JPH01290521A - Jig for heat treatment - Google Patents

Jig for heat treatment

Info

Publication number
JPH01290521A
JPH01290521A JP63121361A JP12136188A JPH01290521A JP H01290521 A JPH01290521 A JP H01290521A JP 63121361 A JP63121361 A JP 63121361A JP 12136188 A JP12136188 A JP 12136188A JP H01290521 A JPH01290521 A JP H01290521A
Authority
JP
Japan
Prior art keywords
film
heat treatment
jig
sic film
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63121361A
Other languages
Japanese (ja)
Inventor
Keizo Hirai
圭三 平井
Yasuhiro Aiba
康博 愛場
Makoto Ishii
誠 石井
Makoto Kikuchi
誠 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP63121361A priority Critical patent/JPH01290521A/en
Publication of JPH01290521A publication Critical patent/JPH01290521A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a jig for heat treatment preventing the contamination of a wafer by the diffusion of impurities and capable of maintaining its strength even after repeated thermal shock tests by forming an SiC film having a specified thickness, a specified max. grain size and specified peaks of diffracted rays in X-ray diffraction on the surface of a base material. CONSTITUTION:An SiC film having 20-200mum thickness and 10-50mum max. grain size is formed on the surface of a base material by CVD or other method. In the X-ray diffraction of the film, the peak of diffracted rays at (220) face is 0.1-10 times as high as that at (111) face. The resulting jig for heat treatment has the above-mentioned characteristics, the corrosion resistance of the SiC film is not deteriorated and the jig is suitable for use as the material of a crucible, a susceptor, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体の製造に使用されるるつぼ。[Detailed description of the invention] (Industrial application field) The present invention relates to a crucible used for manufacturing semiconductors.

サセプター等の熱処理用治具に関する。Related to heat treatment jigs such as susceptors.

(従来の技術) 上記した熱処理用治具け、シリコン等の半導体を汚染し
ないように、黒鉛等の耐熱性を有する基材の表面を高純
度の炭化けい素で被覆する方法がとられている。
(Prior art) In order to avoid contaminating the above-mentioned heat treatment jig and semiconductors such as silicon, a method has been adopted in which the surface of a heat-resistant base material such as graphite is coated with high-purity silicon carbide. .

高純度の炭化けい素膜を基材表面に形成するには+ C
HsSiCb+  (CHs)S+CI!などの塩化シ
ランを高温下で分解させたり、  5iC1aなどのシ
リコン塩化物とメタン等の炭化水素との混合物を高温下
で分解させる化学気相蒸着(CVD)による方法。
To form a high purity silicon carbide film on the surface of a substrate + C
HsSiCb+ (CHs)S+CI! A chemical vapor deposition (CVD) method in which chlorosilanes such as 5iC1a are decomposed at high temperatures, or mixtures of silicon chlorides such as 5iC1a and hydrocarbons such as methane are decomposed at high temperatures.

特開昭54−90216号公報9%開昭62−2974
67号公報等に示されるようにシリカと炭素等を組合せ
た固体原料を高温で反応させる方法などが知られている
Japanese Patent Publication No. 54-90216 9% Publication No. 62-2974
As shown in Japanese Patent No. 67, etc., a method is known in which a solid raw material combining silica, carbon, etc. is reacted at high temperature.

(発明が解決しようとする課題) しかしながら、CVD法で炭化けい素(SiC)を被覆
した熱処理治具は、繰返しの使用によってクラックやピ
ンホールが入り易く、固体原料を用いた場合は高純度の
SiC膜が得られ難く、いずれの場合も半導体ウェハを
汚染する結果を招来することになるとされている。
(Problem to be solved by the invention) However, heat treatment jigs coated with silicon carbide (SiC) using the CVD method are prone to cracks and pinholes due to repeated use, and when solid raw materials are used, high purity It is said that it is difficult to obtain a SiC film, and in either case, the result is that the semiconductor wafer is contaminated.

本発明は上記した従来技術の欠点を改良した半導体製造
用の熱処理用治具を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat treatment jig for semiconductor manufacturing which improves the drawbacks of the prior art described above.

