JPS61111922A - Production of acicular particle containing iron carbide - Google Patents

Production of acicular particle containing iron carbide

Info

Publication number
JPS61111922A
JPS61111922A JP59231588A JP23158884A JPS61111922A JP S61111922 A JPS61111922 A JP S61111922A JP 59231588 A JP59231588 A JP 59231588A JP 23158884 A JP23158884 A JP 23158884A JP S61111922 A JPS61111922 A JP S61111922A
Authority
JP
Japan
Prior art keywords
iron carbide
treated
alkali
particles
fe2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59231588A
Other languages
Japanese (ja)
Inventor
Kazuo Okamura
和夫 岡村
Ikuo Kitamura
北村 郁夫
Hideki Aomi
秀樹 青海
Satoru Koyama
哲 小山
Katsushi Tokunaga
徳永 勝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP59231588A priority Critical patent/JPS61111922A/en
Publication of JPS61111922A publication Critical patent/JPS61111922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an acicular particle having excellent magnetic properties and high iron carbide content, by contacting an alkali-treated or Co-coated gamma-Fe2O3 with CO or a mixture of CO and H2. CONSTITUTION:An alkali-treated or Co-coated gamma-Fe2O3 is used as the starting material. The alkali treatment is carried out by conventional method, e.g. by contacting the iron oxide with and aqueous solution of an alkali such as sodium hydroxide (preferably >=10pH), and filtering and drying the treated material. The Co-coating is also carried out by conventional method, e.g. by putting the gamma-Fe2O3 in an aqueous solution of a Co salt (e.g. a dilute solution of 0.1-10wt% concentration), alkalinizing the solution with an alkaline aqueous solution, and filtering and drying the material. The treated gamma-Fe2O3 is made to contact with CO or a mixture of CO and H2 (preferably at 250-400 deg.C) to obtain an acicular particle containing iron carbide.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭化鉄を含有する針状粒子の製法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing acicular particles containing iron carbide.

(従来の技術) 本出願人は針状オキシ水酸化鉄または針状酸化鉄をco
又はこれとH2との混合物と250〜400℃で接触さ
せることにより炭化鉄を含有する針状粒子を製造し、こ
れが化学的に安定で高保磁力を有し磁気記録媒体用の磁
性材料として有用であることを見い出し特許出願した(
例えば特願昭58−171765号、同58−2175
30号、同58−236753号、同59−10400
号)。しかし原料の鉄化合物のうちγ−F e203は
入手が容易であるが、これから得られる炭化鉄を含有す
る粒子は炭化鉄の割合が低く、磁気特性が他のものに比
較して劣るという欠点がある。
(Prior Art) The applicant has prepared acicular iron oxyhydroxide or acicular iron oxide in a cocoon.
Or, by contacting it with a mixture of this and H2 at 250 to 400°C, acicular particles containing iron carbide are produced, which are chemically stable and have a high coercive force, and are useful as a magnetic material for magnetic recording media. I discovered something and applied for a patent (
For example, Japanese Patent Application No. 58-171765, No. 58-2175
No. 30, No. 58-236753, No. 59-10400
issue). However, among the raw iron compounds, γ-F e203 is easily available, but the particles containing iron carbide obtained from it have a low proportion of iron carbide and have inferior magnetic properties compared to other materials. be.

(発明が解決しようとする問題点) 本発明の目的は入手の容易なγ−Fe20zから炭化鉄
の含有量が多い、従って磁気特性の優れた粒子の製法を
提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for producing particles from easily available γ-Fe20z that have a high content of iron carbide and therefore have excellent magnetic properties.

(問題点を解決するための手段) 本発明はアルカリ処理又はCo被着したγ−Fe20=
にCOもしくはこれとN2との混合物を接触させること
を特徴とする炭化鉄を含有する針状粒子の製法に係る。
(Means for solving the problems) The present invention provides γ-Fe20=
The present invention relates to a method for producing acicular particles containing iron carbide, which is characterized by contacting CO or a mixture of CO and N2.

