JPS6111271B2 - - Google Patents

Info

Publication number
JPS6111271B2
JPS6111271B2 JP15426680A JP15426680A JPS6111271B2 JP S6111271 B2 JPS6111271 B2 JP S6111271B2 JP 15426680 A JP15426680 A JP 15426680A JP 15426680 A JP15426680 A JP 15426680A JP S6111271 B2 JPS6111271 B2 JP S6111271B2
Authority
JP
Japan
Prior art keywords
silver
powder
paint
conductive paint
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15426680A
Other languages
Japanese (ja)
Other versions
JPS5778462A (en
Inventor
Koji Tanabe
Kunihiko Yumita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15426680A priority Critical patent/JPS5778462A/en
Publication of JPS5778462A publication Critical patent/JPS5778462A/en
Publication of JPS6111271B2 publication Critical patent/JPS6111271B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は安価で、しかも高性能な導電性塗料に
関するものである。 各種電子部品やプリント配線板の電極あるいは
配線材料として従来から導電性銀塗料が多用さ
れ、近年の各種業界における電子化の拡大にとも
なつて導電性銀塗料の需要は増大の一途をたどつ
ている。銀が主導電材として多用される理由は金
属中で最も導電率が高いことや化学的安定性が高
いことなどのためである。しかしながら、銀塗料
の場合導電材料が銀であるため、材料コストが非
常に高価であるという欠点があつた。また、銀塗
料の場合、銀の移行による事故が多く、高信頼性
を要求される場合にはさらに高価な金塗料を使用
せざるを得なかつた。加うるに上記銀移行現象の
ため製品設計上の制約が多く、近年の小型化、高
密度化への要求をさまたげる要因の一つでもあつ
た。 安価な導電材料としてカーボンブラツクやグラ
フアイトを使用したものがあるが、これは銀の固
有比抵抗が1.62×10-6Ωcmであるのに較べ、グラ
フアイトでは0.2〜1×10-3Ωcmであり、カーボ
ンブラツクではさらに高い比抵抗を有するため塗
料としても銀塗料と同等の導電性を得ることは全
く不可能であり、抵抗塗料としては使用できても
導電塗料としては不適当であつた。また、銅粉末
を導電材料として適用した場合、銅そのものの固
有化抵抗は銀のそれと大差ないが、粉末化した際
や塗料として焼付する際に銅粉末表面が酸化し、
塗膜状態での各銅粉末間の接触抵抗が極度に増大
するため∞に近い比抵抗になつてしまつていた。
この対策として銀粉末と銅粉末を混合して塗料化
する試みもなされているが、10-3Ωcm程度の比抵
抗を得ようとすると少なくとも70〜80重量%以上
の銀粉末を含有せしめねばならず、安価な導電塗
料という目的を達し得るものではなかつた。ま
た、銅粉末に銀をメツキあるいは機械的に強制接
合させた銀−銅複合粉末を導電材料として使用す
ることも提案されているが、この場合にもやはり
10-3Ωcm程度の比抵抗を得ようとすると銀成分を
少なくとも70〜80重量%以上にせねばならず、価
格的に銀塗料と較べ有利とはならなかつた。しか
も銀粉末と銅粉末を混合した場合でも銀−銅複合
粉末を使用した場合でも銀成分が70重量%より少
なくなると短期間で湿度、温度の影響によつて銅
粉末表面の酸化がすすみ、抵抗値が数百〜数万倍
にもなつてしまつていた。さらに、ニツケル粉末
を導電材料として使用した場合も銅粉末と同様の
欠点があつた。 以上のように安価な導電性塗料の試みは数多く
なされてはいるが、銀塗料と同等の性能を有し、
しかも安価な導電性塗料は今だ開発されていな
い。 本発明は上記欠点をことごとく解決し得るもの
であり、銀塗料の場合にはさけることのできない
銀移行による事故やそのための製品設計上の制約
についても皆無にし得る安価な導電性塗料を提供
せんとするものである。 詳細には、本発明の導電性塗料を使用すること
によりコストは銀塗料に比較して1/10〜1/2にな
り、しかも銀塗料とほぼ同等の導電性が得られ、
耐湿、耐熱、耐硫化ガス、耐塩水噴霧などの環境
安定性も銀塗料と同等あるいはそれ以上のものが
得られるため現在銀塗料や金塗料を使用している
プリント配線板の配線や電子部品の電極用塗料な
どとして代替が可能となるものである。 本発明は銅粉末あるいはその合金粉末あるいは
それらが成分として銀を含有している粉末あるい
は上記3種の粉末いずれかと銀粉末を混合せしめ
たものに少なくとも80mμ以上のカーボンブラツ
クを添加含有せしめることを特徴としたものであ
り、例えば銀−銅(70重量%)複合粉末を導電材
とした場合、上記カーボンブラツクを添加しない
ものは比抵抗が10-1Ωcmでしかも耐湿など耐環境
試験後500〜∞倍変化するなど不安定であつたも
のが、上記カーボンブラツクを添加することによ
り比抵抗は10-4Ωcmとなり、耐湿特性をはじめ耐
環境特性も銀塗料と同等かむしろ向上させ得るこ
とを見い出したものである。一般にカーボンブラ
ツクは粒径10mμ〜30mμのものがほとんどであ
り、80mμ以上のカーボンブラツクの種類は少な
い。80mμ未満のカーボンブラツクでは本発明の
効果はなく、好ましくは90mμ〜200mμのFT級
のカーボンブラツクが最も本発明の効果が大であ
つた。また、粒径10mμ〜30mμ程度のものと80
mμ以上のカーボンブラツクを組合せて添加して
も本発明の効果はある。 粒径の大なるカーボンブラツクは一般にストラ
クチヤーが少なく、従つて吸油量も極度に小さ
い。本発明の効果は上記粒径の大なるカーボンブ
ラツクが金属粉末間に密に入り込み、焼付の際や
耐湿など耐環境特性の際金属粉末の酸化を防止
し、むしろ還元までもする効果を有するものと考
えられる。また、本発明において少なくとも80m
μ以上のカーボンブラツクを含有させるとしたの
は、前述のように他に80mμ未満のカーボンブラ
ツクを追加含有させても、また後述するが他のグ
ラフアイト、フツ化カーボンなどを追加含有させ