(課題を解決するための手段) 本発明は、基材表面にSiC膜を形成した熱処理用治具
において、該SiC膜の膜厚が20〜200μm、膜の
結晶粒の最大寸法が10〜50μm及び膜のX線回折に
おける(111)面に対する(220)面の回折線ピー
ク値が0.1〜10倍である熱処理用治具に関する。
(Means for Solving the Problems) The present invention provides a heat treatment jig in which a SiC film is formed on the surface of a base material, the thickness of the SiC film is 20 to 200 μm, and the maximum size of crystal grains of the film is 10 to 50 μm. and a heat treatment jig in which the diffraction line peak value of the (220) plane in X-ray diffraction of a film is 0.1 to 10 times that of the (111) plane.

本発明においてSiC膜厚を20〜200μmとした理
由は、20μm未満では基材に例えば黒鉛を使用した場
合に黒鉛材中の不純物がSiC膜を通過し易く、耐食性
が低下し、ウエーノ・を汚染し。
The reason why the SiC film thickness is set to 20 to 200 μm in the present invention is that if the thickness is less than 20 μm, when graphite is used as the base material, impurities in the graphite material will easily pass through the SiC film, reducing corrosion resistance and contaminating the wafer. death.

200μmを越えるとSiC結晶内部に蓄積される応力
によってSiC膜を破壊する危険が増大するか゛らであ
る。
If the thickness exceeds 200 μm, the stress accumulated inside the SiC crystal increases the risk of breaking the SiC film.

また膜の結晶粒の大きさは10〜50μmとしたのは、
10μm未満では黒鉛基材内の不純物が拡散されてSi
C膜を透過し易くなり、50μmを越えると前記した不
純物の拡散は防止できるが機械的強度が低下するからで
ある。例えば結晶粒の大きさが10μm未満のものは曲
げ強さが600M P a以上あるのに対し、50μm
を越えるものがあると曲げ強さは300〜330MPa
まで低下する。
In addition, the size of the crystal grains of the film was set to 10 to 50 μm because
If the thickness is less than 10 μm, impurities in the graphite base material will be diffused and Si
This is because it becomes easier to permeate the C film, and if the thickness exceeds 50 μm, the above-mentioned diffusion of impurities can be prevented, but the mechanical strength decreases. For example, crystal grains with a grain size of less than 10 μm have a bending strength of 600 MPa or more, whereas crystal grains with a grain size of 50 μm or more have a bending strength of 600 MPa or more.
If the bending strength exceeds 300-330MPa
decreases to

更にSiC膜のX線回折においてCuのKaで測定した
(111)面と(220)面との回折線ピーク値(I)
の比I (220)/I (111)は0.1〜10と
される。0.1未満ではSiC膜が剥離し易くなり、1
0を越えるとSiC膜の断面方向にクラックが入り易く
なるためである。
Furthermore, in the X-ray diffraction of the SiC film, the diffraction line peak values (I) of the (111) plane and (220) plane measured by Ka of Cu
The ratio I (220)/I (111) is 0.1 to 10. If it is less than 0.1, the SiC film will easily peel off;
This is because if it exceeds 0, cracks are likely to occur in the cross-sectional direction of the SiC film.

(実施例) 次に本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail.

実施例1 人造黒鉛の基材をCVD炉内に載置し、炉内を5Tor
rに減圧すると共に基材を1500℃に加熱し、 CH
sSiC7gをキャリアの水素ガスと共にCVD炉内に
導入し、基材表面に厚さ100μmのSiC膜を被覆し
た。膜表面の結晶粒の最大寸法は25μmであった。第
1図は上記SiC膜のX線回折図形である。Cuのに、
で測定した回折線ピーク値の比I (220)/I (
111)は第1図では約0.4である。
Example 1 An artificial graphite base material was placed in a CVD furnace, and the inside of the furnace was heated to 5 Tor.
While reducing the pressure to r, the substrate was heated to 1500°C, and CH
7 g of sSiC was introduced into a CVD furnace together with hydrogen gas as a carrier, and a 100 μm thick SiC film was coated on the surface of the base material. The maximum size of crystal grains on the film surface was 25 μm. FIG. 1 is an X-ray diffraction pattern of the SiC film. Cu,
The ratio of diffraction line peak values measured at I (220)/I (
111) is approximately 0.4 in FIG.

