JPS61112969A - Current measuring circuit - Google Patents
Current measuring circuitInfo
- Publication number
- JPS61112969A JPS61112969A JP23576784A JP23576784A JPS61112969A JP S61112969 A JPS61112969 A JP S61112969A JP 23576784 A JP23576784 A JP 23576784A JP 23576784 A JP23576784 A JP 23576784A JP S61112969 A JPS61112969 A JP S61112969A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- measured
- amplifier
- current
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は高い抵抗器に持つ抵抗に流れる電流全測定す
る電流測定回路に関する。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a current measuring circuit that measures the total current flowing through a resistor of a high resistor.
「従来の技術」
従来、特に高い抵抗、例えば絶縁抵抗を測定する方法と
して、その被測定抵抗に電圧を印加し、その時流れる電
流を測定する電圧電流法と、被測定抵抗を含むブリッジ
回路を平衡させた時の抵抗を測定するゼロ位法とがあっ
た。高速度に測定を行う場合は電圧電流法が用いられて
いた。これはブリッジによるゼロ位法はブリッジ回路の
性質上高い抵抗によυブリッジを構成することになり、
高抵抗のために必然的に寄生容量が発生し、それが小さ
な容量でも抵抗器が高いため時定数が大きくなり、早い
速度で測定をすることが困難となるためである。``Prior Art'' Conventionally, as a method for measuring particularly high resistance, such as insulation resistance, there is a voltage-current method in which a voltage is applied to the resistance to be measured and the current flowing at that time is measured, and a bridge circuit including the resistance to be measured is balanced. There is a zero position method that measures the resistance when For high-speed measurements, the voltage-current method was used. This is because the zero position method using a bridge will constitute a υ bridge due to the high resistance due to the nature of the bridge circuit.
This is because parasitic capacitance is inevitably generated due to high resistance, and even if the capacitance is small, the time constant becomes large because the resistor is high, making it difficult to perform measurements at high speed.
これら電圧電流法及びゼロ位法はいずれにおいても微少
電流を扱うため誘導雑音の影響を大きく受ける。このた
め従来の絶縁計においては第3図に示すようにされてい
た。即ち電源11より被測定抵抗12の一端に電!Eを
印加し、被測定抵抗12の曲端を検出抵抗器13を通じ
て接地し、その検小抵抗器13の被測定抵抗12側に得
られた検出電圧を増幅器14で増幅して指示計15に供
給する。この指示計15の指示により被測定抵抗12を
流れる電流値を知り、更に被測定抵抗12の抵抗(K
k知る。この場合被測定抵抗12と検出抵抗器13との
間のリード線16上にシールド17を被せ、シールド1
7を接地してリード線16に外部からの誘導雑音が乗ら
ないようにしていた。しかしこのシールド17による遮
蔽を完全にすることは困難であり、測定システムによっ
ては実質的にシールドを施すことができない場合がある
。このため従来の測定回路は雑音の影響を受は易いもの
であった。Both the voltage-current method and the zero-position method deal with minute currents and are therefore greatly affected by inductive noise. For this reason, the conventional insulation meter was constructed as shown in FIG. 3. That is, power is supplied from the power supply 11 to one end of the resistor 12 to be measured! E is applied, the bent end of the resistor to be measured 12 is grounded through the detection resistor 13, and the detected voltage obtained on the resistor to be measured 12 side of the small resistor 13 is amplified by the amplifier 14 and sent to the indicator 15. supply Based on the instruction from the indicator 15, the value of the current flowing through the resistor 12 to be measured is known, and the resistance (K) of the resistor 12 to be measured is known.
I know. In this case, a shield 17 is placed over the lead wire 16 between the resistance to be measured 12 and the detection resistor 13, and the shield 17 is
7 was grounded to prevent external induction noise from being applied to the lead wire 16. However, it is difficult to achieve complete shielding by the shield 17, and depending on the measurement system, it may not be possible to provide substantial shielding. For this reason, conventional measurement circuits are susceptible to noise.
更に被測定抵抗の一般的な問題を述べれば、測定器と被
測定抵抗とを接続するケーブルの絶縁抵抗は、被測定抵
抗、例えば絶縁抵抗と同程度の抵抗値となるため、その
測定対象が被測定抵抗とケーブルの絶縁抵抗との並列回
路となってしまう。Furthermore, to discuss the general problem of resistance under test, the insulation resistance of the cable that connects the measuring instrument and the resistance under test is about the same resistance value as the resistance under test, for example, the insulation resistance. This results in a parallel circuit between the resistance to be measured and the insulation resistance of the cable.
また被測定抵抗はその構造上必ず寄生容量が存在し、そ
の寄生容量が僅かの筐であっても絶縁抵抗■ような大き
な抵抗値の被測定抵抗の場合はその寄生容量に対する充
放電の時定数はかなシ長いものとなる。また被測定抵抗
に化学変化による電流(吸収電流)が流れ、この電流は
時間と共にゆるやかに減少する特性を示す。In addition, due to its structure, the resistor under test always has parasitic capacitance, and even if the parasitic capacitance is small, the time constant of charging and discharging for the parasitic capacitance is It will be fleeting and long. Further, a current (absorption current) due to a chemical change flows through the resistance to be measured, and this current exhibits a characteristic of gradually decreasing over time.