ても本発明の効果を極度にそこなうことのないた
めである。 さらに、本発明における金属粉末が0〜80重量
%の銀を成分として含有するものとは、銅と銀の
合金粉末、あるいは銅粉に化学的に銀メツキした
もの、あるいは銅粉と銀粉を機械的に強制接合さ
せたもの、あるいはそれらを混合したものを意味
し、粉末単独でも充分な高導電性を得ることが銀
を成分として含有することによつて比抵抗は含有
しないものに比較してさらに10%〜30%低下せし
め得る。80重量%を超えて銀成分を含有させた場
合は銀塗料と比較しコスト的に有利にならない。
本発明における金属粉末と銀粉末とを100:0〜
10:90の重量比で混合したものを用いるとしたも
のも、上記と同様の理由からである。ちなみに当
然のことながら銀成分比率が増えていく程、銀移
行現象は発生し易くなることを確認した。また、
本発明の金属粉末や銀粉末の両方あるいはどちら
か一方を鱗片状にすることにより、塗膜状態での
金属成分や銀成分の含有比率を少ななくして高電
導性を得ることができる。好ましくは両方ともに
鱗片状のものを使用することがコスト的に有利で
ある。そして、可変抵抗器などのような摺動性を
要求される電極に本発明の導電性塗料を適用する
場合には、さらにグラフアイト、二硫化モリブテ
ン、フツ素樹脂、フツ化カーボン、フツ化グラフ
アイト、窒化ボロンの各粉末を単独または複合で
添加含有せしめることにより、表面摩擦係数を小
さくして耐摺動性を保持させることができる。 次に、本発明による導電性塗料の具体的実施例
について以下に述べる。 実施例 1 平均粒径4.2μmの環元銅粉末96g、SRF級カ
ーボンブラツク(平均粒径116μm、旭カーボン
株式会社製)17g、ビヒクルとしてフエノール樹
脂23g、ブチルカルビトール32gを混合してロー
ルミルで混練し、導電性塗料を作成した。本塗料
を200メツシユステンレススクリーンにてフエノ
ール積層板上に塗布し、180℃、20分間焼付を行
つたものの比抵抗を下記の表に示す。さらに、上
記の塗料を電極間隔0.5m/mの巾で塗布し両極間
に50℃、90〜95%RH湿度雰囲気中でDC50Vを印
加して移行現象を観察した。その結果を同じく下
記の表に示す。また、同試料を3ppmH2Sガス雰
囲気中で500時間放置した後、50℃、90〜95%RH
湿度雰囲気中に1000時間放置した後、85℃雰囲気
中に1000時間放置した後のそれぞれの比抵抗を同
じく下記の表に示す。 実施例 2 平均粒径3.5μmの鱗片状銅粉末83g、SRF級
カーボンブラツク(平均粒径84μm、三菱化成工
業株式会社製)17g、ビヒクルとしてエポキシ樹
脂(1001、シエル化学株式会社製)22g、ブチル
セロソルブ30gを混合して実施例1と同様の試験
を行なつた。その結果を同じく下記の表に示す。 実施例 3 平均粒径2.3μmの鱗片状の銅−銀複合粉末
(銀成分比率4.3%、銀メツキ法)83g、FT級カ
ーボンブラツク(平均粒径90mμ、旭カーボン株
式会社製)17g、銀粉末8g、グラフアイト(日
本黒鉛株式会社製)4.5g、ビヒクルとしてフエ
ノール25g、エチルカルビトール39gを混合し実
施例1と同様の試験の結果及び可変抵抗器の電極
として使用し2万回摺動した前後の残留抵抗値を
同じく下記の表に示す。 従来例 平均粒経3.4μmの銀粉末83g、フエノール樹
脂20g、エチルカルビトール31gを混合し、実施
例1〜3と同一条件で試験を行つた。その結果を
同じく下記の表に示す。
The present invention relates to an inexpensive and high-performance conductive paint. Conductive silver paint has traditionally been widely used as electrodes or wiring materials for various electronic components and printed wiring boards, and with the recent expansion of computerization in various industries, the demand for conductive silver paint has continued to increase. There is. The reason why silver is often used as a main conductive material is because it has the highest electrical conductivity among metals and has high chemical stability. However, in the case of silver paint, since the conductive material is silver, the material cost is very high. Furthermore, in the case of silver paint, there are many accidents due to silver migration, and when high reliability is required, even more expensive gold paint has to be used. In addition, the above-mentioned silver migration phenomenon imposes many restrictions on product design, which is one of the factors that hinders the recent demand for smaller sizes and higher densities. There are materials using carbon black and graphite as inexpensive conductive materials, but compared to silver's specific resistance of 1.62×10 -6 Ωcm, graphite has a specific resistance of 0.2 to 1×10 -3 Ωcm. However, since carbon black has an even higher resistivity, it is completely impossible to obtain conductivity equivalent to that of silver paint, and although it can be used as a resistive paint, it is unsuitable as a conductive paint. In addition, when copper powder is used as a conductive material, the inherent resistance of copper itself is not much different from that of silver, but the surface of the copper powder oxidizes when it is powdered or baked as a paint.