本発明においてγ−Fe2O3としては、例えばa−F
eO○H1β−FeOOH又はγ−FeOOHをそれぞ
れ約200〜350℃に加熱及び脱水して得られたもの
、あるいはα、β、γ−FeOOHのいずれかを約30
0〜600℃に加熱してα−F e20−とじ、次にF
e、O,に還元し、更にこれを約300〜400℃で酸
化して結晶の緻密化を図ったγ−Fe20、$あらゆる
ものが用いられる。γ−Fe2O3はその原料のα−1
β−9γ−FeOOHの表面pH5以上のものを脱水し
て製造したものも用いることができる。
In the present invention, as γ-Fe2O3, for example, a-F
eO○H1 β-FeOOH or γ-FeOOH is heated to approximately 200 to 350°C and dehydrated, or α, β, or γ-FeOOH is heated to approximately 30°C.
Heated to 0-600℃ and α-F e20-stitched, then F
γ-Fe20, which is reduced to e, O, and further oxidized at about 300 to 400° C. to make the crystal dense, can be used. γ-Fe2O3 is the raw material α-1
A product produced by dehydrating β-9γ-FeOOH with a surface pH of 5 or more can also be used.

本発明においてγ−Fe2O3は平均軸比が3以上のも
のが通常であり、3〜20のものが好適であり、平均粒
径(長細)は、通常5μm以下、好適には0.1〜2μ
m、最適には0.1〜1.0μ鎮である。後にも述べる
ように、製造される粒子は、平均軸比及び平均粒径が、
原料のそれらと比較して若干小さくなるが殆ど変らず、
本発明の粒子一般について通常このようなものが好適で
あるからである。
In the present invention, γ-Fe2O3 usually has an average axial ratio of 3 or more, preferably 3 to 20, and the average particle size (elongated) is usually 5 μm or less, preferably 0.1 to 20. 2μ
m, optimally 0.1 to 1.0 μm. As will be described later, the particles produced have an average axial ratio and an average particle diameter of
Although it is slightly smaller than those of the raw material, there is almost no difference.
This is because such particles are generally suitable for the particles of the present invention.

また、本発明で使用するγ−Fe20.は、主成分がγ
−Fe2e、である限り、少量の銅、マグネシウム、マ
ンクン、ニッケルの酸化物、炭酸塩;硅素の酸化物;カ
リウム塩、ナトリウム塩等を添加して成るものであって
もよい。
Moreover, γ-Fe20. used in the present invention. has the principal component γ
-Fe2e, a small amount of copper, magnesium, manganese, nickel oxide or carbonate; silicon oxide; potassium salt, sodium salt, etc. may be added.

本発明においてγ−Fe20.はアルカリ処理又はCo
被着したものが使用される。
In the present invention, γ-Fe20. is treated with alkali or Co
The one covered is used.

アルカリ処理は公知の方法により行うことができ、例え
ば被処理物を水酸化ナトリウム、水酸化カリウム、水酸
化アンモニウムのようなアルカリの水溶液(例えば、p
H8以上、好ましくは10以上)と接触させて、必要な
らば30分〜1時間撹拌して、ロ別、乾燥することによ
り行うことができる。
The alkali treatment can be carried out by a known method, for example, the object to be treated is treated with an aqueous alkali solution such as sodium hydroxide, potassium hydroxide, or ammonium hydroxide (for example, p
H8 or higher, preferably 10 or higher), stirred for 30 minutes to 1 hour if necessary, filtered, and dried.

またCo被着も公知の方法に従えば良く、例えばCo塩
の水溶液(例えば0.1〜10重量%の稀薄溶液)にγ
−Fe20.を投入して室温ないし加温下に撹拌しアル
カリ水溶液でアルカリ性とし、必要ならば30分〜1時
間撹拌して、ロ別、乾燥するのが好ましい。
Co deposition may also be done by following a known method, for example, γ
-Fe20. It is preferable to add and stir at room temperature or under heating, make alkaline with an aqueous alkaline solution, stir for 30 minutes to 1 hour if necessary, separate and dry.

