JPS61112940A - Apparatus for measuring base material of optical fiber - Google Patents

Apparatus for measuring base material of optical fiber

Info

Publication number
JPS61112940A
JPS61112940A JP23579184A JP23579184A JPS61112940A JP S61112940 A JPS61112940 A JP S61112940A JP 23579184 A JP23579184 A JP 23579184A JP 23579184 A JP23579184 A JP 23579184A JP S61112940 A JPS61112940 A JP S61112940A
Authority
JP
Japan
Prior art keywords
optical fiber
base material
light intensity
fiber preform
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23579184A
Other languages
Japanese (ja)
Other versions
JPH0534618B2 (en
Inventor
Shuichi Okubo
秀一 大久保
Yuji Tauchi
田内 雄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP23579184A priority Critical patent/JPS61112940A/en
Publication of JPS61112940A publication Critical patent/JPS61112940A/en
Publication of JPH0534618B2 publication Critical patent/JPH0534618B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To provide the titled measuring apparatus for measuring or inspecting various measuring factors of the base material of an optical fiber in an extreme ly efficient manner, by using existing measuring apparatuses and organically the same. CONSTITUTION:The base material of an optical fiber is attached to specimen rotating drive apparatuses 4, 6 and an illumination apparatus 8 is subsequently energized to allow sufficiently excited light to irradiate the incident terminal 2a of the base material 2. The transmitted light intensity distribution (near field pattern) corresponding to refractive index distribution is measured at the emitting terminal 2b of said base material 2. The reception of light intensity is performed by using a terminal surface light intensity detection apparatus 26 such as a TV camera and a core/clad diameter ratio is measured simultaneously with the measurement of refractive index distribution. Further, in order to measure an internal flaw, the specimen rotating drive apparatuses 4, 6 are operated to rotate the base material 2 at a predetermined rotary speed and, at the same time, a weak light detection apparatus 32 is operated while moved along the longitudinal axis direction of the base material 2.

Description

【発明の詳細な説明】 本発明は、光ファイバ用プリフォーム(母材)の検査装
置に関するものであり、更に詳しく言えば、光ファイバ
母材の屈折率分布測定、コア及びクラツド径の測定、並
びに母材内の欠陥測定を同時に且つ短時間で行なうこと
のできる光ファイバ母材の総合検査装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inspection device for an optical fiber preform (base material), and more specifically, for measuring the refractive index distribution of an optical fiber preform, measuring the core and cladding diameters, The present invention also relates to a comprehensive inspection device for optical fiber preforms that can measure defects within the preform simultaneously and in a short time.

光通信ンステムの発展に伴ない、特に高品質の精度の良
い通信用光ファイバを多量に製造することが望まれてい
る。光ファイバは、肉付CVD法、外付CVD法、プラ
ズマCVD法、気相軸付法等の如き種々の方法にて先ず
]−〜5σ直径のプリフォーム(母材)を作り、次で該
母材を加熱、線引加工して製造される。光ファイバの形
状、構造は、線引加工前の母材の形状、構造と大略正確
に相似して線引きされ、又光ファイバにとっては極めて
重要な特性である断面上の(径方向の)屈折率分布も又
、線引き工程でのドーパントの熱拡散が極めてわずかで
あるので光ファイバと母材とでは正確に類似している。
BACKGROUND OF THE INVENTION With the development of optical communication systems, it has been desired to manufacture large quantities of communication optical fibers of particularly high quality and precision. Optical fibers are manufactured by first making a preform (base material) with a diameter of ~5σ using various methods such as a CVD method, an external CVD method, a plasma CVD method, and a vapor phase attachment method. Manufactured by heating and drawing the base material. The shape and structure of the optical fiber are drawn almost exactly similar to the shape and structure of the base material before drawing, and the refractive index (in the radial direction) on the cross section is an extremely important characteristic for optical fibers. The distribution is also exactly similar between the optical fiber and the matrix since the thermal diffusion of the dopant during the drawing process is very minimal.

従って、高品質の精度の高い光ファイバを得るには、先
ず所望の形状、構造並びに屈折率分布を有した光ファイ
バ母材を製造することが必須であり、従って光ファイバ
の線引加工に先立って母材の厳密な測定、検査が行なわ
れる。
Therefore, in order to obtain a high-quality, highly precise optical fiber, it is essential to first manufacture an optical fiber preform having the desired shape, structure, and refractive index distribution. The base material is rigorously measured and inspected.

