hot working conditions will be described next.

第1表に成分組成を示す鋼、すなわちBを0.003%
含有する18%Ni系マルエージング鋼の素材鋼塊10
0kgを小型真空溶解炉で溶製した後、1200℃に加
熱し、種々の加工温度、種々の圧下率で1パスのみの熱
間加工を施し、さらに95o℃に加熱して室温まで空冷
する溶体化処理を行ない、その後480℃で3時間保持
する時効処理を行なった。この工程中において、溶体化
処理後の組織状態を調べるとともに、時効処理後の平面
歪み破壊靭性値を調べた。なおここで溶体化処理・後の
粗精状態としては、結晶粒の分布状態すなわち粗粒径と
細粒径との比(粗粒径/細粒径)であられされる混粒度
と、析出物の析出量(面積率)と、析出物の分布形ff
!(均一/不均一)を調べた。    (それらの結果
を熱間加工条件すなわち加工温度おl よび加工率と対応して第1図(A)〜(D)に示す。こ
こで第1図(A)は結晶粒の混粒度を、第1図(8)は
析出物の析出量を、第1図(C)は析出物の分布形態を
、第1図(D)は破壊靭性値(K Ic )を、それぞ
れ熱間加工条件と対応して示す。
Steel whose composition is shown in Table 1, that is, 0.003% B
Material steel ingot of 18% Ni-based maraging steel containing 10
After melting 0 kg in a small vacuum melting furnace, it is heated to 1200°C, hot worked in only one pass at various processing temperatures and various reduction rates, and then heated to 95°C and air cooled to room temperature. After that, an aging treatment was carried out by holding at 480° C. for 3 hours. During this process, the structural state after solution treatment was investigated, and the plane strain fracture toughness value after aging treatment was also investigated. Note that the coarse state after solution treatment is the mixed grain size determined by the distribution state of crystal grains, that is, the ratio of coarse grain size to fine grain size (coarse grain size/fine grain size), and the precipitate. The amount of precipitation (area ratio) and the distribution shape of the precipitates ff
! (uniform/heterogeneous) was investigated. (The results are shown in Fig. 1 (A) to (D) in correspondence with the hot processing conditions, that is, the processing temperature l and processing rate. Here, Fig. 1 (A) shows the mixed grain size of the crystal grains, Figure 1 (8) shows the precipitation amount of precipitates, Figure 1 (C) shows the distribution form of precipitates, and Figure 1 (D) shows the fracture toughness value (K Ic ) depending on the hot working conditions. Correspondingly shown.

第1図(D)から、時効処理後の破壊靭性値は、800
〜900℃の温度域で加工を受けた場合に著しく低くな
り、900℃を越える温度域あるいは800℃未満の温
度域で20%以上の強加工を受けた場合に高い値が得ら
れていることが判る。
From Figure 1 (D), the fracture toughness value after aging treatment is 800
The value becomes significantly lower when subjected to processing in the temperature range of ~900℃, and high values are obtained when subjected to severe processing of 20% or more in the temperature range exceeding 900℃ or below 800℃. I understand.

一方溶体化処理後の析出物の析出量および分布形態(均
一/不均一)も第1図(B)、(C)から明らかなよう
に熱間加工の加工温度、加工率に大きく依存しており、
前述のような時効処理後に高い破壊靭性値が得られる加
工条件は、溶体化処理後の析出物の析出量が小さくかつ
均一に分布する加工条件と良く対応する。このことから
、硼素添加型の18%Ni系マルエージング鋼において
は、高い破壊靭性値を得るためには溶体化処理後の析出
物の固が少なくかつ均一に分散するような加工温度、加
工率を選定する必要があることが判る。
On the other hand, as is clear from Figures 1 (B) and (C), the precipitation amount and distribution form (uniform/heterogeneous) of precipitates after solution treatment largely depend on the processing temperature and processing rate of hot working. Ori,
The processing conditions under which a high fracture toughness value is obtained after the aging treatment as described above corresponds well to the processing conditions under which the amount of precipitates after the solution treatment is small and uniformly distributed. From this, in boron-added 18% Ni maraging steel, in order to obtain a high fracture toughness value, the processing temperature and processing rate must be set so that the precipitates after solution treatment are less solid and uniformly dispersed. It turns out that it is necessary to select

