JPS61111994A - Cvd device - Google Patents

Cvd device

Info

Publication number
JPS61111994A
JPS61111994A JP24384385A JP24384385A JPS61111994A JP S61111994 A JPS61111994 A JP S61111994A JP 24384385 A JP24384385 A JP 24384385A JP 24384385 A JP24384385 A JP 24384385A JP S61111994 A JPS61111994 A JP S61111994A
Authority
JP
Japan
Prior art keywords
reaction tube
diameter
gas
reverse diffusion
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24384385A
Other languages
Japanese (ja)
Inventor
Ryokichi Takahashi
亮吉 高橋
Masahiko Kogirima
小切間 正彦
Hiroo Tochikubo
栃久保 浩夫
Akira Kanai
明 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24384385A priority Critical patent/JPS61111994A/en
Publication of JPS61111994A publication Critical patent/JPS61111994A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Abstract

PURPOSE:To prevent reverse diffusion of an impurity gas of an exhaust system, and not to make lessen exhaust conductance, by setting a constriction ring having a smaller constriction diameter than the diameter of an exhaust pipe in the vicinity of the outlet of a reaction tube. CONSTITUTION:The quartz reaction tube 2 is set in the electrical resistance type furnace 1. After the furnace is evacuated, the jig 4 is transferred to a given temperature distribution zone at the central part of the furnace 1 by the magnet boat loader 6 while circulating H2 through the gas piping 7. A low-temperature precipitate is much attached to the exhaust pipe 9, a contaminating gas such as HCl, etc. is permeated into the interior of the reaction tube 2 by reverse diffusion, and the substrate 5 is most liable to corrode when it is set in a high-temperature part. Consequently, the surface of the substrate 5 is made rough and loses mirror surface properties before an epitaxial reaction occurs. Crystallixability is also damaged by reverse diffusion of various impurity gases. In order to prevent these reverse diffusion phenomena, a constriction ring having a smaller constriction diameter than the diameter of the exhaust pipe 9 or the outlet branch pipe 12 of the reaction tube 2.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はエピタキシアル成長や多結晶シリコン、シリコ
ン酸化膜等のCVDに用いられる減圧ホットウォールC
VD装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a reduced pressure hot wall C used for epitaxial growth and CVD of polycrystalline silicon, silicon oxide films, etc.
This relates to a VD device.

〔発明の背景〕[Background of the invention]

従来のCVD法に関する文献としては1例えば特開昭5
6−74922号がある。
Documents related to the conventional CVD method include 1, for example, Japanese Patent Application Laid-Open No.
There is No. 6-74922.

従来の常圧法CVD例えばシリコン・エピタキシでは、
ソースガスの気相熱分解を避けるため、ソースガスの濃
度はキャリヤガスに対して1mo1%以下の反応条件が
とられる。具体例を示すと。
In conventional atmospheric pressure CVD, for example silicon epitaxy,
In order to avoid vapor phase thermal decomposition of the source gas, a reaction condition is adopted in which the concentration of the source gas is 1 mol % or less relative to the carrier gas. Let me give you a specific example.

キャリヤガスとして例えばH2を100Q/111in
で送る場合には、ソースガスは1−Q/min以下で送
られ、H2の流量が非常に大きくなっている。
For example, use H2 as a carrier gas at 100Q/111in.
When the source gas is fed at a rate of 1-Q/min or less, the flow rate of H2 is extremely large.

これに対し、減圧法では圧力により実効濃度が低下(g
 / Q単位で圧力により分母の容積が大となる)する
ため、気相熱分解が抑制され1モル(mol)濃度とし
ては大きな値をとることができる。具体例を示すと、キ
ャリヤガスとして例えばH2を2bへinで送る場合に
は、ソースガスは2Q/+ainで送ることができる。
On the other hand, in the reduced pressure method, the effective concentration decreases due to pressure (g
/ Q unit, the volume of the denominator increases due to pressure), gas phase thermal decomposition is suppressed and a large value can be taken as a 1 molar (mol) concentration. To give a specific example, when, for example, H2 is sent in as a carrier gas to 2b, the source gas can be sent as 2Q/+ain.

圧力条件によっては100%ソースガスの使用も可能で
ある。従って、キャリヤガスとしてのH2流量も少なく
て済む6同じウェハの装填枚数に対し、減圧ホットウォ
ール法では常圧法の115〜1150のキャリヤ流量で
ある。
Depending on the pressure conditions, it is also possible to use 100% source gas. Therefore, the flow rate of H2 as a carrier gas is 115 to 1150 in the normal pressure method for the same number of 6 wafers to be loaded in the reduced pressure hot wall method.