比較例1 CVD炉内の圧力を20 Torrとし、基材温度を1
450℃とした以外は実施例1と同じ条件で基材表面に
約100μmの8iC膜を被覆した。
Comparative Example 1 The pressure inside the CVD furnace was 20 Torr, and the substrate temperature was 1
The surface of the substrate was coated with an 8iC film of about 100 μm under the same conditions as in Example 1 except that the temperature was 450° C.

SiC膜表面の結M1粒の最大寸法は8μmであった。The maximum dimension of M1 grains on the surface of the SiC film was 8 μm.

比較例2 CVD炉内の圧力を3Torr+基材温度を1550℃
とし、 CH4及び8iC14を水素カスと共KCVD
炉内に導入し、基材表面に100μmのSiC膜を形成
した。SiC膜表面の結晶粒の最大寸法は約100μm
であった。
Comparative Example 2 Pressure in CVD furnace 3 Torr + substrate temperature 1550°C
Then, CH4 and 8iC14 were subjected to KCVD together with hydrogen gas.
It was introduced into a furnace, and a 100 μm SiC film was formed on the surface of the base material. The maximum size of crystal grains on the SiC film surface is approximately 100 μm
Met.

次に実施例及び比較例で得られたSiC膜を10×20
(Tlrm)に加工し、500℃で10分間加熱後25
℃の水中に投入する熱衝撃試験を行ない、毎回曲げ強度
を測定して熱衝撃回数と曲げ強度の関係を求め、これを
第2図に示した。毎回の試料数は10個で曲げ強度の値
は平均値を示した。
Next, the SiC films obtained in Examples and Comparative Examples were
(Tlrm) and heated at 500℃ for 10 minutes.
A thermal shock test was carried out by placing the specimen in water at a temperature of 0.degree. C., and the bending strength was measured each time to determine the relationship between the number of thermal shocks and the bending strength, which is shown in FIG. The number of samples each time was 10, and the bending strength values showed the average values.

第1図から明らかなように、比較例1の8iC膜は5回
の熱衝撃で急激に強度が低下した。これは黒鉛基材中の
不純物の拡散によって膜表面にシリカ層が形成されたた
めと考えられる。比較例2はもともと強度が小さく10
回程度の熱衝撃回数が限界である。これに対して実施例
のものは20回の熱衝撃を行なっても殆んど曲げ強度が
低下しなかった。また膜表面にも不純物の拡散によるシ
リカ層の形成は見られなかつ九。
As is clear from FIG. 1, the strength of the 8iC film of Comparative Example 1 rapidly decreased after five thermal shocks. This is thought to be due to the formation of a silica layer on the membrane surface due to the diffusion of impurities in the graphite base material. Comparative example 2 originally had a low strength of 10
The limit is the number of thermal shocks. On the other hand, in the case of the example, the bending strength hardly decreased even after 20 thermal shocks. Furthermore, no formation of a silica layer due to impurity diffusion was observed on the film surface.

(発明の効果) 本発明によれば、不純物が拡散してウェハーを汚染した
り、SiC膜の耐食性が劣化せず、繰返しの熱衝撃テス
トによってもその強度を維持できるので、るつぼ、サセ
プター等の熱処理治具として好適な材料を提供できる。
(Effects of the Invention) According to the present invention, impurities do not diffuse and contaminate the wafer, the corrosion resistance of the SiC film does not deteriorate, and its strength can be maintained even after repeated thermal shock tests, so that it can be used in crucibles, susceptors, etc. A material suitable for a heat treatment jig can be provided.

【図面の簡単な説明】 第1図は本発明の実施例になる熱処理用治具に被覆した
SiC膜のX線回折図形、第2図は熱衝撃回数と曲げ強
度の関係を示すグラフである。
[Brief Description of the Drawings] Figure 1 is an X-ray diffraction pattern of a SiC film coated on a heat treatment jig according to an embodiment of the present invention, and Figure 2 is a graph showing the relationship between the number of thermal shocks and bending strength. .