さらに第1図(A)〜(D)に示される実験結果につい
て詳細に検討すると、この発明で対象とするw4種にお
ける溶体化処理後の析出物は主としてF e−M O−
T i系のものであるが、このような析出物の分布状態
は、第1図(A)に示す結晶粒の分布状l!!(混粒度
に)に密接に関係している。すなわち第1図(A)に示
すように900℃を越える温度域で20%以上の強加工
を行なった場合に結晶粒は整粒となり、その場合に第1
図(C)に示すように析出物の分散が均一となる。その
理由は次のように考えられる。すなわち900℃を越え
る!s濡で・20%以上の加工を加えた場合には、再結
晶域での加工であるために2096以上の加工によって
全面積が均等に再結晶し、その結果溶体化処理後の結晶
組織も整粒となる。一方900℃以下の低温で加工を受
けた場合、再結晶に必要な臨界加工率が大きいため相対
的に低歪加工となり、また900℃を越える場合でも2
0%未満では加工率が不足して、いずれも部分的に再結
晶による細粒化が生じやすくなり、しかも部分的には初
期粒以上の粗大粒が歪誘起粒界移動により生成されるた
め、溶体化処理後の結晶粒も混粒組織を呈するものと考
えられる。そして析出物は旧オーステナイト粒界もしく
は再結晶粒界上に主として優先析出するため、整粒組織
では析出物が均一分布し、一方混粒組械では不均一分布
を呈するものと考えられる。したがって900℃を越え
る温度域で20%以上の加工を行なって結晶粒の整粒組
織を得ることによって析出物の均一分散を得ることがで
きるのである。
Furthermore, when the experimental results shown in FIGS. 1(A) to (D) are examined in detail, the precipitates after solution treatment in the w4 species targeted in this invention are mainly Fe-M O-
The distribution state of such precipitates is the distribution state of crystal grains l! shown in FIG. 1(A). ! (closely related to mixed particle size). In other words, as shown in Figure 1 (A), when strong working of 20% or more is performed in a temperature range exceeding 900°C, the crystal grains become regular, and in that case, the first
As shown in Figure (C), the precipitates are uniformly dispersed. The reason may be as follows. In other words, it exceeds 900℃! When processing is applied by 20% or more, the entire area is evenly recrystallized by processing of 2096 or more because the processing is in the recrystallization region, and as a result, the crystal structure after solution treatment also changes. It becomes a regular grain. On the other hand, when processed at a low temperature below 900℃, the critical processing rate required for recrystallization is large, resulting in relatively low strain processing, and even when the temperature exceeds 900℃,
If it is less than 0%, the processing rate will be insufficient and grain refinement will occur partially due to recrystallization, and coarse grains larger than the initial grains will partially be generated due to strain-induced grain boundary movement. It is thought that the crystal grains after solution treatment also exhibit a mixed grain structure. Since precipitates preferentially precipitate mainly on prior austenite grain boundaries or recrystallized grain boundaries, it is thought that precipitates are uniformly distributed in a regular-grained structure, whereas they are non-uniformly distributed in a mixed-grained structure. Therefore, uniform dispersion of precipitates can be obtained by processing the material by 20% or more in a temperature range exceeding 900° C. to obtain a regular grain structure.

また溶体化処理後の析出物の億は、900〜800℃の
温度域での加工を受けた場合に増大する。
Further, the amount of precipitates after solution treatment increases when processed in a temperature range of 900 to 800°C.