これらの問題のため先の電流電圧法によると、被測定抵
抗に流れる電流の池に接続ケーブルに流れる電流、っま
シケーブルの漏洩電流をも測定してしまいケーブルの漏
洩電流以下の測定電流を測定することはできない。また
被測定抵抗に寄生する容量に対して急速な充電をすれば
測定時間を早めることができるが、一般に微小電流を測
定する電流計においては電流検出用の検出抵抗器の抵抗
1直をあ壕シ小さくすると、検出される電圧(検出抵抗
器における降下電圧)が小さくカシ、増幅器の雑音限界
などから検出抵抗器の抵抗値を小さく設定することにで
きない。このため検出抵抗器が前記寄生容量に対する充
電抵抗となっている場合、高速度の測定が困難となる。Due to these problems, according to the current-voltage method described earlier, the current flowing through the connected cable is measured in addition to the current flowing through the resistor being measured, and the leakage current of the cable is also measured, resulting in a measurement current that is less than the leakage current of the cable. It cannot be measured. In addition, the measurement time can be shortened by quickly charging the capacitance parasitic to the resistance being measured, but in general, in ammeters that measure minute currents, one resistor of the detection resistor for current detection is If the resistance value of the detection resistor is made small, the detected voltage (voltage drop across the detection resistor) will be small, and the resistance value of the detection resistor cannot be set to a small value due to the noise limit of the amplifier. Therefore, if the detection resistor serves as a charging resistance for the parasitic capacitance, high-speed measurement becomes difficult.
この発明の目的は高い抵抗に並列に容量が負荷される場
合でもその抵抗に流れる電流を高速度に測定することが
でき、また誘導ハムなどの外部からの雑音に影響され難
い電流測定回路を提供するものである。The purpose of this invention is to provide a current measurement circuit that can measure the current flowing through a high resistance at high speed even when a capacitance is loaded in parallel with the resistance, and is not easily affected by external noise such as induced hum. It is something to do.
「問題点を解決するための手段」
この発明によれば被測定抵抗の電流入力側と電流出力側
とにそれぞれ第1、第2検出抵抗器が直列に挿入され、
その第1、第2検出抵抗器に得られた各検出電圧は第1
、第2増幅器でそれぞれ増幅されるが、その増幅出力は
互に逆極性となるようにされる。第1、第2検出抵抗器
の被測定抵抗側にそれぞれ利得が1のバッファ回路が接
続され、上記第1、第2増幅器の出力側と上記第2、第
1バッファ回路の出力側との間にそれぞれ第1、第2抵
抗分割回路が接続される。これら抵抗分割回路の分割比
は同一とされる。これら第1、第2抵抗分割回路の各分
割点と上記第1、第2検出抵抗器の被測定抵抗側との間
にそれぞれ第1、第2帰還増幅器が接続される。"Means for solving the problem" According to the present invention, first and second detection resistors are inserted in series on the current input side and the current output side of the resistance to be measured, respectively,
Each detection voltage obtained at the first and second detection resistors is
, are amplified by the second amplifier, and the amplified outputs thereof are of opposite polarity. Buffer circuits each having a gain of 1 are connected to the measured resistance sides of the first and second detection resistors, and between the output sides of the first and second amplifiers and the output sides of the second and first buffer circuits. A first and second resistance divider circuit is connected to each of the first and second resistor divider circuits. The division ratios of these resistance divider circuits are the same. First and second feedback amplifiers are connected between each dividing point of the first and second resistance dividing circuits and the resistance-to-be-measured sides of the first and second detection resistors, respectively.
このように構成されているので被測定抵抗の抵抗値が見
掛上小さく、っまり寄生容量が多く存在していると第1
、第2検出抵抗器にそれだけ大きな電流が流れ、これに
応じて上記帰還増幅器を通じて増幅器の出力が帰還され
て上記被測定抵抗に大きい電流を流し、寄生容量が存在
すればこれに対する充電が急速に行われる。逆に次の測
定に移シ、つまシ彼測定抵抗を変えた場合においてそれ
までの寄生容量に充電されていた電圧が大きかったり、
或は何らかの理由によシ彼測定抵抗の容量に電荷が充電
されている場合で、しかもその電圧が高い場合には上記
帰還増幅器を逆方向に電流が流れて放電が行われる。こ
のようにして高い抵抗値の被測定抵抗で、しかも寄生容
量が存在してもその寄生容量に対して高速の充放電を行
うことができ、高速度に測定を行うことが可能となる。Because of this configuration, the resistance value of the resistor to be measured is apparently small, and if there is a large amount of parasitic capacitance, the first
, a correspondingly large current flows through the second detection resistor, and in response to this, the output of the amplifier is fed back through the feedback amplifier, causing a large current to flow through the resistance to be measured, and if there is a parasitic capacitance, the parasitic capacitance is rapidly charged. It will be done. Conversely, when moving to the next measurement and changing the measurement resistance, the voltage charged in the parasitic capacitance up to that point may be large, or
Alternatively, if the capacitance of the measuring resistor is charged for some reason and the voltage is high, a current flows in the opposite direction through the feedback amplifier and discharge occurs. In this way, even if a resistor to be measured has a high resistance value and a parasitic capacitance exists, the parasitic capacitance can be charged and discharged at high speed, and measurement can be performed at high speed.