しかしながら、キャリヤ流量が少ない(すなわち流速が
遅い)と逆拡散が発生し、排気系の不純物が反応管内に
逆拡散する結果、清浄鏡面の表面を汚染し、その上に堆
積するエピタキシアル膜の性能を劣化せしめることにな
る。特に塩化物系シリコンソースガス(低級塩化物はど
気相熱分解を起し易い)を用いた場合には、分解により
発生したHCl1が排気配管壁に付着した堆積物に吸着
されており、これが逆拡散する結果エピタキシアル反応
の前後に高温部にある基板(ウェハ)表面を中途半端に
侵刻し結晶表面を劣化せしめる。また、真空ポンプの油
蒸気の逆拡散も同様に発生し、結晶を劣化せしめる原因
にもなっている。
However, when the carrier flow rate is low (i.e., the flow rate is slow), back-diffusion occurs, and impurities in the exhaust system diffuse back into the reaction tube, resulting in contamination of the clean mirror surface and the performance of the epitaxial film deposited on it. It will cause deterioration. In particular, when using a chloride-based silicon source gas (lower chlorides tend to cause gas-phase thermal decomposition), HCl1 generated by decomposition is adsorbed by deposits attached to the exhaust pipe wall. As a result of back-diffusion, the surface of the substrate (wafer) in the high-temperature area is half-heartedly engraved before and after the epitaxial reaction, causing the crystal surface to deteriorate. In addition, back diffusion of oil vapor from the vacuum pump also occurs, causing crystal deterioration.

〔発明の目的〕[Purpose of the invention]

本発明は上記した従来技術の問題点を解消するためにな
されたもので、低流量条件にある減圧ホットウォールC
VD装置において、排気系の不純物ガスの逆拡散を防止
し、しかも排気コンダクタンスを小ならしめないように
することを目的としている。
The present invention has been made to solve the problems of the prior art described above, and it
In a VD device, the purpose is to prevent back diffusion of impurity gas in the exhaust system and to prevent the exhaust conductance from becoming small.

〔発明の概要〕[Summary of the invention]

例えばシリコン(Si)の減圧エピタキシアル反応では
、ソースガス(例えば5iH2(Jl、;ディクロロシ
ラン)の高温分解生成物(シリコンの微粒粉体等)が発
生し、排気管を介して真空ポンプにより排出されるが、
途中低温の排気管壁に凝縮し付着する。高温ではほとん
どSLが析出するが、低温ではSi、H,の形で析出す
るほかHCuを吸蔵する。この低温凝縮物は蒸気圧が高
いほか各種ガスを吸着しやすいので主たる汚染源であり
1反応管へ逆拡散して清浄な反応管内を汚染する。
For example, in the low-pressure epitaxial reaction of silicon (Si), high-temperature decomposition products (such as silicon fine powder) of the source gas (e.g., 5iH2 (Jl); dichlorosilane) are generated and are discharged by a vacuum pump through an exhaust pipe. However,
On the way, it condenses and adheres to the cold exhaust pipe wall. At high temperatures, most of SL precipitates, but at low temperatures, it precipitates in the form of Si, H, and also occludes HCu. This low-temperature condensate has a high vapor pressure and easily adsorbs various gases, so it is a major source of contamination and back-diffuses into one reaction tube, contaminating the inside of the clean reaction tube.

一般に、流れのある管内で逆拡散を防止するには、Re
−8c>IO(但しRe:レイノルズ数、SC:シュミ
ット数)の流量条件をとればよいと言われている。しか
し逆拡散による汚染の濃度に依存して上記条件は変化す
るものでケース・パイ・ケースである。本発明者等はS
 iH2CM、 −H,系のホットウォール・エピタキ
シで、流量と基板の汚染状況を実験し、Re)20の条
件を見出した。
In general, to prevent back diffusion in a flowing pipe, Re
It is said that the flow rate condition is -8c>IO (where Re: Reynolds number, SC: Schmidt number). However, the above conditions change depending on the concentration of contamination due to back diffusion, and it is a case-to-case situation. The inventors are S
In hot wall epitaxy of iH2CM, -H, system, we experimented with the flow rate and the contamination status of the substrate, and found conditions of Re) 20.