その理由は、この発明で対象とする鋼の場合、加工中の
ような動的状態で析出物が最も析出し易い温度域が80
0〜900℃の温度域であるためと考えられる。したが
って析出物の量を押えるためには、900〜800℃の
温度域を除く温度域で熱間加工する必要がある。なおこ
こで、900℃を越える高温域で20%以上の加工を加
えて整粒組織とした場合であっても、さらに900〜8
00℃の温度域での加工を受けた場合には、前記理由に
よりその900〜800℃の温度域での加工中に析出物
の量が増大してしまうから、複数パスで熱間加工する場
合、いずれのパスも900〜800℃の温度域を避ける
必要がある。一方前述の整粒組織の点からは、1パスで
も900℃を越える温度域で20%以上の加工を加えれ
ば、その他のパスが800℃未満の温度域の加工あるい
は20%未満の加工率であっても、整粒IIJを郡て析
出物の均一分散を得ることが可能である。
The reason for this is that in the case of the steel targeted by this invention, the temperature range in which precipitates are most likely to precipitate under dynamic conditions such as during processing is 80°C.
This is thought to be due to the temperature range of 0 to 900°C. Therefore, in order to suppress the amount of precipitates, it is necessary to perform hot working in a temperature range other than the temperature range of 900 to 800°C. Note that even if a sized grain structure is obtained by processing 20% or more in a high temperature range exceeding 900°C, the
If the material is processed in a temperature range of 00°C, the amount of precipitates will increase during processing in the temperature range of 900 to 800°C for the reason mentioned above, so when hot working in multiple passes. , it is necessary to avoid a temperature range of 900 to 800°C in any pass. On the other hand, from the point of view of the above-mentioned grain structure, if 20% or more processing is applied in a temperature range exceeding 900°C even in one pass, other passes may be performed in a temperature range below 800°C or with a processing rate of less than 20%. Even if there is, it is possible to obtain uniform dispersion of the precipitates by controlling the grain size IIJ.

したがって以上を総合すれば、少くとも1パスは900
℃を越える温度での20%以上の加工とし、かつ全パス
を通じて900〜800℃の温度域での加工を避けるこ
とによって、析出物が少なくかつ析出物が均一分布した
組織が得られ、その結果靭性の著しい向上をもたらすこ
とができるのである。
Therefore, if we put the above together, at least one pass is 900.
By processing 20% or more at temperatures exceeding ℃ and avoiding processing in the temperature range of 900 to 800 ℃ throughout the pass, a structure with few precipitates and uniform distribution of precipitates can be obtained. This can bring about a significant improvement in toughness.

なお第1図(D)によれば、800℃未満の温□−cI
)20%、よ、t、工、6□い、□□8   :□1“
得ることが可能であるが、800℃未満の低温域で20
%以上の強加工を行なうことは実際には圧延機の負荷増
大等から好ましいことではなく、したがってこの発明で
は20%以上の強加工は900℃を越える温度域で行え
ば良いものとした。
According to FIG. 1 (D), the temperature □-cI below 800°C
) 20%, Yo, T, Work, 6□I, □□8 :□1“
However, in the low temperature range below 800℃
% or more is actually not preferable because of the increased load on the rolling mill, etc. Therefore, in the present invention, the strong working of 20% or more may be carried out at a temperature exceeding 900°C.

なおまた、1200℃を越える高温で熱間加工した場合
には、高温による酸化のためスケール0スが大きくなり
、一方600℃未満での熱間加工は変形抵抗が大きくな
って加工が困難となる。したがって熱間加工温度の上限
は1200℃、下限は600℃とした。
Furthermore, when hot working at a high temperature exceeding 1200°C, the scale 0 scale increases due to oxidation due to the high temperature, while when hot working at a temperature below 600°C, the deformation resistance increases and processing becomes difficult. . Therefore, the upper limit of the hot working temperature was set to 1200°C, and the lower limit was set to 600°C.

上述のような熱間加工を行なった後の溶体化処理条件に
ついての本発明者の実験結果を次に説明する。
Next, the inventor's experimental results regarding the solution treatment conditions after hot working as described above will be explained.