The contact resistance between each copper powder in the coating state increases extremely, resulting in a resistivity close to ∞.
As a countermeasure to this problem, attempts have been made to mix silver powder and copper powder to form a paint, but in order to obtain a resistivity of about 10 -3 Ωcm, it is necessary to contain at least 70 to 80% by weight of silver powder. First, the goal of producing an inexpensive conductive paint could not be achieved. It has also been proposed to use silver-copper composite powder, which is made by plating or mechanically forcibly bonding silver to copper powder, as a conductive material, but in this case as well.
In order to obtain a specific resistance of about 10 -3 Ωcm, the silver content must be at least 70 to 80% by weight, which is not advantageous compared to silver paints. Moreover, even when silver powder and copper powder are mixed or when silver-copper composite powder is used, if the silver content is less than 70% by weight, oxidation of the copper powder surface will proceed in a short period of time due to the effects of humidity and temperature, resulting in resistance. The value had increased by hundreds to tens of thousands of times. Furthermore, when nickel powder is used as a conductive material, it has the same drawbacks as copper powder. As mentioned above, many attempts have been made to create inexpensive conductive paints, but they have the same performance as silver paints.
Moreover, an inexpensive conductive paint has not yet been developed. The present invention is capable of solving all of the above-mentioned drawbacks, and aims to provide an inexpensive conductive paint that can completely eliminate accidents caused by silver migration, which are unavoidable in the case of silver paint, and restrictions on product design. It is something to do. In detail, by using the conductive paint of the present invention, the cost is 1/10 to 1/2 compared to silver paint, and the conductivity is almost the same as that of silver paint.
Environmental stability, such as moisture resistance, heat resistance, sulfur gas resistance, and salt spray resistance, is equivalent to or better than that of silver paint. It can be used as a substitute for electrode paints, etc. The present invention is characterized in that carbon black of at least 80 mμ or more is added to a copper powder, an alloy powder thereof, a powder containing silver as a component, or a mixture of silver powder with any of the above three types of powder. For example, when silver-copper (70% by weight) composite powder is used as a conductive material, the resistivity of the material without the addition of carbon black is 10 -1 Ωcm, and after environmental