逆拡散を防止するには上記Re > 20を満たす配管
径にすればよく、これはN2流量2Q/ll1inのと
き管径420nmの値となる。流速で言うと、常温1気
圧換算の流速が0.1m/s以上ならば逆拡散が起らな
いことになる。しかし逆拡散を防止するために排気管を
小径にすれば、排気抵抗を増し真空ポンプの所要排気容
量が大となり装置費がかさむことになる。従って本発明
は部分的に小径の絞り口を有する絞りリングを設けるこ
とにより、逆拡散と排気抵抗の相反条件を満足せしめる
ものである。
In order to prevent back diffusion, the pipe diameter may be set to satisfy the above-mentioned Re > 20, which corresponds to a pipe diameter of 420 nm when the N2 flow rate is 2Q/ll1in. In terms of flow velocity, if the flow velocity is 0.1 m/s or more when converted to 1 atm at room temperature, back diffusion will not occur. However, if the diameter of the exhaust pipe is made small in order to prevent back diffusion, the exhaust resistance will increase, the required exhaust capacity of the vacuum pump will increase, and the equipment cost will increase. Therefore, the present invention satisfies the contradictory conditions of back diffusion and exhaust resistance by providing an aperture ring that partially has a small diameter aperture.

この絞り口径リングは、低温析出物から発生する汚染ガ
スが基板をセットしている反応管内への逆拡散を防止す
る目的をもつもので、位置的には反応管出口近辺がよい
。しかしここでは高温ガスが流通するので、材質的には
耐熱性のあるものがよく、反応装置の構造材質によって
適宜穴められるものである。
This aperture ring has the purpose of preventing contaminant gas generated from low-temperature precipitates from back diffusing into the reaction tube in which the substrate is set, and is preferably located near the outlet of the reaction tube. However, since high-temperature gas flows here, the material should preferably be heat resistant, and holes should be made as appropriate depending on the structural material of the reactor.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例によって詳細に説明する。 The present invention will be explained in detail below using examples.

第1図は本発明の一実施例を示すもので、減圧ホットウ
ォールCVD装置の構成説明図である。
FIG. 1 shows one embodiment of the present invention, and is an explanatory diagram of the configuration of a reduced pressure hot wall CVD apparatus.

図において1は電気抵抗式加熱炉で、石英製反応管2が
セットされている。治具4の上に基板5が垂直または傾
斜角をもって置かれる。基板5を搭載した治具4は最初
常温の治具収納管3にセットされる。ここまでの工程は
空気を遮断するためにN2 を流しながら行なわれる。
In the figure, 1 is an electric resistance heating furnace, in which a quartz reaction tube 2 is set. A substrate 5 is placed on the jig 4 vertically or at an inclined angle. The jig 4 carrying the board 5 is first set in the jig storage tube 3 at room temperature. The steps up to this point are performed while flowing N2 to block air.

減圧後ガス配管7を通ってN2 を流通させながら、マ
グネット式のボートローダ−6で治具4を加熱炉1の中
央部にある所定温度分布帯に運ぶ。このときのN2ガス
は真空ポンプに至る排出管9を介して排出されるが、石
英製反応管の熱膨張による破損を防ぐため、石英製反応
管2と排出管9の間にベローズ伸縮管8が置かれている
。低温析出物は排出管9に多く付着しており、逆拡散に
よりHCaなどの汚染ガスが反応管2の内部に侵入する
が、基板5が高温部にセットされた場合一番侵刻されや
すい。したがってエピタキシアル反応以前に基板5の表
面が荒れ鏡面性を失ってしまう。エピタキシアル反応時
はHCILのエツチングよりも析出反応が優先するので
緩和されるが各種の不純ガスの逆拡散もあり結晶性を損
う。またエピタキシアル反応後も基板を早く高温から低
温に移す必要も生じてくる。これらの逆拡散現象を防ぐ
ため、排出管9または反応管2の出口枝管12よりも小
口径の絞り口をもつ絞りリング10がセットされる。
After the pressure is reduced, the jig 4 is transported to a predetermined temperature distribution zone in the center of the heating furnace 1 using a magnetic boat loader 6 while flowing N2 through the gas pipe 7. At this time, the N2 gas is discharged via the discharge pipe 9 leading to the vacuum pump, but in order to prevent damage to the quartz reaction tube due to thermal expansion, a bellows expansion pipe 8 is inserted between the quartz reaction tube 2 and the discharge pipe 9. is placed. Many low-temperature precipitates adhere to the discharge tube 9, and contaminant gases such as HCa enter the reaction tube 2 due to back diffusion, but they are most likely to be engraved when the substrate 5 is set in a high temperature section. Therefore, the surface of the substrate 5 becomes rough and loses its specularity before the epitaxial reaction occurs. During the epitaxial reaction, the precipitation reaction takes precedence over the etching of HCIL, so it is relaxed, but there is also back-diffusion of various impurity gases, which impairs crystallinity. Furthermore, it becomes necessary to quickly move the substrate from a high temperature to a low temperature even after the epitaxial reaction. In order to prevent these back-diffusion phenomena, an aperture ring 10 having an aperture smaller in diameter than the outlet pipe 9 or the outlet branch pipe 12 of the reaction tube 2 is set.