前記実験で用いたものと同成分の供試材(第1表)につ
いて、前述の熱間加工条件範囲内の条件として1050
℃で加工率30%で熱間加工し。
Regarding the test material (Table 1) with the same composition as that used in the above experiment, 1050
Hot worked at 30% processing rate at ℃.

次いで種々の温度に1時間加熱して溶体化処理を行ない
、その後480℃×3時間の時効処理を施し、破壊靭性
値(K rc )を測定した。溶体化処理温度と時効処
理後の破壊靭性値との関係を第2図に示す。
Next, solution treatment was performed by heating to various temperatures for 1 hour, and then aging treatment was performed at 480° C. for 3 hours, and the fracture toughness value (K rc ) was measured. FIG. 2 shows the relationship between the solution treatment temperature and the fracture toughness value after aging treatment.

第2図から明らかなように、850〜930℃の温度域
での溶体化処理は破壊靭性値の著しい低下をもたらす。
As is clear from FIG. 2, solution treatment in the temperature range of 850 to 930°C brings about a significant decrease in fracture toughness.

その原因は、本発明者等の実験によれば、溶体化処理温
度が850〜930℃では析出物の量が増大することに
よるものであることが判明している。すなわち、この発
明で対象とする鋼の場合、溶体化処理の如き静的状態で
析出物が最も析出し易い温度域は850〜930℃であ
り、それより高温もしくは低温では析出の進行が遅いこ
とに起因するものと考えられる。したがって溶体化処理
温度は、高い靭性を得るために850〜930℃の温度
域を除く温度域とする必要がある。
According to experiments conducted by the present inventors, it has been found that the cause of this is that the amount of precipitates increases when the solution treatment temperature is 850 to 930°C. That is, in the case of the steel targeted by this invention, the temperature range in which precipitates are most likely to precipitate in a static state such as solution treatment is 850 to 930°C, and precipitation progresses slowly at higher or lower temperatures than that. This is thought to be due to. Therefore, the solution treatment temperature needs to be in a temperature range excluding the temperature range of 850 to 930°C in order to obtain high toughness.

以上のように特定の熱間加工条件と、その後の850〜
930℃の温度域を除いた温度域での溶体化処理とを組
合せることによって高い靭性を有する硼素添加型18%
Ni系マルエージング鋼が得らることが判明した。その
結果に基づいてなされたのが既に提案している特願昭5
9−137014号の方法である。しかしながら本発明
者等がさらに検討を重ねたところ、熱間加工後の溶体化
処理を、850〜930℃を除いた温度域のうち高温側
の温度域すなわち930℃を越える温度域で行なっ、た
’%合には、引張り強さが低下するおそれがあり、一方
低温側の温度域、すなわち850℃未満の温度域で溶体
化処理を行なった場合には、切欠強度の低下を招(おそ
れがあることが判明した。
As mentioned above, specific hot working conditions and subsequent 850 ~
Boron-added type 18% that has high toughness by combining solution treatment in a temperature range other than 930℃.
It has been found that a Ni-based maraging steel can be obtained. Based on the results, the patent application that had already been proposed was filed in 1973.
This is the method of No. 9-137014. However, after further study by the present inventors, the solution treatment after hot working was carried out in the higher temperature range of the temperature range excluding 850 to 930 °C, that is, in the temperature range exceeding 930 °C. %, there is a risk of a decrease in tensile strength.On the other hand, if solution treatment is performed in a low temperature range, that is, a temperature range of less than 850℃, a decrease in notch strength may occur. It turns out that there is something.

そこでさらに実験・研究を重ねた結果、850〜930
℃を除く温度域での溶体化処理を2回に分けて行ない、
第1次溶体化処理を、930℃を越える高m側の温度域
で行ない、第1次溶体化処理後冷却してから、低温側の
850℃未満の温度域で第2次溶体化処理を行なうこと
によって、高靭性を損うことなく、引張強度、切欠き強
度の低下を防止し得ることを見出した。以下にその実験
を記す。
As a result of further experiments and research, we found that 850-930
Solution treatment in a temperature range excluding ℃ is carried out in two parts,
The first solution treatment is performed in a high temperature range of over 930°C, and after the first solution treatment is cooled, the second solution treatment is performed in a low temperature range of less than 850°C. It has been found that by doing so, it is possible to prevent a decrease in tensile strength and notch strength without impairing high toughness. The experiment is described below.