前記より理解されるように、光ファイバの性能に極めて
大きな影響を与える光ファイバ母材のファクタは、特に
tllll母面断面ける屈折率の分布、(2)コア/ク
ラツド径比率及び(3)母材内部の欠陥、主として母材
内部の気孔であり、斯るファクタが測定又は検査されて
いる。
As understood from the above, the factors of the optical fiber base material that have a very large effect on the performance of the optical fiber are the distribution of refractive index in the tllll generatrix cross section, (2) core/cladding diameter ratio, and (3) matrix. Defects within the material, primarily pores within the matrix, are factors that are measured or inspected.

従来、」配分ファクタ(1)は、つまり母材の屈折率分
布は、プリフォームアナライザ又は干渉顕微鏡によって
行なわれている。プリフォームアナライザによる測定は
、干渉法、集束法等を利用して屈折率分布を測定するも
のであり、測定精度14高いが、一般に]点の測定に]
時間以上かかり、−母材の測定で数百、数千点の測定が
必要とされ、測定に相当の時間を要した。父、プリフォ
ームアナライザを利用したこの方法では、マツチング液
の使用が不可欠で、液封、除液操作が必要となり、極め
て操作が煩雑であった。
Conventionally, the distribution factor (1), that is, the refractive index distribution of the base material, has been determined using a preform analyzer or an interference microscope. Measurement with a preform analyzer uses interferometry, focusing method, etc. to measure the refractive index distribution, and the measurement accuracy is 14 high, but it is generally used for point measurements.
-It took a considerable amount of time to measure the base material, requiring measurements at hundreds or thousands of points. This method, which used a preform analyzer, required the use of a matching liquid, which required liquid sealing and liquid removal operations, making the operation extremely complicated.

又、干渉顕微鏡を使用した場合には、屈折率分布の実体
を直接目視し得るという利点はあるが、光ファイバ母材
をスライスし、両面を研磨する作業が不可欠であり、斯
る試料の作製に相当の時間を要した。このように、この
方法は破壊検査法であり、この点からも好捷しい測定法
ということはできない。
Furthermore, when using an interference microscope, there is an advantage that the substance of the refractive index distribution can be directly observed, but it is essential to slice the optical fiber base material and polish both sides, and it is difficult to prepare such a sample. It took a considerable amount of time. As described above, this method is a destructive testing method, and from this point of view as well, it cannot be said to be a suitable measurement method.

更に、この干渉顕微鏡による方法では、目視により干渉
縞を測距することとなり、人為的誤差が多分に含まれる
という不利益があった。
Furthermore, this method using an interference microscope has the disadvantage that interference fringes are measured by visual inspection, and many human errors are included.

他の光ファイバ母材の測定ファクタであるコア/クラツ
ド比は、前記プリフォームアナライザ及び干渉顕微鏡で
はマツチング液が使用されるために実質上クラッド部分
が消失し、そのために斯るプリフォームアナライザ及び
干渉顕微鏡にて屈折率分布測定と同時に測定することは
できず、別途他の顕微鏡にて測定せざるを得なかった。
The core/clad ratio, which is another measurement factor for optical fiber preforms, is determined by the fact that the preform analyzer and interference microscope use a matching liquid, which virtually eliminates the cladding. It is not possible to measure the refractive index distribution using a microscope at the same time, and the measurement must be performed separately using another microscope.

更に他の光ファイバ母材の内部欠陥の検査は、従来は母
材の一端より光を入射し、欠陥部の散乱光を目視するこ
とによって行なっているが、この方法では大きな欠陥の
検出は可能であるが、マイクロポア(微孔)などの検出
及び線引加工後に該マイクロポアが与えるファイバへの
影響をも検査することは困難である。
Furthermore, inspection for internal defects in other optical fiber base materials has conventionally been carried out by entering light from one end of the base material and visually observing the scattered light at the defective part, but this method can detect large defects. However, it is difficult to detect micropores and to inspect the influence of the micropores on the fiber after drawing.