resistance tests such as humidity resistance, it is 500 to ∞. Although it was unstable due to double change, it was found that by adding the above carbon black, the specific resistance became 10 -4 Ωcm, and the moisture resistance and environmental resistance properties could be equivalent to or even improved as silver paint. It is something. Generally, most carbon blacks have a particle size of 10 to 30 mμ, and there are few types of carbon black with a particle size of 80 mμ or more. The effect of the present invention was not found with carbon blacks having a diameter of less than 80 mμ, and the effects of the present invention were most effective with FT grade carbon blacks preferably having a diameter of 90 mμ to 200 mμ. In addition, particles with a particle size of 10 mμ to 30 mμ and 80
The effects of the present invention can be obtained even if carbon blacks of mμ or more are added in combination. Carbon black with a large particle size generally has a small structure and therefore an extremely small amount of oil absorption. The effect of the present invention is that the carbon black with the large particle size described above penetrates closely between the metal powders, and has the effect of preventing the oxidation of the metal powders during baking and environmental resistance such as moisture resistance, and even reducing them. it is conceivable that. In addition, in the present invention, at least 80 m
The inclusion of carbon black with a diameter of μ or more means that even if carbon black with a diameter of less than 80 μm is additionally included as described above, or other graphite, carbon fluoride, etc. are additionally included as will be described later. This is to prevent the effects of the present invention from being significantly impaired. Furthermore, the metal powder in the present invention containing 0 to 80% by weight of silver as a component refers to copper and silver alloy powder, copper powder chemically plated with silver, or copper powder and silver powder mechanically plated. It means a material that is forcibly bonded together or a mixture of them.The powder alone can obtain sufficient high conductivity, but because it contains silver as a component, the resistivity is lower than that of a material that does not contain silver. It can be further reduced by 10% to 30%. If the silver component is contained in an amount exceeding 80% by weight, it will not be cost-effective compared to silver paint.
The metal powder and silver powder in the present invention are mixed in a ratio of 100:0 to
The reason for using a mixture at a weight ratio of 10:90 is the same as above. Incidentally, it was confirmed that as the silver component ratio increases, the silver migration phenomenon becomes more likely to occur. Also,