この被測定抵抗の抵抗値が所定匝以上か否か、或は被測
定抵抗に流れる電流が所定@以下か否かを判定するには
、上記第1、第2抵抗分割回路の分割点の電圧の差を取
出して、その差が所定筐以上か否かによって被測定抵抗
に流れる電流の大小が所定値以上か否かを測定すること
ができる。捷た被測定抵抗に流れる電流自体を測定する
場合は被測定抵抗に流れる電流が定常状態になった状態
で上記第1、第2帰還増幅器の帰還回路を遮断してこの
状態で上記第1、第2増幅器の出力を差動的に取出し、
その出力を指示計で測定すればよい。In order to determine whether the resistance value of the resistor to be measured is greater than or equal to a predetermined value, or whether the current flowing through the resistor to be measured is less than or equal to a predetermined value, the voltage at the dividing point of the first and second resistance dividing circuits is determined. It is possible to determine whether the magnitude of the current flowing through the resistor to be measured is greater than or equal to a predetermined value based on whether the difference is greater than or equal to a predetermined value. When measuring the current flowing through the shorted resistor to be measured, the feedback circuits of the first and second feedback amplifiers are cut off when the current flowing through the resistor to be measured is in a steady state, and in this state, the first and second feedback amplifiers are cut off. Taking out the output of the second amplifier differentially,
The output can be measured with an indicator.
このように電流値が基準より犬か否かの測定、或は電流
の大きさの絶対的な測定も差動的に取出して行うため、
第1、第2検出抵抗器に流れる電流に外部力・ら誘導雑
音が重畳してもこれは同位相であって上記差動的に取出
す際に互に打消されてこの雑音によって影響されるおそ
れにない。In this way, the measurement of whether the current value is higher than the standard or the absolute measurement of the magnitude of the current is performed by differentially extracting it.
Even if external force or induced noise is superimposed on the current flowing through the first and second detection resistors, this is in the same phase, so when the above-mentioned differential output is taken out, there is a risk that they will be canceled and affected by this noise. Not in.
「実施例」
次にこの発明による電流測定回路の実施例を第1図を参
照して説明する。被測定抵抗12はリード線21を通じ
て検出抵抗器22の一端に接続され、検出抵抗器22の
曲端は測定用電源11の一端、この例では正側に接続さ
れる。被測定抵抗12の曲端はリード線23を通じて検
出抵抗器24の一端に接続され、検出抵抗器24の曲端
は電源11の曲端(負側)に接続される。リード線21
及び検出抵抗器22の接続点25は被測定抵抗12の電
流流入側であり、リード線23及び検出抵抗器24の接
続点26は被測定抵抗12の電流流出側である。"Embodiment" Next, an embodiment of the current measuring circuit according to the present invention will be described with reference to FIG. The resistor 12 to be measured is connected to one end of a detection resistor 22 through a lead wire 21, and the curved end of the detection resistor 22 is connected to one end of the measurement power supply 11, which is the positive side in this example. A curved end of the resistor to be measured 12 is connected to one end of a detection resistor 24 through a lead wire 23, and a curved end of the detection resistor 24 is connected to a curved end (negative side) of the power supply 11. Lead wire 21
A connection point 25 between the lead wire 23 and the detection resistor 22 is a current inflow side of the resistance to be measured 12, and a connection point 26 between the lead wire 23 and the detection resistor 24 is a current outflow side of the resistance to be measured 12.
検出抵抗器22.24に検出された電圧(降下電子)は
増幅器27.28でそれぞれ増幅され、その増幅出力と
して検出電圧が逆極性で得られるようにする。即ち検出
抵抗器22の接続点25側は増幅器27の反転入力側に
接続され、曲端は非反転入力側に接続される。−力検出
抵抗器24の接続点26側は増幅器28の反転入力側に
接続され、曲端は非反転入力側に接続される。被測定抵
抗12に流れる電流に基づく検出抵抗器22.24を通
る電流は矢印で示す通ってあって、増幅器27において
は非反転入力側が正価となシ、増幅器28においては反
転入力側が正側となり、従って増幅器27.28の出力
は互に逆極性となる。なお検出抵抗器22.24の抵抗
[直は互に等しくしておく。また電源11の負側は接地
されている。The voltages (falling electrons) detected by the detection resistors 22 and 24 are amplified by amplifiers 27 and 28, respectively, so that detection voltages with opposite polarities are obtained as their amplified outputs. That is, the connection point 25 side of the detection resistor 22 is connected to the inverting input side of the amplifier 27, and the curved end is connected to the non-inverting input side. - The connection point 26 side of the force sensing resistor 24 is connected to the inverting input side of the amplifier 28, and the curved end is connected to the non-inverting input side. The current passing through the detection resistors 22 and 24 based on the current flowing through the resistor 12 to be measured is as shown by the arrows. In the amplifier 27, the non-inverting input side is the positive side, and in the amplifier 28, the inverting input side is the positive side. , so the outputs of amplifiers 27 and 28 have opposite polarities. Note that the resistances of the detection resistors 22 and 24 should be equal to each other. Further, the negative side of the power supply 11 is grounded.