既に述べたと同じ第1表に示す成分組成の100 kg
ll塊を用い、こ発明の熱間圧延条件を満たす条件にて
熱間圧延を行ない、その後第2表に示すような種々の条
件での溶体化処理を行ない、さらに時効処理を行なった
。ここで熱間圧延は900℃以上として圧下率25%、
11%、17%の3パスで実施し、溶体化処理は第2表
中の各温度に1時間保持後空冷した。また時効処理は4
80℃に3時間保持後空冷した。
100 kg of the same composition shown in Table 1 as already mentioned
Using a 1.1 mm block, hot rolling was carried out under conditions that satisfied the hot rolling conditions of the present invention, followed by solution treatment under various conditions as shown in Table 2, and further aging treatment. Here, hot rolling is performed at a temperature of 900°C or higher, with a reduction rate of 25%,
The solution treatment was carried out in three passes at 11% and 17%, and the solution treatment was maintained at each temperature in Table 2 for 1 hour and then air cooled. Also, the aging process is 4
After being maintained at 80°C for 3 hours, it was air cooled.

各条件で溶体化処理しさらに時効処理を施した各鋼材に
ついて、破壊靭性、引張強さ、切欠引張強さを調べた結
果を第2表中に併せて示す。第2表に示すように、93
0℃を越える高温域でのみ溶体化処理を行なった場合(
条件番号2)には、切欠強度は^いが引張強度の低下を
招いており、これは高温域での溶体化処理により結晶粒
の粗大化を招いたためと考えられる。一方850℃未満
の低温域でのみ溶体化処理を行なった場合(条件番号5
.6)には、引張強度は高いが、切欠強度の低下を招い
ている。これは溶体化処理温度が低温のため細粒となっ
て引張強度は高くなっている    1)ものの、一部
圧延組織が残存することにより切欠強度が低下した考え
られる。これに対し930℃を越える高温域で第1次溶
体化処理を行なった後、850”C未満の低mvi、で
第2次溶体化処理を施した場合(条件番号1)には、引
張強度および切欠強度がともに優れている。このように
優れる理由は、1回目の高温域での溶体化処理によって
圧延組織が完全に解消され、2回目の低温域での溶体化
処理によって結晶粒の微細化が因られるためと考えられ
る。
Table 2 also shows the results of examining fracture toughness, tensile strength, and notch tensile strength for each steel material that was solution-treated under various conditions and further subjected to aging treatment. As shown in Table 2, 93
When solution treatment is performed only in a high temperature range exceeding 0℃ (
In condition number 2), the notch strength was low, but the tensile strength was decreased, and this is thought to be due to the coarsening of crystal grains caused by the solution treatment in the high temperature range. On the other hand, when solution treatment is performed only in a low temperature range below 850°C (condition number 5
.. 6) has high tensile strength, but it causes a decrease in notch strength. This is because the solution treatment temperature was low, so the grains became fine and the tensile strength was high.1) However, it is thought that the notch strength was lowered because some rolled structures remained. On the other hand, if the primary solution treatment is performed at a high temperature exceeding 930°C and then the secondary solution treatment is performed at a low mvi of less than 850"C (condition number 1), the tensile strength The reason for this superiority is that the first solution treatment at a high temperature completely eliminates the rolled structure, and the second solution treatment at a low temperature improves the fineness of the grains. This is thought to be due to the

なお第2表において条件番号3.4は既述したように析
出物が出やすい850〜930℃の中温域で溶体化処理
を行なったものであり、この場合には破壊靭性値が著し
く低(なっている。これに対し、850〜930°Cの
中温域を避けて高21域で第1次、低温域で第2次の溶
体化処理を行なった場合(条件番号1)には破壊靭性が
損われないことはもらろんである。
In Table 2, condition number 3.4 indicates that the solution treatment was carried out in the medium temperature range of 850 to 930°C, where precipitates tend to form as mentioned above, and in this case, the fracture toughness value was extremely low ( On the other hand, when the medium temperature range of 850 to 930°C is avoided and the first solution treatment is performed in the high 21 range and the second solution treatment is performed in the low temperature range (condition number 1), the fracture toughness Of course, it will not be damaged.