Claims (1)

【特許請求の範囲】[Claims] 1、基材表面に炭化けい素膜を形成した熱処理用治具に
おいて、該炭化けい素膜の膜厚が20〜200μm、膜
の結晶粒の最大寸法が10〜50μm及び膜のX線回折
における(111)面に対する(220)面の回折線ピ
ーク値が0.1〜10倍である熱処理用治具。
1. In a heat treatment jig in which a silicon carbide film is formed on the surface of a base material, the film thickness of the silicon carbide film is 20 to 200 μm, the maximum dimension of the crystal grains of the film is 10 to 50 μm, and the X-ray diffraction of the film is A heat treatment jig in which the diffraction line peak value of the (220) plane is 0.1 to 10 times that of the (111) plane.
JP63121361A 1988-05-18 1988-05-18 Jig for heat treatment Pending JPH01290521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63121361A JPH01290521A (en) 1988-05-18 1988-05-18 Jig for heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63121361A JPH01290521A (en) 1988-05-18 1988-05-18 Jig for heat treatment

Publications (1)

Publication Number Publication Date
JPH01290521A true JPH01290521A (en) 1989-11-22

Family

ID=14809349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63121361A Pending JPH01290521A (en) 1988-05-18 1988-05-18 Jig for heat treatment

Country Status (1)

Country Link
JP (1) JPH01290521A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360117A (en) * 1989-07-28 1991-03-15 Toshiba Ceramics Co Ltd Jig for semiconductor wafer treatment and manufacture thereof
EP0908932A3 (en) * 1997-09-03 1999-12-22 Nippon Pillar Packing Co., Ltd. Semiconductor wafer holder with cvd silicon carbide film coating
JP2001203188A (en) * 2000-01-19 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine
JP2001203190A (en) * 2000-01-20 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine
US6673439B1 (en) * 1999-09-22 2004-01-06 Sumitomo Electric Industries, Ltd. Coated diamond, manufacturing method and composite material thereof
US7410923B2 (en) * 1999-08-02 2008-08-12 Tokyo Electron Limited SiC material, semiconductor device fabricating system and SiC material forming method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360117A (en) * 1989-07-28 1991-03-15 Toshiba Ceramics Co Ltd Jig for semiconductor wafer treatment and manufacture thereof
EP0908932A3 (en) * 1997-09-03 1999-12-22 Nippon Pillar Packing Co., Ltd. Semiconductor wafer holder with cvd silicon carbide film coating
US7410923B2 (en) * 1999-08-02 2008-08-12 Tokyo Electron Limited SiC material, semiconductor device fabricating system and SiC material forming method
US6673439B1 (en) * 1999-09-22 2004-01-06 Sumitomo Electric Industries, Ltd. Coated diamond, manufacturing method and composite material thereof
JP2001203188A (en) * 2000-01-19 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine
JP2001203190A (en) * 2000-01-20 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine

Similar Documents

Publication Publication Date Title
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
SG173150A1 (en) A chemical vapour deposition system and process
US6515297B2 (en) CVD-SiC self-supporting membrane structure and method for manufacturing the same
EP2284122B1 (en) Low nitrogen concentration carbonaceous material
EP0899358A2 (en) Silicon carbide fabrication
US5882807A (en) Jig for heat treatment and process for fabricating the jig
US4624735A (en) Constituent members of a semiconductor element-manufacturing apparatus and a reaction furnace for making said constituent members
JPH01290521A (en) Jig for heat treatment
JP7163756B2 (en) LAMINATED PRODUCT, METHOD FOR MANUFACTURING LAMINATED BODY, AND METHOD FOR MANUFACTURING SILICON CARBIDE POLYCRYSTALLINE SUBSTRATE
US20090294776A1 (en) Highly Oxygen-Sensitive Silicon Layer and Method for Obtaining Same
JP2000302576A (en) Graphite material coated with silicon carbide
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JPS60200519A (en) Heating element
JP2011074436A (en) Silicon carbide material
US6071343A (en) Heat treatment jig and method of producing the same
JPS62189726A (en) Susceptor for vapor growth of semiconductor
US6183553B1 (en) Process and apparatus for preparation of silicon crystals with reduced metal content
JP4361177B2 (en) Silicon carbide material and jig for RTP device
JP3220730B2 (en) Graphite wafer holding jig for atmospheric pressure CVD equipment
JPS61236672A (en) Pyrolytic boron nitride coated products and manufacture
JPH07335728A (en) Heat treatment jig and its manufacture
JPH1135391A (en) Silicon carbide-coated susceptor
JPH0471880B2 (en)
JPH10256108A (en) Silicon carbide dummy wafer
JP7103182B2 (en) Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method