以上の如く、従来の光ファイバ母材の測定方法及び装置
は、測定のための所要時間、測定精度、試料の調整の点
で未だ十分とは言えず、父母材の各測定ファクタを同時
に測定、検査することは出来なかった。
As mentioned above, conventional methods and devices for measuring optical fiber preforms are still not sufficient in terms of the time required for measurement, measurement accuracy, and sample preparation. It was not possible to test.

従って、本発明の目的は、光ファイバ母材の重要な諸測
定フ了りタを、短時間で且つ精度よく測定又は検査する
ことのできる光ファイバ母材測定装置を提供することで
ある。
Therefore, an object of the present invention is to provide an optical fiber preform measuring device that can measure or inspect various important measurement filters of an optical fiber preform in a short time and with high accuracy.

−5一 本発明の他の目的は、光ファイバ母材の屈折率の分布、
コア/クラツド径比率及び内部欠陥を同時に測定又は検
査することのできる光ファイバ母材測定装置を提供する
ことである。
-5 Another object of the present invention is to provide a refractive index distribution of an optical fiber preform;
An object of the present invention is to provide an optical fiber preform measuring device capable of simultaneously measuring or inspecting the core/cladding diameter ratio and internal defects.

本発明の他の目的は、既存の測定装置を使用することが
でき、斯る装置を有機的に結合することによって、光フ
ァイバ母材の諸測定ファクタを極めて効率よく測定又は
検査することのできる光ファイバ母材測定装置を提供す
ることである。
Another object of the present invention is that existing measuring devices can be used and by organically combining such devices various measurement factors of optical fiber preforms can be very efficiently measured or tested. An object of the present invention is to provide an optical fiber base material measuring device.

次に、本発明に係る光ファイバ母材測定装置を図面に則
して詳しく説明する。
Next, the optical fiber preform measuring device according to the present invention will be explained in detail with reference to the drawings.

第1図を径間すると、本発明に係る光ファイバ母材測定
装置の全体構成の一実施態様が概略図示される。本測定
装置は、原理的には、光ファイバ母材の一端にインコヒ
ーレント光を入射させ、すべての伝搬モードを一様に励
振すると、光ファイバ母材の他端、つまり出射端での光
強度分布が屈折率分布と相似することを利用して光ファ
イバ母材の屈折率分布を測定すると、所謂ニアフィール
ド・パターン法(NFP法)を採用する。但し、本発明
に適用したNFP法は従来光ファイバの測定にて使われ
てきたN F P法と大きく異る点がある。すなわち、
光ファイバ用NFP法で用いている励振ファイバ系を使
用できない点である。光ファイバと母材を比較すると測
定対象試料の口径/全長の比がそれぞれ5 X 10’
 および5X10’程度であり、母材の場合には口径に
対して全長が短い為に励振ファイバ様の励振器を用いる
ことができないので、光源そのものが十分一様に励振す
るものでなければならない。
Referring to FIG. 1, an embodiment of the overall configuration of an optical fiber preform measuring device according to the present invention is schematically illustrated. In principle, this measurement device allows incoherent light to be incident on one end of an optical fiber base material, and when all propagation modes are excited uniformly, the light intensity at the other end of the optical fiber base material, that is, at the output end. When the refractive index distribution of an optical fiber base material is measured using the fact that the distribution is similar to the refractive index distribution, a so-called near-field pattern method (NFP method) is employed. However, the NFP method applied to the present invention is significantly different from the NFP method conventionally used for measuring optical fibers. That is,
The problem is that the excitation fiber system used in the NFP method for optical fibers cannot be used. Comparing the optical fiber and the base material, the diameter/total length ratio of the sample to be measured is 5 x 10'.
In the case of the base material, the total length is short compared to the diameter, so an exciter like an excitation fiber cannot be used, so the light source itself must be able to excite sufficiently uniformly.

光ファイバ母材測定装置1は、任意の方法で製造された
光ファイバ母材2を、その両端部にて回転自在に保持す
る試料回転駆動装置4及び6を具備する。該試料回転駆
動装置4及び6は、所定間隔にて配置され、その間にて
光ファイバ母材を脱着自在に保持し得るものであり、又
所望に応じ母材2を所定回転数にて回転せしめるべく、
いずれか一方の駆動装置には駆動源が設けられる。
The optical fiber preform measuring device 1 includes sample rotation drive devices 4 and 6 that rotatably hold an optical fiber preform 2 manufactured by any method at both ends thereof. The sample rotation drive devices 4 and 6 are arranged at a predetermined interval, and can detachably hold the optical fiber preform between them, and rotate the preform 2 at a predetermined number of rotations as desired. As much as possible
One of the drive devices is provided with a drive source.