By forming both or one of the metal powder and silver powder of the present invention into scales, high conductivity can be obtained by reducing the content ratio of the metal component and silver component in the coating state. Preferably, it is advantageous in terms of cost to use scale-like materials for both. When the conductive paint of the present invention is applied to an electrode that requires sliding properties such as a variable resistor, graphite, molybdenum disulfide, fluorine resin, carbon fluoride, graphite fluoride, etc. By adding and containing powders of atomite and boron nitride either singly or in combination, the surface friction coefficient can be reduced and the sliding resistance can be maintained. Next, specific examples of the conductive paint according to the present invention will be described below. Example 1 96 g of ring element copper powder with an average particle size of 4.2 μm, 17 g of SRF grade carbon black (average particle size 116 μm, manufactured by Asahi Carbon Co., Ltd.), 23 g of phenol resin as a vehicle, and 32 g of butyl carbitol were mixed and kneaded in a roll mill. and created a conductive paint. The table below shows the specific resistance of this paint applied to a phenol laminate board using a 200 mesh stainless steel screen and baked at 180°C for 20 minutes. Further, the above paint was applied with a width of 0.5 m/m between the electrodes, and 50 V DC was applied between the electrodes in a humid atmosphere of 90 to 95% RH at 50°C to observe the migration phenomenon. The results are also shown in the table below. In addition, after leaving the same sample in a 3ppmH2S gas atmosphere for 500 hours, it was heated to 50℃ and 90 to 95%RH.
The specific resistances after being left in a humid atmosphere for 1000 hours and after being left in an 85°C atmosphere for 1000 hours are also shown in the table below. Example 2 83 g of scaly copper powder with an average particle size of 3.5 μm, 17 g of SRF grade carbon black (average particle size of 84 μm, manufactured by Mitsubishi Chemical Corporation), 22 g of epoxy resin (1001, manufactured by Ciel Chemical Co., Ltd.) as a vehicle, butyl cellosolve A test similar to that in Example 1 was conducted by mixing 30 g. The results are also shown in the table below. Example 3 Scale-shaped copper-silver composite powder with an average particle size of 2.3 μm (silver component ratio 4.3%, silver plating method) 83 g, FT grade carbon black (average particle size 90 μm, manufactured by Asahi Carbon Co., Ltd.) 17 g, silver powder 8 g of graphite (manufactured by Nippon Graphite Co., Ltd.), 25 g of phenol as a vehicle, and 39 g of ethyl carbitol were mixed, and the results of the same test as in Example 1 were obtained. The mixture was used as an electrode of a variable resistor and slid 20,000 times. The residual resistance values before and after are also shown in the table below. Conventional Example 83 g of silver powder with an average particle size of 3.4 μm, 20 g of phenol resin, and 31 g of ethyl carbitol were mixed and tested under the same conditions as Examples 1 to 3. The results are also shown in the table below.