なおまた、第1次溶体化処理温度が1050℃を越える
場合には、 となるから、第1次溶体化処理の上限温度は1050℃
とした。そしてまた第2次溶体化処理温度の下限は、オ
ーステナイト相へ逆変態させる必要があるところから7
50’Cとした。
Furthermore, if the primary solution treatment temperature exceeds 1050°C, then the upper limit temperature of the primary solution treatment is 1050°C.
And so. Furthermore, the lower limit of the secondary solution treatment temperature is 7
The temperature was 50'C.

以上のように既に述べた熱間加工条件を適用するととも
に、熱間加工後の溶体化処理を先ず930〜1050℃
の高温域で行ない、冷却後に第2次溶体化処理として8
50〜750℃の低温域での溶体化処理を行なうことに
よって、強度・靭性がともに優れた硼素添加型の18%
Niマルエージング鋼を安定して得ることが可能となっ
たのである。
In addition to applying the hot working conditions already described above, the solution treatment after hot working was first carried out at 930 to 1050°C.
After cooling, the secondary solution treatment is carried out at
18% boron-added type with excellent strength and toughness by solution treatment at a low temperature range of 50 to 750℃
This made it possible to stably obtain Ni maraging steel.

なお・、溶体化処理後の時効処理は、常法に従えば良く
、ρ1えば500℃前後に1〜10時間程時間熱して空
冷すれば良い。
Note that the aging treatment after the solution treatment may be carried out in accordance with a conventional method, for example, by heating to around 500° C. for about 1 to 10 hours and cooling in air.

実施例 以下にこの発明の実M(門を比較例とともに記す。Example The practical aspects of this invention are described below along with comparative examples.

第3表のW4A、8.0で示す3種の硼素添加型18%
Ni系マルエージング泪を常法に従って溶製した後、コ
ンセルアーク炉にて真空再溶解し、種々の条件で熱間加
工および溶体処理を施した後、480℃×3時間の時効
処理を行なった。各慴硬の条件で得られた鋼について、
引張強度、切欠引張強度および平面破壊靭性値を調べた
。各工程条件および試I!5!結果を第4表に示す。な
お破壊靭性試ん(は、A S T Ivl  E −3
99に従い、3点曲げ試験によって実施した。
Three types of boron-added type 18% shown in W4A, 8.0 in Table 3
After melting Ni-based maraging resin according to a conventional method, it was remelted in vacuum in a concell arc furnace, hot worked and solution treated under various conditions, and then aged at 480°C for 3 hours. . Regarding the steel obtained under each hardening condition,
The tensile strength, notch tensile strength and plane fracture toughness values were investigated. Each process condition and trial I! 5! The results are shown in Table 4. In addition, fracture toughness test (AST Ivl E-3
The test was carried out by a three-point bending test according to 99.

第3表に示すように、この発明の条件範囲内で製造した
場合(条件番号5.12.13)は、引張強度および切
欠強度がいずれも210にり「/−以上と著しく優れて
おり、しかも破壊靭性値(K Ic )も380  k
gf/ av%以上の値が得られた。
As shown in Table 3, when manufactured within the condition range of this invention (condition number 5.12.13), the tensile strength and notch strength were both 210, which was extremely excellent, exceeding ``/-''. Furthermore, the fracture toughness value (K Ic ) is also 380 k.
A value of gf/av% or higher was obtained.