更に詳しく説明すれば、試料回転駆動装置4及び6は、
回転数可変型の回転駆動装置で、特に試料回転駆動装置
6は母材長さに合わせて水平方向に移動できる機能を有
している。
To explain in more detail, the sample rotation drive devices 4 and 6 are as follows:
It is a rotary drive device of a variable rotation speed type, and in particular, the sample rotation drive device 6 has a function of being able to move in the horizontal direction according to the length of the base material.

光ファイバ母材2の、第1図でみて、左側の端部2aは
、試料回転駆動装置4の端面より更に左側へとわずかに
突出しており、本実施態様では入射端とされる。入射端
2aに対面して光源装置8が設けられる。該装置8は、
光ファイバ母材の入射端全体を照射し、母材の全ての伝
搬モードを均一に励振する、つまり十分に励振された光
源でなければなら々い。又、該装置8は、その出力を調
整し得るように構成するのが好ましい。
As seen in FIG. 1, the left end 2a of the optical fiber preform 2 protrudes slightly further to the left from the end surface of the sample rotation drive device 4, and is used as the entrance end in this embodiment. A light source device 8 is provided facing the incident end 2a. The device 8 is
The light source must be able to irradiate the entire input end of the optical fiber preform and uniformly excite all propagation modes of the preform, that is, it must be sufficiently excited. Preferably, the device 8 is configured such that its output can be adjusted.

第2図に、光源装置8の好ましい一実施態様を概略図示
する。光源装置8は、・・ロゲンランプの如き光源10
を有する。光源10の背部、つまり第2図にて左側には
反射板12を配設し、光源10からの光線を平行光線と
して前方、つまり第2図にて右側へと差し向ける。光源
10の前方には、白色化フィルタ14を配置し、十分に
励振された光線を生せしめる。白色化フィルタ14の前
方には集光レンズ16、平行レンズ18及び集光レンズ
20を配置し、光源10からの光線が光ファイバ母材2
の入射端2aを全体的に照射するように構成される。集
光レンズ20は、入射光線の角度αが光ファイバ母材2
の開口角より大きくなるように調整するべく前後に可動
とされる。又、平行レンズ18と集光レンズ20との間
には、所望に応シてフィルタを介設し得るべく、フィル
タホルダ22を設けることができる。
FIG. 2 schematically shows a preferred embodiment of the light source device 8. As shown in FIG. The light source device 8 includes a light source 10 such as a logen lamp.
has. A reflecting plate 12 is disposed on the back of the light source 10, that is, on the left side in FIG. 2, and directs the light rays from the light source 10 as parallel rays to the front, that is, on the right side in FIG. A whitening filter 14 is arranged in front of the light source 10 to produce a sufficiently excited light beam. A condenser lens 16, a parallel lens 18, and a condenser lens 20 are arranged in front of the whitening filter 14, and the light beam from the light source 10 is directed to the optical fiber preform 2.
It is configured to irradiate the entire incident end 2a of. The condensing lens 20 has an angle α of the incident light ray that is similar to the optical fiber base material 2.
It is movable back and forth in order to adjust the aperture angle to be larger than that of the opening angle. Further, a filter holder 22 can be provided between the parallel lens 18 and the condensing lens 20 so that a filter can be inserted as desired.

前記説明にて光源10はハロゲンランプとして説明した
が、光源装置8より出力される光線の波長は可視白色で
あってもよく、又赤外単波長とすることもできる。
Although the light source 10 has been described as a halogen lamp in the above description, the wavelength of the light beam output from the light source device 8 may be visible white, or may be a single infrared wavelength.

上記各光学系諸要素は、光源装置ハウジング24内に好
適に配置される。
The various optical system elements described above are preferably arranged within the light source device housing 24.