本発明の装置の適用により、130nmφ石英反応管内
に4インチSL基板50枚をチャージし、5iH2Cn
、= 2 n /main、 H,キャリヤ= 2 Q
 /minの成長条件の下では、50m+φの反応管出
口枝管と100mmφの排出管の間に2011ITlφ
の絞り口径リングを挿入することにより、基板の鏡面を
失うことなく良質のエピタキシアル基板が得られた。
By applying the device of the present invention, 50 4-inch SL substrates were charged in a 130 nmφ quartz reaction tube, and 5iH2Cn
, = 2 n /main, H, carrier = 2 Q
/min growth condition, 2011ITlφ between the 50m+φ reaction tube outlet branch pipe and the 100mmφ discharge tube.
By inserting the aperture ring, a high-quality epitaxial substrate was obtained without losing the mirror surface of the substrate.

第2図は石英製反応管の出口枝管フランジと絞り口径リ
ングを共用した場合の構成説明図である。
FIG. 2 is a diagram illustrating the configuration of a quartz reaction tube in which the outlet branch pipe flange and the aperture ring are shared.

通常石英製反応管は第2図に示したように主管(反応管
2)の両端に石英製の入口側接続フランジ11と主管よ
り細い出口枝管12の接続フランジが設けられるが、こ
の場合は出口接続フランジと絞りリング10とを共用さ
せた実施例である。
Normally, a quartz reaction tube is provided with a quartz inlet side connecting flange 11 and an outlet branch pipe 12 which are thinner than the main tube at both ends of the main tube (reaction tube 2), as shown in FIG. This is an embodiment in which the outlet connection flange and the aperture ring 10 are shared.

第3図は石英製反応管の出口枝管を一部小径に加工して
絞りリングと同様の作用をもたせた場合の構成説明図で
ある。
FIG. 3 is an explanatory diagram of a structure in which a part of the outlet branch pipe of a quartz reaction tube is processed to have a small diameter so as to have the same effect as an aperture ring.

反応管2の両端にはそれぞれ接続フランジ11.13を
備えているが、口径の小さい絞りリング14を出口枝管
12を加工して設けた実施例である。
Both ends of the reaction tube 2 are provided with connecting flanges 11 and 13, respectively, and in this embodiment, a narrow diameter aperture ring 14 is provided by machining the outlet branch pipe 12.

第4図は石英反応管にステンレス鋼系の配管を接続し、
絞りリングも鋼製にした場合の構成説明図である。
Figure 4 shows stainless steel piping connected to the quartz reaction tube.
FIG. 7 is an explanatory diagram of the configuration when the aperture ring is also made of steel.

石英製反応管2の出口枝管12の接続フランジ13にベ
ローズ伸縮管8をOリングシールにより取り付け、その
ベローズ伸縮管8の反対側フランジ17にステンレス耐
熱鋼で作られた絞りリング18と排出管9のフランジ1
9が0リングを介して一緒にボルト締めされている。こ
の場合高温ガスによるOリングの熱破損を防ぐため、接
続フランジ13及び排出管9のフランジ19の近傍に水
冷ジャケット15及び20が設けられ水冷される。
A bellows telescoping pipe 8 is attached to the connecting flange 13 of the outlet branch pipe 12 of the quartz reaction tube 2 with an O-ring seal, and a diaphragm ring 18 made of stainless heat-resistant steel and a discharge pipe are attached to the flange 17 on the opposite side of the bellows telescoping pipe 8. 9 flange 1
9 are bolted together via an O-ring. In this case, water cooling jackets 15 and 20 are provided in the vicinity of the connection flange 13 and the flange 19 of the discharge pipe 9 for water cooling in order to prevent thermal damage to the O-ring due to high temperature gas.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、キャリヤガスH2
の低流量の下で、真空排気ポンプの容量を膨大化するこ
となく、また逆拡散による結晶性を劣化させることのな
い、減圧ホットウォールCVD装置を設計製作すること
ができる。
As explained above, according to the present invention, the carrier gas H2
Under a low flow rate of , it is possible to design and manufacture a reduced pressure hot wall CVD apparatus without increasing the capacity of the vacuum pump or deteriorating crystallinity due to back diffusion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の減圧ホットウォールCVD装置の構成
説明図、第2図、第3図及び第4図はいずれも本発明の
絞りリングの構成説明図である。 1・・加熱炉      2・・・反応管3・・・治具
収納管    8・・・ベローズ伸縮管9・・・排出管
      10.14.18・・・絞りリング12・
・・出口枝管
FIG. 1 is an explanatory diagram of the configuration of a reduced pressure hot wall CVD apparatus of the present invention, and FIGS. 2, 3, and 4 are all explanatory diagrams of the configuration of an aperture ring of the present invention. 1... Heating furnace 2... Reaction tube 3... Jig storage tube 8... Bellows expansion tube 9... Discharge pipe 10.14.18... Squeezing ring 12.
・・Outlet branch pipe