これに対し、溶体化処理を、930℃を越える高温域の
みで行なった場合(条件番号4.11)にはいずれも引
張強度が低く、また溶体化処理を、850℃未満の低温
域のみで行なった場合(条件番号(7,15,16)に
はいずれも切欠強度が低い。さらに、熱間加工工程での
900℃以上の温度域での加工度が20%に満たない比
較例(条件番号1.2.3)、900〜800℃の温度
域で熱間加工を行なった比較例(条件番号8.9.10
)、および溶体化処理温度が930〜850℃の温度域
の比較例(条件番@2.6.9.14)では、いずれも
破@靭性値が低く、118Bでも338kgf/I!1
I11′4であった。
On the other hand, when solution treatment is performed only in a high temperature range exceeding 930°C (condition number 4.11), the tensile strength is low, and when solution treatment is performed only in a low temperature range below 850°C (condition number 4.11), the tensile strength is low. The notch strength is low in all conditions (condition numbers 7, 15, 16).Furthermore, in a comparative example (conditions No. 1.2.3), a comparative example in which hot working was performed in the temperature range of 900 to 800°C (Condition No. 8.9.10)
), and a comparative example (condition number @2.6.9.14) in which the solution treatment temperature is in the temperature range of 930 to 850°C, both have low fracture toughness values, and even 118B has a low fracture toughness value of 338 kgf/I! 1
It was I11'4.

発明の効果 以上のようにこの発明の方法によれば、硼素添加型の1
8%Ni系マルエージング鋼を製造するにあたって、破
壊靭性が著しく高いばかりでなく、引張強度や切欠強度
などの強度も安定して著しく高い慣材゛を製造すること
ができる。したがってこの発明の製造方法を適用するこ
とによって硼素添加型18%Ni系マルエージング鋼の
信頼性、安全性を従来よりも格段に高めることができる
とともに、その利用分野をさらに拡大することができる
Effects of the Invention As described above, according to the method of this invention, boron-doped type 1
In producing 8% Ni-based maraging steel, it is possible to produce an inert material that not only has extremely high fracture toughness, but also has stable and extremely high strengths such as tensile strength and notch strength. Therefore, by applying the manufacturing method of the present invention, the reliability and safety of boron-added 18% Ni-based maraging steel can be significantly improved compared to the conventional ones, and the fields of use thereof can be further expanded.

第1表:供試材の化学成分(wt%)Table 1: Chemical composition of sample materials (wt%)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)〜(D)は硼素添加型18%Ni系マルエ
ージング鋼に及ぼす熱間加工条件の影響を示すための図
で、(A)は溶体化処理後の混粒度に及ぼす熱間加工条
件の影響を示す図、(B)は溶体化処理後の析出物の析
出量(面積率)に及ぼす熱間加工条件の影響を示す図、
(C)は溶体化処理後の析出物の分布形態に及ぼす熱間
加工条件の影−を示す図、(D)は時効処理後の破壊靭
性[(KIC)に及ぼす熱間加工条件の影響を示す図で
ある。M2図は硼素添加型18%N+系マルエージング
真の溶体化処理温度と時効処理後の破壊靭性値との関係
を示す相関図である。
Figures 1 (A) to (D) are diagrams showing the influence of hot working conditions on boron-added 18% Ni maraging steel; (A) shows the effect of heat on the grain size after solution treatment; A diagram showing the influence of hot working conditions, (B) a diagram showing the influence of hot working conditions on the precipitation amount (area ratio) of precipitates after solution treatment,
(C) is a diagram showing the influence of hot working conditions on the distribution form of precipitates after solution treatment, and (D) is a diagram showing the influence of hot working conditions on fracture toughness [(KIC) after aging treatment]. FIG. The M2 diagram is a correlation diagram showing the relationship between the boron-added 18% N+ maraging true solution treatment temperature and the fracture toughness value after aging treatment.