一方、光学ファイバ母材2の他端2bは、本実施態様で
は出射端であり、試料回転駆動装置6の端面より更に右
方へとわずかに突出している。該出射端2bに対面して
、且つ出射端2bに対し所定間隔を保つべく調整自在に
端面光強度検出装置26、例えばTV右カメラ設けられ
る。該TV右カメラ6は、市場にて入手し得る通常のも
のであってよく、例えば光強度分布測定用の撮像カメラ
などとすることができる。又、端面光強度検出装置26
は、径方向に任意に駆動できるものであるならば単なる
光強度計を使用することも可能である。
On the other hand, the other end 2b of the optical fiber preform 2 is the output end in this embodiment, and slightly protrudes further to the right from the end surface of the sample rotation drive device 6. An end face light intensity detection device 26, for example, a TV right camera, is provided facing the output end 2b and adjustable to maintain a predetermined distance from the output end 2b. The TV right camera 6 may be a normal one available on the market, and may be, for example, an imaging camera for measuring light intensity distribution. Moreover, the edge light intensity detection device 26
It is also possible to use a simple light intensity meter as long as it can be driven arbitrarily in the radial direction.

本測定装置においては、光ファイバ母材2の径方向屈折
率分布測定精度を向上させるために、光ファイバ母材2
の入射端側にクラッドモード吸収手段30が設けられる
。通常、クラッドモード吸収手段30は、マツチング液
を光ファイバ母材2の周囲に付与し、そして保持する装
置とされるが、クラッド層よりも屈折率の大きな物質で
作製されたバンドにて構成することもできる。したがっ
て高屈折率な樹脂、例えばシリコン樹脂で作ることがで
きる。
In this measuring device, in order to improve the accuracy of measuring the radial refractive index distribution of the optical fiber preform 2,
A cladding mode absorbing means 30 is provided on the incident end side of the cladding mode absorbing means 30 . Usually, the cladding mode absorption means 30 is a device that applies a matching liquid around the optical fiber base material 2 and holds it, but it is constituted by a band made of a material with a higher refractive index than the cladding layer. You can also do that. Therefore, it can be made of a resin with a high refractive index, such as silicone resin.

樹脂製のクラッドモード吸収手段30ば、マツチング液
塗布後単に光ファイバ母材20入射端側適所に取付け−
るだけでよく、極めて取扱いが容易であるという利点を
有する。
The cladding mode absorbing means 30 made of resin is simply attached to the appropriate position on the input end side of the optical fiber base material 20 after applying the matching liquid.
It has the advantage of being extremely easy to handle.

更に本測定装置には、光ファイバ母材2の内部欠陥を検
査するために微弱光、即ち径方向光検出装置32が設け
られる。該微弱光検出装置32ば、内部欠陥部、特に気
孔形成部によって散乱し、光ファイバ母材2の外部へと
散乱した微弱漏洩光を検出することのできる高性能の光
強度計である。
Furthermore, this measuring device is provided with a weak light, that is, a radial light detection device 32 for inspecting internal defects in the optical fiber preform 2. The weak light detection device 32 is a high-performance light intensity meter that can detect weak leakage light scattered by internal defects, especially pore formation parts, and scattered to the outside of the optical fiber preform 2.

斯る光強度計は、例えば空中伝搬光線強度測定用光強度
計が好ましいであろう。
Preferably, such a light intensity meter is, for example, a light intensity meter for measuring the intensity of light propagating in the air.

この微弱光検出器32は、その検出器34が、ギヤリア
36上に取付けられ、光ファイバ母材2の長手方向に清
って運動可能とされる。キャリア361d、軌道(図示
せず)上を走行するタイプとすることもできるし、又は
他の適当な手段とすることかできる。
A detector 34 of the weak light detector 32 is mounted on a gear rear 36 and is movable in the longitudinal direction of the optical fiber preform 2. The carrier 361d may be of the type that runs on a track (not shown) or may be of any other suitable means.

内部欠陥検査に用いられる受光部は微弱光に対しても高
感度な為装置本体は100に示した遮光カバーによって
内部を暗室状態に保持されている。
Since the light-receiving section used for internal defect inspection is highly sensitive even to weak light, the inside of the apparatus main body is kept in a dark room by a light-shielding cover shown at 100.

次に、上記の如くに構成される光ファイバ母料測定装置
1の作動について説明する。
Next, the operation of the optical fiber preform measuring device 1 configured as described above will be explained.