【表】 以上のように本発明は構成されているものであ
り、銀塗料に比較して1/10〜1/2のコストで得る
ことができ、かつ銀塗料とほぼ同等の導電性が得
られ、しかも環境安定性も銀塗料と同等あるいは
それ以上のものが得られるため、現在銀塗料や金
塗料を使用しているプリント配線板の配線や電子
部品の電極用塗料などとして代替可能な導電性塗
料を提供することができ、その産業性は大なるも
のである。
[Table] The present invention is constructed as described above, and can be obtained at 1/10 to 1/2 the cost compared to silver paint, and has almost the same conductivity as silver paint. Moreover, it has environmental stability equivalent to or better than silver paint, so it is a conductive material that can replace the current use of silver paint and gold paint, such as wiring for printed wiring boards and electrode paint for electronic components. The industrial properties of this paint are great.

Claims (1)

【特許請求の範囲】 1 金属粉末を主導電材として、さらにビヒクル
として有機結合剤および必要により溶剤を加えた
ものよりなる導電性塗料において、金属粉末を銅
(Cu)粉末あるいはその合金粉末とし、さらに少
なくとも80mμ以上の粒径のカーボンブラツクを
含有させてなることを特徴とした導電性塗料。 2 金属粉末に0〜80重量%の銀を成分として含
有するものを用いた特許請求の範囲第1項記載の
導電性塗料。 3 金属粉末に銀粉末を100:0〜10:90の重量
比で混合したものを金属粉末として用いた特許請
求の範囲第1項記載の導電性塗料。 4 金属粉末や銀粉末の両方あるいはどちらか一
方が鱗片状であるものを用いた特許請求の範囲第
3項記載の導電性塗料。 5 グラフアイト、二硫化モリブデン、フツ素樹
脂、フツ化カーボン、フツ化グラフアイト、窒化
ボロンの各粉末を単独または複合で添加含有させ
てなる特許請求の範囲第1項記載の導電性塗料。
[Scope of Claims] 1. A conductive paint made of a metal powder as a main conductive material, an organic binder as a vehicle, and a solvent as necessary, in which the metal powder is copper (Cu) powder or an alloy powder thereof, and A conductive paint characterized by containing carbon black with a particle size of at least 80 mμ. 2. The conductive paint according to claim 1, which uses a metal powder containing 0 to 80% by weight of silver as a component. 3. The conductive paint according to claim 1, wherein the metal powder is a mixture of metal powder and silver powder at a weight ratio of 100:0 to 10:90. 4. The conductive paint according to claim 3, which uses metal powder and/or silver powder in the form of scales. 5. The conductive paint according to claim 1, which contains graphite, molybdenum disulfide, fluororesin, carbon fluoride, graphite fluoride, and boron nitride powders singly or in combination.
JP15426680A 1980-10-31 1980-10-31 Electrically conductive paint Granted JPS5778462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15426680A JPS5778462A (en) 1980-10-31 1980-10-31 Electrically conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15426680A JPS5778462A (en) 1980-10-31 1980-10-31 Electrically conductive paint

Publications (2)

Publication Number Publication Date
JPS5778462A JPS5778462A (en) 1982-05-17
JPS6111271B2 true JPS6111271B2 (en) 1986-04-02

Family

ID=15580412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15426680A Granted JPS5778462A (en) 1980-10-31 1980-10-31 Electrically conductive paint

Country Status (1)

Country Link
JP (1) JPS5778462A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050248908A1 (en) * 2004-05-06 2005-11-10 Gunther Dreezen Termination coating

Also Published As

Publication number Publication date
JPS5778462A (en) 1982-05-17

Similar Documents

Publication Publication Date Title
CA1043465A (en) Air firable base metal conductors
JP2007123832A (en) Terminal structure of chip-like electrical part
CA1192062A (en) Conductor compositions
CN105280374A (en) Conductive resin paste and ceramic electronic component
US20060158304A1 (en) Resistive material, resistive element, resistor, and method for manufacturing resistor
DE4036274A1 (en) MOISTURE-RESISTANT ELECTRICALLY CONDUCTIVE ADHESIVES, METHOD OF MANUFACTURING AND THEIR USE
JP3299083B2 (en) Method for producing carbon-based conductive paste
JPS6111271B2 (en)
JPS6111272B2 (en)
WO2016186185A1 (en) Cu paste composition for forming thick film conductor, and thick film conductor
JPH0435842B2 (en)
JP4333358B2 (en) Carbon paste
DE112020002761T5 (en) Conductive composition, conductive foil, contact element and method of making a conductive composition
JPS5815576A (en) Air calcinable conductor or resistor ink
DE3322484C2 (en)
JPH08148035A (en) Conductive material and conductive paste using this conductive material
JP2834116B2 (en) Paint for resistance
DE2347970C2 (en) Protective gas contact with a protective gas atmosphere made of carbon dioxide (CO deep 2)
SU1072103A1 (en) Current-conducting composite material
JPS6253035B2 (en)
JPH09255900A (en) Thermosetting type carbon-based electroconductive coating material
JPS63125582A (en) Conductive paint
JPS60233166A (en) Electrically conductive coating material
DE2915352C3 (en) Sliding contact for adjustable resistances
JPS6230165A (en) Composition capable of forming electrically conductive film