接続点25.26にはそれぞれ利得が1のバッファ回路
31.32の入力(111が接続される。増幅器27の
出力側は抵抗器33.34よりなる抵抗分割回路35を
通じてバッファ回路32の出力I11に接続される。増
幅器28の出力側は抵抗器36゜37よシなる抵抗分割
回路38f:通じてバッファ回路31の出力側に接続さ
れる。抵抗器33.34の接続点、つまり抵抗分割回路
35の分割点39は帰還増幅器41、更に必要に応じて
帰還抵抗器42及びスイッチ43の直列回路を通じて接
続点25に接続される。また抵抗分割回路38の分割点
44は帰還増幅器45、必要に応じて帰還抵抗器46、
スイッチ47の直列回路を通じて接続点26に接続され
る。The inputs (111) of buffer circuits 31 and 32 each having a gain of 1 are connected to the connection points 25 and 26.The output side of the amplifier 27 is connected to the output I11 of the buffer circuit 32 through a resistance divider circuit 35 consisting of resistors 33 and 34. The output side of the amplifier 28 is connected to the output side of the buffer circuit 31 through a resistor divider circuit 38f consisting of resistors 36 and 37. The connection point of the resistors 33 and 34, that is, the resistor divider circuit 35 is connected to the connection point 25 through a feedback amplifier 41 and, if necessary, a feedback resistor 42 and a switch 43 in series.Furthermore, the dividing point 44 of the resistance divider circuit 38 is connected to the feedback amplifier 45, if necessary. feedback resistor 46,
It is connected to the connection point 26 through a series circuit of switches 47 .
更にこの実施例においてはリード線21.23にそれぞ
れシールド48.49が施される。電源11の正側は利
得1のバッファ増幅器51を通じてシールド48に接続
される。増幅器27の出力側及びバッファ増幅器51の
出力側はそれぞれ電itアイソレーションするアイソレ
ーション増幅器52の非反転入力側及び反転入力側に接
続される。アイソレーション増幅器52の出力側は差動
増幅器53の非反転入力側に接続される。差動増幅器5
30反転入力側は増幅器28の出力側に接続され、出力
側は指示計54に接続される。Furthermore, in this embodiment, the leads 21,23 are each provided with a shield 48,49. The positive side of power supply 11 is connected to shield 48 through a unity gain buffer amplifier 51. The output side of the amplifier 27 and the output side of the buffer amplifier 51 are respectively connected to the non-inverting input side and the inverting input side of an isolation amplifier 52 for electrical isolation. The output side of isolation amplifier 52 is connected to the non-inverting input side of differential amplifier 53. Differential amplifier 5
30 inverting input side is connected to the output side of amplifier 28 and the output side is connected to indicator 54.
また抵抗分割回路35の分割点39はアイソレーション
増幅器55の非反転入力側に接続され、アイソレーショ
ン増幅器55の反転入力側はバッファ回路31の出力側
に接続され、出力側は差動増幅器56の非反転入力側に
接続される。抵抗器−割口路38の分割点44は増幅器
57の非反転入力側に接続され、バッファ回路32の出
力側は増幅器57の゛反転入力側に接続され、増幅器5
7の出力側は差動増幅器56の反転入力側に接続される
。差動増幅器56の出力は比較器58に供給され、基準
値に対する大小の測定結果が端子59よ力出力される。Further, the dividing point 39 of the resistance dividing circuit 35 is connected to the non-inverting input side of the isolation amplifier 55, the inverting input side of the isolation amplifier 55 is connected to the output side of the buffer circuit 31, and the output side of the differential amplifier 56 is connected to the non-inverting input side of the isolation amplifier 55. Connected to the non-inverting input side. The dividing point 44 of the resistor-split path 38 is connected to the non-inverting input side of the amplifier 57, and the output side of the buffer circuit 32 is connected to the inverting input side of the amplifier 57.
The output side of 7 is connected to the inverting input side of differential amplifier 56. The output of the differential amplifier 56 is supplied to a comparator 58, and the measurement result relative to the reference value is outputted to a terminal 59.
彦お増幅器27.41.51,52゜55、バッファ回
路31の共通電位点は電源11の正側、っ−18力高電
位側となっておシ、これらの高電位点61はシールド4
8に接続される。またシールド49は接地される。The common potential point of the Hiko amplifiers 27, 41, 51, 52, 55 and the buffer circuit 31 is on the positive side of the power supply 11, the high potential side of the power supply 11, and these high potential points 61 are connected to the shield 4.
Connected to 8. Further, the shield 49 is grounded.
この構成において電源11から被測定抵抗12にその被
測定抵抗値に応じた電流が流れ、この電流は検出抵抗器
22.24に流れ、これらの検出抵抗器22.24にお
いて被測定抵抗12に流れた電流に対応した検出電圧が
それぞれ発生し、これら検出電圧はそれぞれ増幅527
.28において増幅される。増幅器27の出力にアイソ
レーション増幅器52によシ、それ迄の電源11の高電
位側を基準としたレベルが接地を基準としたレベルに変
換されて差動増幅器53に供給される。この場合検出抵
抗器22.24に得られた各検出電圧が増幅器27.2
8の出力側に互に逆極性の増幅出力として得られるため
、差動増幅器53の出力は増幅器27.28の出力が加
算されたものとなり、増幅器53の出力は被測定抵抗1
2に流れる電流と対しし、これが指示計54に指示され
る。In this configuration, a current flows from the power supply 11 to the resistance to be measured 12 according to the resistance to be measured, this current flows to the detection resistors 22, 24, and flows to the resistance to be measured 12 in these detection resistors 22, 24. Detection voltages corresponding to the currents are generated, and these detection voltages are each amplified 527.