光ファイバ母材2を、」二連のように試料回転駆動装置
4及び6に取付け、次で照明装置8を付勢し、母材2の
入射端2aに十分に励振された光線を照射する。該光照
射により、光は母材2の他端へと伝搬され、屈折率分布
に対応した透過光強度分布にアフィールド・パターン)
が該出射端2bで観測される。該光強度分布は、TV右
カメラような端面光強度検出装置26によって受像され
、画像処理装置40に伝送され、モニタCRT42にて
ディスプレーされたり、又必要に応じ測定結果がプリン
タ44にて出力される。
The optical fiber base material 2 is attached to the sample rotation drive devices 4 and 6 in a double series, and then the illumination device 8 is energized to irradiate the incident end 2a of the base material 2 with a sufficiently excited light beam. . By this light irradiation, the light is propagated to the other end of the base material 2, and the transmitted light intensity distribution corresponds to the refractive index distribution (Afield pattern).
is observed at the output end 2b. The light intensity distribution is received by an edge light intensity detection device 26 such as a TV right camera, transmitted to an image processing device 40, and displayed on a monitor CRT 42, and the measurement results are outputted by a printer 44 as necessary. Ru.

斯る屈折率分布測定に当り、測定精度を低下せしめるク
ラッドモード(光ファイバ母材のクラッド層を伝搬する
光)は、クラットモード吸収手段30によって吸収され
る。本装置における屈折率分布測定に要する時間は、概
略2分程度である。
In such a refractive index distribution measurement, the cladding mode (light propagating through the cladding layer of the optical fiber base material) that degrades measurement accuracy is absorbed by the cladding mode absorption means 30. The time required for refractive index distribution measurement with this device is approximately 2 minutes.

上記屈折率分布測定と同時にコア/クラツド径比率が測
定される。この測定にて、コア径及びクラツド径の絶対
値を直接求めることはできないか、両寸法の相対値、つ
まりコア/クラツド径比率は、屈折率分布測定時間内に
測定可能であり、士0,05%の精度を得ることができ
る。
The core/cladding diameter ratio is measured simultaneously with the above refractive index distribution measurement. In this measurement, it is not possible to directly determine the absolute values of the core diameter and cladding diameter, or the relative value of both dimensions, that is, the core/cladding diameter ratio, can be measured within the refractive index distribution measurement time. An accuracy of 0.05% can be obtained.

光ファイバ母材2の内部欠陥を測定するには、試料回転
駆動装置4及び6を作動させ、母材2を所定回転速度、
例えば100 r 、p 、mで回転せしめ、同時に微
弱光検出装置32を母材2の一端側、第1図では左側よ
り他端側、つまり右側へと母材の長手軸線方向に活って
移動(例えば10〜20ひ7分)せしめ々から作動せし
める。該検出装置32の出力は、増幅器46へと送信さ
れ、その測定結果がモニタ記録計48に記録される。微
弱光検出装置32の測定範囲、つまりキャリア36の移
動範囲は、リミットスイッチ50.52%によって制御
される。特にリミットスイッチ52は、母材2の長さに
合せて適当に配置される。
To measure internal defects in the optical fiber preform 2, the sample rotation drive devices 4 and 6 are activated to rotate the preform 2 at a predetermined rotation speed.
For example, it is rotated by 100 r, p, m, and at the same time, the weak light detection device 32 is moved in the longitudinal axis direction of the base material 2 from one end side of the base material 2, from the left side to the other end, that is, to the right side in FIG. (For example, for 10 to 20 minutes.) Operate it from time to time. The output of the detection device 32 is sent to an amplifier 46 and the measurement results are recorded on a monitor recorder 48. The measurement range of the weak light detection device 32, that is, the movement range of the carrier 36, is controlled by a limit switch 50.52%. In particular, the limit switch 52 is appropriately arranged according to the length of the base material 2.

微弱光検出装置32は、  50dB (1mW基準に
て)以「の散乱光の測定が可能なものであり、光ファイ
バ母材中のマイクロポアをも検知し得る。
The weak light detection device 32 is capable of measuring scattered light of 50 dB (based on 1 mW) or more, and can also detect micropores in the optical fiber base material.

斯る測定に要する時間は約4公租度である。The time required for such a measurement is approximately 4 degrees.