Claims (1)

【特許請求の範囲】[Claims]  反応管の出口近辺に排気管の径よりも小径の絞り口径
を有する絞りリングを設けたことを特徴とするCVD装
置。
A CVD apparatus characterized in that an aperture ring having an aperture diameter smaller than the diameter of an exhaust pipe is provided near the outlet of a reaction tube.
JP24384385A 1985-11-01 1985-11-01 Cvd device Pending JPS61111994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24384385A JPS61111994A (en) 1985-11-01 1985-11-01 Cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24384385A JPS61111994A (en) 1985-11-01 1985-11-01 Cvd device

Publications (1)

Publication Number Publication Date
JPS61111994A true JPS61111994A (en) 1986-05-30

Family

ID=17109773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24384385A Pending JPS61111994A (en) 1985-11-01 1985-11-01 Cvd device

Country Status (1)

Country Link
JP (1) JPS61111994A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233220A (en) * 1990-06-28 1992-08-21 Applied Materials Inc Reduction in particle-shaped contaminations in vapor phase growth device
JP2002329763A (en) * 2001-04-27 2002-11-15 Yaskawa Electric Corp Connecting structure between hermetic chambers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233220A (en) * 1990-06-28 1992-08-21 Applied Materials Inc Reduction in particle-shaped contaminations in vapor phase growth device
US5188672A (en) * 1990-06-28 1993-02-23 Applied Materials, Inc. Reduction of particulate contaminants in chemical-vapor-deposition apparatus
US5322567A (en) * 1990-06-28 1994-06-21 Applied Materials, Inc. Particulate reduction baffle with wafer catcher for chemical-vapor-deposition apparatus
US5397596A (en) * 1990-06-28 1995-03-14 Applied Materials, Inc. Method of reducing particulate contaminants in a chemical-vapor-deposition system
JP2002329763A (en) * 2001-04-27 2002-11-15 Yaskawa Electric Corp Connecting structure between hermetic chambers

Similar Documents

Publication Publication Date Title
US5226968A (en) Apparatus and method for oxidation treatment of metal
JP2000150513A (en) Deposition of silicon nitride thin film
US5370371A (en) Heat treatment apparatus
JPH04175294A (en) Vapor growth equipment
US5224998A (en) Apparatus for oxidation treatment of metal
JPS61111994A (en) Cvd device
JPS6119101B2 (en)
US20030015142A1 (en) Apparatus for fabricating a semiconductor device
JPS5927611B2 (en) Vapor phase growth method
JPH0658880B2 (en) Vapor phase epitaxial growth system
JPH01290521A (en) Jig for heat treatment
JPH0831743A (en) Method and equipment for preventing contamination of cvd system
JPH0231420A (en) Wafer clamper for plasma reactor
JPS6314866A (en) Device for supplying ultra-high-purity gas
JPH0465376A (en) Si impregnated sic product coated by cvd and production thereof
JPH0519949Y2 (en)
JPS5875830A (en) Reduced pressure hot wall cvd method
JPS6254080A (en) Film forming device
JPS6286817A (en) Organo metallic chemical vapor deposition
JPS58102518A (en) Vapor growth method
JP3052414B2 (en) Chemical vapor deposition equipment
JPH04304624A (en) Vertical heating oven for wafer process
JPS6115971A (en) Device for forming cvd film of solid raw material
JPH0366121A (en) Vapor growth device and vapor growth
JP2001214271A (en) Film forming device