.. The signal is amplified at 28. The isolation amplifier 52 converts the output of the amplifier 27 from a level based on the high potential side of the power supply 11 to a level based on the ground, and supplies the level to the differential amplifier 53 . In this case, each detection voltage obtained at the detection resistor 22.24 is applied to the amplifier 27.2.
8 are obtained as amplified outputs with opposite polarities, the output of the differential amplifier 53 is the sum of the outputs of the amplifiers 27 and 28, and the output of the amplifier 53 is the amplified output of the resistor 1 to be measured.
2, this is indicated by the indicator 54.
第1図において検出抵抗器22の検出電圧の増幅部分及
び検出器24の検出電圧の増幅部分は同様な回路となっ
ておシ、例えば検出抵抗器22の検出電圧を増幅する部
分のみを取出してみると第2図に示すようになる。即ち
被測定抵抗12の検出抵抗器22と反対側は接地され、
!l:た増幅器27は抵抗分割回路35を通じて接地さ
れたことになる。電訊11の電圧をE1被測定抵抗12
、検出抵抗器22、抵抗器33.34の各抵抗fti
全RX 。In FIG. 1, the detection voltage amplification part of the detection resistor 22 and the detection voltage amplification part of the detector 24 are similar circuits.For example, only the part that amplifies the detection voltage of the detection resistor 22 is taken out. If you look at it, it will look like the one shown in Figure 2. That is, the opposite side of the resistor 12 to be measured from the detection resistor 22 is grounded,
! 1: The amplifier 27 is grounded through the resistor divider circuit 35. The voltage of the telephone 11 is connected to the E1 resistor to be measured 12.
, the detection resistor 22, and the resistors fti of the resistors 33 and 34.
All RX.
R3+ Ra+ Rbとし、増幅器27の利得をGとす
ると、被測定抵抗12に得られる電圧EXはであり、抵
抗器34に得られる電圧ESはとなる。従ってこれら接
続点25に得られる電圧Exと、分割点39に得られる
電圧E5とが等しいと帰還増幅器41に電流が流れない
。この平衡状態におけるRxよりも被測定抵抗12の抵
抗値Rxは小さく、接続点25の電圧Exが分割点39
の電圧E5よりも小さくなると、帰還増幅器41を通じ
て電流が被測定抵抗12へ供給される。逆に被測定抵抗
値Rxが前記平衡状態におけるEX大きくなるとEXが
R5よυ大きくなって帰還増幅器41を逆流して分割点
39側に電流が流れる。即ちこの回路は分割点39と接
続点25とがブリッジの一対の対角を構成し、一種のブ
リッジ回路を構成し、EXとESとが等しく彦る条件を
外れるとブリッジが不平衡となシ帰還増幅器41に電流
が流れ、この不平衡の大きさは分割点39の電圧から検
出することができる。つまり分割点39の電圧E、が接
続点25の電圧1ilxより大きい場合げ被測定抵抗1
2の抵抗値Rxがブリッジの平衡条件で決まる値よりも
小さなものとなる。従って基準電EESよシも高いか低
いかにより被測定抵抗値RX%つま!ll被測定電流(
被測定抵抗12を流れる電流)の大小を測定することが
できる。When R3+Ra+Rb and the gain of the amplifier 27 are G, the voltage EX obtained at the resistor 12 to be measured is and the voltage ES obtained at the resistor 34 is. Therefore, if the voltage Ex obtained at the connection point 25 and the voltage E5 obtained at the division point 39 are equal, no current will flow through the feedback amplifier 41. The resistance value Rx of the resistor to be measured 12 is smaller than Rx in this equilibrium state, and the voltage Ex at the connection point 25 is lower than the voltage at the dividing point 39.
When the voltage E5 becomes smaller than the voltage E5, current is supplied to the resistor 12 through the feedback amplifier 41. Conversely, when the measured resistance value Rx becomes larger than EX in the balanced state, EX becomes larger than R5, and current flows backward through the feedback amplifier 41 to the division point 39 side. That is, in this circuit, the dividing point 39 and the connecting point 25 constitute a pair of diagonals of the bridge, forming a kind of bridge circuit, and when the condition that EX and ES increase equally is removed, the bridge becomes unbalanced. A current flows through the feedback amplifier 41, and the magnitude of this unbalance can be detected from the voltage at the dividing point 39. In other words, if the voltage E at the dividing point 39 is greater than the voltage 1ilx at the connection point 25, the resistance to be measured 1
The resistance value Rx of 2 is smaller than the value determined by the balance condition of the bridge. Therefore, the measured resistance value RX% depends on whether the reference voltage EES is high or low. ll Measured current (
It is possible to measure the magnitude of the current (current flowing through the resistance to be measured 12).