本測定装置における上記諸装置は、コントロールパネル
ボード54を備えた演算処理装置56によって制御され
る。又、本装置は、準暗室中にて操作されることが理解
されるであろう。
The above devices in this measuring device are controlled by an arithmetic processing unit 56 equipped with a control panel board 54. It will also be appreciated that the apparatus is operated in a semi-dark room.

本発明に係る光ファイバ母材測定装置は上記の如くに構
成されるために、光ファイバ母材の屈折率の分布、コア
/クラツド径比率及び内部欠陥を精度よく且つ極めて短
時間に測定することかでき、又その操作も簡単であると
いう利益を有する。更に、本発明の装置は、原理的にN
FP法を利用するものであり、非破壊検査法のため試料
の準備等のために多大の時間を浪費するといった弊害が
ない。又、本装置においては、クラッドモード吸収手段
としてシリコン樹脂バンドを使用した場合には、マツチ
ング液の液封、除液といった操作を回避し得る。
Since the optical fiber preform measuring device according to the present invention is configured as described above, it is possible to measure the refractive index distribution, core/cladding diameter ratio, and internal defects of the optical fiber preform with high precision and in an extremely short time. It has the advantage of being easy to operate and easy to operate. Furthermore, the device of the present invention in principle has N
Since it uses the FP method and is a non-destructive testing method, there is no problem such as wasting a large amount of time for sample preparation. Further, in this device, when a silicone resin band is used as the cladding mode absorbing means, operations such as liquid sealing and liquid removal of the matching liquid can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る光ファイバ母材測定装置の一実
施態様を示す概略図である。 第2図は、本発明の光ファイバ母材測定装置に1 ・光
ファイバ母材測定装置 2・光ファイバ母材 4.6・・試料回転1駆動装置 8−・光源装置 26・端面光強度検出装置 30・・クラッドモード吸収手段 34・微弱光検出装置 出 願 人  タック電線株式会社 代 理 人 弁理士岡田和秀
FIG. 1 is a schematic diagram showing an embodiment of an optical fiber preform measuring device according to the present invention. Fig. 2 shows the optical fiber preform measuring device of the present invention including: 1. Optical fiber preform measuring device 2. Optical fiber preform 4.6. Sample rotation 1 drive device 8. Light source device 26. End face light intensity detection. Device 30: Cladding mode absorption means 34, weak light detection device Applicant: TAC Electric Cable Co., Ltd. Agent: Kazuhide Okada, patent attorney

Claims (4)

【特許請求の範囲】[Claims] (1)光ファイバ母材を回転自在に支持するための試料
回転駆動装置と、前記試料回転駆動装置に保持された光
ファイバ母材の一端面に十分に励振された光線を照射す
るための光源装置と、前記光ファイバ母材の他の端面に
隣接して設けられた端面光強度検出装置と、前記光ファ
イバ母材の長手方向の所定位置にて該母材の一部を覆つ
て設けられたクラッドモード吸収手段と、前記光ファイ
バ母材の長手方向に沿つて移動し、該母材からの散乱光
を検出するための微弱光検出装置と、上記諸装置の作動
を制御しそして測定結果を出力するための手段とを具備
することを特徴とする光ファイバ母材測定装置。
(1) A sample rotation drive device for rotatably supporting the optical fiber preform, and a light source for irradiating a sufficiently excited light beam onto one end surface of the optical fiber preform held by the sample rotation drive device. an end face light intensity detection device provided adjacent to the other end face of the optical fiber preform, and an end face light intensity detection device provided covering a part of the preform at a predetermined position in the longitudinal direction of the optical fiber preform. cladding mode absorbing means, a weak light detection device that moves along the longitudinal direction of the optical fiber preform and detects scattered light from the preform, and controls the operation of the above devices and detects the measurement results. 1. An optical fiber preform measuring device characterized by comprising: means for outputting.
(2)クラッドモード吸収手段は、光ファイバ母材の外
周囲に取付けられたシリコン樹脂バンドである特許請求
の範囲第1項記載の装置。
(2) The device according to claim 1, wherein the cladding mode absorption means is a silicone resin band attached to the outer periphery of the optical fiber preform.
(3)端面光強度検出装置はTVカメラである特許請求
の範囲第1項記載の装置。
(3) The device according to claim 1, wherein the end face light intensity detection device is a TV camera.
(4)端面光強度検出装置は、光ファイバの径方向に移
動される光強度計である特許請求の範囲第1項記載の装
置。
(4) The device according to claim 1, wherein the end face light intensity detection device is a light intensity meter that is moved in the radial direction of the optical fiber.
JP23579184A 1984-11-08 1984-11-08 Apparatus for measuring base material of optical fiber Granted JPS61112940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23579184A JPS61112940A (en) 1984-11-08 1984-11-08 Apparatus for measuring base material of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23579184A JPS61112940A (en) 1984-11-08 1984-11-08 Apparatus for measuring base material of optical fiber