Claims (1)

【特許請求の範囲】 0.0005重量%以上の硼素を含有する18%Ni系
マルエージング鋼を、熱間加工後に溶体化処理し、さら
に時効処理して製造するにあたり、1200〜600℃
の範囲内で熱間加工するに際して、900℃以下800
℃以上の温度域を除く温度域で加工を加え、かつその熱
間加工の少くとも1パス以上を、900℃を越える温度
域で1パス当り加工率20%以上で行ない、 さらに溶体化処理を行なうにあたつて、先ず1050℃
以下930℃を越える温度域で第1次溶体化処理を行な
い、冷却後に850℃未満750℃以上の温度域で第2
次溶体化処理を行なうことを特徴とする硼素添加型の1
8%Ni系マルエージング鋼の製造方法。
[Claims] In manufacturing 18% Ni-based maraging steel containing 0.0005% by weight or more of boron, solution treatment is performed after hot working, and further aging treatment is performed at 1200 to 600°C.
When hot working within the range of 900℃ or less, 800℃
Processing is performed in a temperature range excluding the temperature range above ℃, and at least one pass of the hot processing is performed at a processing rate of 20% or more per pass in a temperature range exceeding 900℃, and further solution treatment is performed. Before doing this, first, heat the temperature to 1050℃.
Below, the first solution treatment is performed in a temperature range exceeding 930℃, and after cooling, the second solution treatment is performed in a temperature range of less than 850℃ and 750℃ or higher.
Boron-added type 1 characterized by performing a subsequent solution treatment
Method for producing 8% Ni-based maraging steel.
JP23647184A 1984-11-09 1984-11-09 Manufacture of 18% ni maraging steel Pending JPS61113716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23647184A JPS61113716A (en) 1984-11-09 1984-11-09 Manufacture of 18% ni maraging steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23647184A JPS61113716A (en) 1984-11-09 1984-11-09 Manufacture of 18% ni maraging steel

Publications (1)

Publication Number Publication Date
JPS61113716A true JPS61113716A (en) 1986-05-31

Family

ID=17001229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23647184A Pending JPS61113716A (en) 1984-11-09 1984-11-09 Manufacture of 18% ni maraging steel

Country Status (1)

Country Link
JP (1) JPS61113716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083959A1 (en) * 2001-04-06 2002-10-24 Honda Giken Kogyo Kabushiki Kaisha Steel material prodction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083959A1 (en) * 2001-04-06 2002-10-24 Honda Giken Kogyo Kabushiki Kaisha Steel material prodction method
US6858099B2 (en) 2001-04-06 2005-02-22 Honda Giken Kogyo Kabushiki Kaisha Steel material production method

Similar Documents

Publication Publication Date Title
JPS6311423B2 (en)
KR20110045184A (en) A method for heat treating 17-4 precipitation hardening stainless steel
US2826496A (en) Alloy steel
JPS6137334B2 (en)
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
JPS6045250B2 (en) Manufacturing method for non-thermal forged parts
JPS61113716A (en) Manufacture of 18% ni maraging steel
JPH0579727B2 (en)
JPH07150244A (en) Production of ferritic stainless steel for cold working
JPH0436441A (en) High strength and high toughness stainless steel and its manufacture
JPH04329824A (en) Production of martensitic stainless steel for cold forging
US3788903A (en) Method of processing steel material having high austenitic grain-coarsening temperature
JPS624825A (en) Manufacture of austenitic stainless thick steel plate
JP3446394B2 (en) Precipitation hardening stainless steel
JPS6115917A (en) Manufacture of 18% ni type maraging steel
JPH0463247A (en) High strength and high ductility stainless steel
JPS60100629A (en) Production of austenite stainless steel
JPS62280326A (en) Non-heattreated steel material for bolt excellent in toughness
JPH0660345B2 (en) Steel manufacturing method with excellent cold workability and preventing grain coarsening during carburizing and heating
JPH1088274A (en) High strength heat resistant steel and its production
JPH07258729A (en) Production of martensitic precipitation hardening type stainless steel
JPS63241150A (en) Heat treatment for titanium alloy
JP2719916B2 (en) Martensitic stainless steel for cold forging and its manufacturing method
JPS63103052A (en) Case hardening steel for cold forging
JPS634042A (en) Case hardening steel for cold and warm forging