第1図の例においてに分割点39の電圧ESと接続点2
5の電圧EX (バッファ回路31の出力)との差がア
イソレーション増幅器55で増幅されると共にその基準
電位点が接地電位に下げられて差動増幅器56に供給さ
れる。tfc同様にして分割点44と接続点26との電
圧差が増幅器57で増幅されて差動増幅器56へ供給さ
れる。この場合増幅器55.57の利得は等しくされ、
かつ増幅出力は互に逆極性である。接続点25と分割点
39との電位差の絶対直と、接続点26と分割点44の
電位差の絶対直とは等しいが逆極性であり、従って差動
増幅器56の出力側でこれら電位差が加算されて出力さ
れ、つまシ基準に対する大小関係がそれだけ大きな1直
となって出力され、この出力は比較器58において例え
ば接地電位と比較される。被測定抵抗12の抵抗値Rx
が基準値よりも小さく、電流値は基準電流値よりも大き
いと比較器58の出力が高レベルとなυ、基準値より抵
抗値Rxが大きく、電流が基準値よシも小さければ比較
器58の出力はイ氏レベルとなる。このようにして基準
値に対する大小の判定を測定することができる。In the example of FIG. 1, the voltage ES at the dividing point 39 and the connection point 2
5 and the voltage EX (output of the buffer circuit 31) is amplified by the isolation amplifier 55, and its reference potential point is lowered to the ground potential and supplied to the differential amplifier 56. Similarly to TFC, the voltage difference between the division point 44 and the connection point 26 is amplified by the amplifier 57 and supplied to the differential amplifier 56. In this case the gains of amplifiers 55, 57 are made equal;
Moreover, the amplified outputs have opposite polarities. The absolute directness of the potential difference between the connection point 25 and the division point 39 and the absolute directness of the potential difference between the connection point 26 and the division point 44 are equal but have opposite polarities, so these potential differences are added at the output side of the differential amplifier 56. The output voltage is outputted as a signal having a larger magnitude relationship with respect to the grid reference, and this output is compared with, for example, a ground potential in a comparator 58. Resistance value Rx of resistor to be measured 12
is smaller than the reference value and the current value is larger than the reference current value, the output of the comparator 58 is high level υ, and if the resistance value Rx is larger than the reference value and the current is smaller than the reference value, the output of the comparator 58 is The output is at Lee's level. In this way, it is possible to determine the magnitude relative to the reference value.
「発明の効果」
先ニ述べたように第2図の説明において被測定抵抗12
を流れる電流が基準よりも大きいと帰還増幅器41を通
じて電流が被測定抵抗12へ供給される。従って被測定
抵抗12に比較的大きな寄生容量が存在していると、こ
の被測定抵抗器RXが見かけ上小さくなり、つ壕シ検出
抵抗器22を流れる電流が大きく力るため、先の作用に
よって帰還増幅器41を通じて被測定抵抗12へ電流が
供給され、寄生容量に対する充電が急速に行われる。"Effects of the Invention" As mentioned above, in the explanation of FIG.
If the current flowing through the resistor 12 is larger than the reference value, the current is supplied to the resistor 12 through the feedback amplifier 41. Therefore, if a relatively large parasitic capacitance exists in the resistor to be measured 12, the resistor to be measured RX will appear small, and the current flowing through the trench detection resistor 22 will exert a large force. A current is supplied to the resistance to be measured 12 through the feedback amplifier 41, and the parasitic capacitance is rapidly charged.
捷た例えばリード線21.23の容量に電荷が充電され
、高い電圧となっている場合において被測定抵抗12を
接続すると接続点25の電位が分割点39の電位よりも
高くなり、被測定抵抗12やリード線21などの寄生容
量の電荷が帰還増幅器41を逆流してその電荷を急速に
吸収する。同様に検出抵抗器241u11においても接
続点26と分割点4゛4との電位関係によって帰還増幅
器45を通じて電流が流れて被測定抵抗12の寄生容量
に対する充放電が急速に行われる。このため測定をそれ
だけ速く行うことができる。For example, when the capacitance of the lead wires 21 and 23 is charged with a high voltage, and the resistance to be measured 12 is connected, the potential at the connection point 25 becomes higher than the potential at the dividing point 39, and the resistance to be measured becomes higher. 12, lead wire 21, etc., flows back through the feedback amplifier 41 and rapidly absorbs the charge. Similarly, in the detection resistor 241u11, a current flows through the feedback amplifier 45 due to the potential relationship between the connection point 26 and the dividing point 4'4, and the parasitic capacitance of the resistor 12 to be measured is rapidly charged and discharged. Therefore, measurements can be made that much faster.
増幅器27の利得ff1G、帰還増幅器41の利得を0
1、帰還抵抗器40の抵抗fllijkRfとすると、
接る充電抵抗と彦り、この充電抵抗値全検出抵抗器22
の抵抗値の例えば′T−!−5−以下とすることができ
、そのようにすることにより帰還増幅器41 、45を
通じて被測定抵抗12に対する寄生容量に対する充放電
を行うことによシ、検出抵抗器22 、24を通じて行
う場合よシも急速に行うことが可能となる。The gain of the amplifier 27 is ff1G, and the gain of the feedback amplifier 41 is 0.
1. If the resistance of the feedback resistor 40 is flijkRf,
This charging resistance value total detection resistor 22 is connected to the charging resistor.
For example, the resistance value of 'T-! By doing so, charging and discharging the parasitic capacitance of the resistance to be measured 12 through the feedback amplifiers 41 and 45 is more efficient than when charging and discharging the parasitic capacitance of the resistor under test 12 through the detection resistors 22 and 24. can also be done rapidly.