Publications (2)

Publication Number Publication Date
JPS61112940A true JPS61112940A (en) 1986-05-30
JPH0534618B2 JPH0534618B2 (en) 1993-05-24

Family

ID=16991309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23579184A Granted JPS61112940A (en) 1984-11-08 1984-11-08 Apparatus for measuring base material of optical fiber

Country Status (1)

Country Link
JP (1) JPS61112940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125885A (en) * 2014-12-26 2016-07-11 住友電気工業株式会社 Method of measuring optical fiber structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223264A (en) * 1975-08-15 1977-02-22 Hitachi Ltd Method of manufacturing semiconductor device
JPS5435758A (en) * 1977-08-25 1979-03-16 Fujitsu Ltd Measuring method of construction of optical fibers
JPS56155828A (en) * 1980-05-07 1981-12-02 Nippon Telegr & Teleph Corp <Ntt> Detector for fault of optical fiber
JPS5994031A (en) * 1982-11-19 1984-05-30 Katsumi Morishita Apparatus for measuring refractive index distribution in optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223264A (en) * 1975-08-15 1977-02-22 Hitachi Ltd Method of manufacturing semiconductor device
JPS5435758A (en) * 1977-08-25 1979-03-16 Fujitsu Ltd Measuring method of construction of optical fibers
JPS56155828A (en) * 1980-05-07 1981-12-02 Nippon Telegr & Teleph Corp <Ntt> Detector for fault of optical fiber
JPS5994031A (en) * 1982-11-19 1984-05-30 Katsumi Morishita Apparatus for measuring refractive index distribution in optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125885A (en) * 2014-12-26 2016-07-11 住友電気工業株式会社 Method of measuring optical fiber structure

Also Published As

Publication number Publication date
JPH0534618B2 (en) 1993-05-24

Similar Documents

Publication Publication Date Title
US5329357A (en) Spectroscopic ellipsometry apparatus including an optical fiber
US8525990B2 (en) Fiber optic probe scatterometers for spectroscopy measurements
CN108169135B (en) Spectrum detector
US7746454B2 (en) Optical fiber continuous measurement system
KR20040034375A (en) Apparatus for measuring film thickness formed on object, apparatus and method of measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object
JP2012255781A (en) Device for referenced measurement of reflected light and method for calibrating the device
JP2001305072A (en) Method and device for detecting defect in substrate
EP0418874B1 (en) Method and apparatus for scattered light measurements
JPS61112940A (en) Apparatus for measuring base material of optical fiber
JPH0580981B2 (en)
EP0637375A1 (en) Acousto-optic tunable filter-based surface scanning system and process
JP2011179864A (en) Optical measuring device and calibration device
JPH10260136A (en) Method and device for extracting internal information of pearl
Bindig et al. Fiber-optical and microscopic detection of malignant tissue by use of infrared spectrometry
JPH06222013A (en) Optical inspecting device for surface
JP2005500550A (en) Equipment for calculating flow characteristics
CN117309329A (en) Full-space detection device and method for optical element
JP2526388B2 (en) Method and apparatus for tomography using light
CN118090663A (en) Near infrared spectrum and Raman spectrum synchronous measuring device
JPH079382B2 (en) Color distribution color measuring device
Young Metal-optics scatter measurements
JPS6211135A (en) Apparatus for inspecting surface of transparent specimen plate
RU2084933C1 (en) Process of study of radiation scattered in channel of light guide of integrated optical circuit and device for its realization (versions)
JPH05126760A (en) Optical flaw detecting apparatus
JP2001091448A (en) Analyzer