なおこれら充放電に対する電流が安定化した後にスイッ
チ43.47をオフとして増幅器53の出力によって被
測定抵抗12を流れる電流値の測になったのを判定して
スイッチ43.47を手動でオフにし、又は前記安定化
を検出して自動的にスイッチ43.47をオフとしてそ
の時の差動増幅器53の出力から被測定抵抗12の抵抗
r直、或はこれを流れる電流を測定する。After the currents for charging and discharging are stabilized, the switch 43.47 is turned off, and when the output of the amplifier 53 determines that the value of the current flowing through the resistor 12 to be measured has been reached, the switch 43.47 is manually turned off. , or the stabilization is detected, the switches 43 and 47 are automatically turned off, and the resistance r of the resistor to be measured 12 or the current flowing through it is measured from the output of the differential amplifier 53 at that time.
二つの検出抵抗器22.24′ff:使用し、しかもこ
れらに得られる検出電圧を逆極性で取出し、差動増幅器
53にて差動的に加算し、或は比較測定の場合は接続点
25.26と分割点39.44との各電位差を差動増幅
器56で差動的に加算している。リード線21.23に
誘起される雑音は同位相であるから、これら雑音は増幅
器27.28の出力側に同位相で現われるため各差動増
幅器53゜56においてこれら雑音は互に打消されて差
動増幅器53..56の出力側には雑音は現われない。Two detection resistors 22, 24'ff: are used, and the detection voltages obtained from these are taken out with opposite polarities and added differentially in the differential amplifier 53, or in the case of comparative measurement, .26 and the dividing point 39.44 are differentially added by a differential amplifier 56. Since the noises induced in the lead wires 21 and 23 are in the same phase, these noises appear in the same phase at the output side of the amplifiers 27 and 28, so in each differential amplifier 53 and 56, these noises are canceled by each other and the difference is generated. dynamic amplifier 53. .. No noise appears on the output side of 56.
つま9外部からの誘導雑音に影響されない。Toe 9 Not affected by external induced noise.
更にこの例ではバッファ増幅器51の出力をシールド4
Bに接続してシールド48の電位を電源11の高圧側に
保持し、シールド49を接地しているためシールド48
からシールド49に通じる漏洩電流が存在していてもバ
ッファ増幅器51がらこの漏洩電流が供給され、この漏
洩電流は被測定抵抗12へ流れない。またシールド48
は電源11の高E (1111の電位とされ、また検出
抵抗器22における電圧降下は僅かであるためシールド
48及びリード線21間の容量の充放電はごく僅かであ
シ、殆んど無視できる。同様にシールド49は接地され
ており、これとリード線23との間の充放電はごく僅か
である。この場合これらシールド48.49をそれぞれ
二重シールドとし、例えばシールド48側についてはそ
の内側のシールドをバッファ回路31の出力側と接続し
、外側のシールドをバッファ増幅器51の出力側と接続
すると、シールドとリード線との間の充放電の影響もな
くなる。Furthermore, in this example, the output of the buffer amplifier 51 is shielded 4.
B to maintain the potential of the shield 48 on the high voltage side of the power supply 11, and the shield 49 is grounded, so the shield 48
Even if there is a leakage current flowing from the shield 49 to the shield 49, this leakage current is supplied from the buffer amplifier 51 and does not flow to the resistor 12 to be measured. Also shield 48
is the high potential of the power supply 11 (1111), and since the voltage drop in the detection resistor 22 is small, the charging and discharging of the capacitance between the shield 48 and the lead wire 21 is very small and can be almost ignored. Similarly, the shield 49 is grounded, and the charging and discharging between it and the lead wire 23 is very small.In this case, each of the shields 48 and 49 is a double shield, and for example, on the shield 48 side, the inner side When the outer shield is connected to the output side of the buffer circuit 31 and the outer shield is connected to the output side of the buffer amplifier 51, the influence of charging and discharging between the shield and the lead wire is also eliminated.
なおバッファ回路32は抵抗分割回路350基準電位点
を接続点26に接続した場合に、接続点26に対して電
流が入出力しないようにするためのものである。同様の
理由によりバッファ回路31が設けられている。The buffer circuit 32 is provided to prevent current from inputting or outputting to the connection point 26 when the reference potential point of the resistance dividing circuit 350 is connected to the connection point 26. A buffer circuit 31 is provided for the same reason.
なおアイソレーション増幅器52に利得を持たせる場合
は同様に差動増幅器53に入力される増幅器28の出力
を池の増幅器で増幅して利得を合せる。この基準に対す
る電流或は抵抗の大小の測定を行う部分、被測定抵抗1
2を流れる電流値或は抵抗[RX’t”測定する部分の
一方を省略してもよい。Note that when the isolation amplifier 52 is provided with a gain, the output of the amplifier 28 that is input to the differential amplifier 53 is similarly amplified by an Ike amplifier to match the gain. The part that measures the magnitude of current or resistance with respect to this reference, resistance to be measured 1
Either the current value flowing through 2 or the resistance [RX't'' measurement portion may be omitted.
第1図はこの発明による電流測定回路の一例を示す接続
図、第2図はその動作の説明に供するための一部の回路
を示す図、第3図は従来の電流測定回路を示す図である
。
12:被測定抵抗、22,24:検出抵抗器、27 、
28 :増幅器、31,32:バッファ回路、35.3
8:抵抗分割回路、41,45:帰還増幅器、53,5
6:差動増幅器、52゜55:アイソレーション増幅器
、58:比較器。FIG. 1 is a connection diagram showing an example of a current measuring circuit according to the present invention, FIG. 2 is a diagram showing a part of the circuit to explain its operation, and FIG. 3 is a diagram showing a conventional current measuring circuit. be. 12: Resistance to be measured, 22, 24: Detection resistor, 27,
28: Amplifier, 31, 32: Buffer circuit, 35.3
8: Resistor divider circuit, 41, 45: Feedback amplifier, 53, 5
6: Differential amplifier, 52° 55: Isolation amplifier, 58: Comparator.
Claims (1)
れ直列に挿入された第1、第2検出抵抗器と、これら第
1、第2検出抵抗器における各降下電圧がそれぞれ供給
され、互に逆極性の出力電圧を出力する第1、第2増幅
器と、上記第1、第2検出抵抗器の上記被測定抵抗側に
それぞれ接続された第1、第2バッファ回路と、上記第
1、第2増幅器の出力側と上記第2、第1バッファ回路
の出力側との間にそれぞれ接続され、同一分割比の第1
、第2抵抗分割回路と、これら第1、第2抵抗分割回路
の各分割点と上記第1、第2検出抵抗器の被測定抵抗側
との間にそれぞれ接続された第1、第2帰還増幅器とを
具備する電流測定回路。(1) first and second detection resistors inserted in series on the current inflow side and current output side of the resistor to be measured, and voltage drops across these first and second detection resistors, respectively, are supplied; first and second amplifiers that output output voltages of opposite polarity; first and second buffer circuits respectively connected to the resistance to be measured side of the first and second detection resistors; , connected between the output side of the second amplifier and the output sides of the second and first buffer circuits, and having the same division ratio.
, a second resistance divider circuit, and first and second feedbacks connected between each division point of the first and second resistance divider circuits and the resistance under test side of the first and second detection resistors, respectively. A current measurement circuit comprising an amplifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23576784A JPS61112969A (en) | 1984-11-07 | 1984-11-07 | Current measuring circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23576784A JPS61112969A (en) | 1984-11-07 | 1984-11-07 | Current measuring circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61112969A true JPS61112969A (en) | 1986-05-30 |
JPH056670B2 JPH056670B2 (en) | 1993-01-27 |
Family
ID=16990931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23576784A Granted JPS61112969A (en) | 1984-11-07 | 1984-11-07 | Current measuring circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61112969A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104678159A (en) * | 2013-11-28 | 2015-06-03 | 哈尔滨市三和佳美科技发展有限公司 | Industrial three-phase isolation ampere meter |
JP2018040632A (en) * | 2016-09-06 | 2018-03-15 | ファナック株式会社 | Current detection circuit unsusceptible to noise |
-
1984
- 1984-11-07 JP JP23576784A patent/JPS61112969A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104678159A (en) * | 2013-11-28 | 2015-06-03 | 哈尔滨市三和佳美科技发展有限公司 | Industrial three-phase isolation ampere meter |
JP2018040632A (en) * | 2016-09-06 | 2018-03-15 | ファナック株式会社 | Current detection circuit unsusceptible to noise |
US10585122B2 (en) | 2016-09-06 | 2020-03-10 | Fanuc Corporation | Current detection circuit not affected by noise |
Also Published As
Publication number | Publication date |
---|---|
JPH056670B2 (en) | 1993-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9753062B2 (en) | System and method for current measurement in the presence of high common mode voltages | |
US5515001A (en) | Current-measuring operational amplifier circuits | |
US3530395A (en) | Differential amplifier system | |
KR20140051054A (en) | Active shunt ammeter apparatus and method | |
US5959463A (en) | Semiconductor test apparatus for measuring power supply current of semiconductor device | |
JPS634717B2 (en) | ||
JPH04212067A (en) | Dual-path wide-band high-precision data collecting system | |
JPH05129093A (en) | Triple probe plasma measuring instrument for correcting space electric potential error | |
US4528499A (en) | Modified bridge circuit for measurement purposes | |
JPS61112969A (en) | Current measuring circuit | |
JP2862296B2 (en) | Voltage applied current measuring device and current applied voltage measuring device | |
US3448378A (en) | Impedance measuring instrument having a voltage divider comprising a pair of amplifiers | |
US2889519A (en) | Clamp-type current transducer | |
JPS6325572A (en) | Leakage current measuring system of electrometer amplifier | |
JP2019200203A (en) | Ammeter and method of measuring current | |
JPH02159579A (en) | Precise current vs voltage amplifier | |
JPS6182104A (en) | Electrostatic capacity type range finder | |
KR850000359B1 (en) | In-phase voltage elimination circuit for hall element | |
US4322679A (en) | Alternating current comparator bridge for resistance measurement | |
US3486108A (en) | Apparatus for eliminating cable effects from capacitive transducers | |
US3437925A (en) | Circuit for converting resistance values of unknown resistor to electrical potential signal for measurement purposes | |
JP3283986B2 (en) | Impedance measuring device | |
US3532983A (en) | High input impedance solid state d.c. amplifier suitable for use in electrical measurement | |
JPS5868615A (en) | Output circuit of magnetic type rotary encoder | |
JP3190429B2 (en) | Balanced voltage measuring device and balanced voltage measuring method |