なお、原料は特願昭58−250163号に記載される
ように、珪素化合物、ホウ素化合物、アルミニウム化合
物、脂肪族カルボン酸もしくはその塩、リン化合物又は
チタン化合物などの焼結防止剤で被覆して用いることも
できる。
The raw material is coated with an anti-sintering agent such as a silicon compound, a boron compound, an aluminum compound, an aliphatic carboxylic acid or its salt, a phosphorus compound or a titanium compound, as described in Japanese Patent Application No. 58-250163. It can also be used.

本発明においてCOもしくはこれとN2との混合物は希
釈しであるいは希釈せずに使用することができ、希釈剤
としては、例えばN2、CO2、アルゴン、ヘリウム等
を挙げることができる。COとN2の混合物を用いる場
合、その混合比は適宜に選択することができるが、通常
はCOとN2の容量比がIlo、05〜175とするの
が好ましい。また希釈率は任意に選択でき、例えば約1
.1〜10倍(容量比)に希釈するのが好ましい。接触
温度、接触時間、流速等の接触条件は、例えばγ−Fe
20sの製造履歴、平均軸比、平均粒径、比表面積等に
応じ変動するため、適宜選択するのがよい。好ましい接
触温度は、約250〜400°C1より好ましくは約3
00〜380℃、好ましい接触時間は約1〜12時間で
ある。好ましい流速は、原料のγ−Fe20=(1g)
当り約1〜10100OS、T、P/分である。なお、
接触圧力は、希釈剤をも含めて、1〜2気圧が常用され
るが、特に制限はない。
In the present invention, CO or a mixture of CO and N2 can be used diluted or undiluted, and examples of the diluent include N2, CO2, argon, helium, and the like. When using a mixture of CO and N2, the mixing ratio can be selected as appropriate, but it is usually preferable that the volume ratio of CO and N2 is Ilo, 05 to 175. Further, the dilution rate can be selected arbitrarily, for example, about 1
.. It is preferable to dilute 1 to 10 times (volume ratio). Contact conditions such as contact temperature, contact time, flow rate, etc. are, for example, γ-Fe
Since it varies depending on the manufacturing history of 20s, average axial ratio, average particle diameter, specific surface area, etc., it is best to select it appropriately. The preferred contact temperature is about 250-400°C, more preferably about 3
00-380°C, the preferred contact time is about 1-12 hours. The preferred flow rate is the raw material γ-Fe20=(1g)
approximately 1 to 10100 OS, T, P/min. In addition,
The contact pressure, including the diluent, is usually 1 to 2 atmospheres, but is not particularly limited.

本発明において得られる粒子は、電子顕微鏡でM、察す
ると、平均的に一様な粒子であり、原料粒子と同形状で
、これらの形骸粒子であり、これが−大粒子となって存
在している。また、得られる粒子は、元素分析により炭
素を含有し、更にX線回折パターンにより、炭化鉄を含
有することが明らかである。X線回折パターンは、面間
隔が2.28.2.20.2.08.2.05及び1.
92Aを示す。かがるパターンは、Fe5C2に相当し
、本発明の炭化鉄は通常は主としてF es C2から
なるが、Fe2C。
The particles obtained in the present invention are particles that are uniform on average and have the same shape as the raw material particles, and are skeletal particles that exist as large particles when observed with an electron microscope. There is. Further, it is clear that the obtained particles contain carbon according to elemental analysis, and further contain iron carbide according to the X-ray diffraction pattern. The X-ray diffraction pattern has interplanar spacings of 2.28.2.20.2.08.2.05 and 1.
92A is shown. The overcast pattern corresponds to Fe5C2, whereas the iron carbide of the present invention usually consists mainly of Fe2C.

F e2oc 9(F e2.2c )、Fe、C等が
共存することがある。従って本発明の粒子に含有される
炭化鉄は、FexC(2≦にく3)と表示するのが適切
である。
Fe2oc 9 (F e2.2c ), Fe, C, etc. may coexist. Therefore, the iron carbide contained in the particles of the present invention is appropriately expressed as FexC (2≦Niku3).

また、炭化が不完全な場合、本発明で得られる粒子は酸
化鉄、主としてF ez O4をも含有する。
In case of incomplete carbonization, the particles obtained according to the invention also contain iron oxides, mainly F ez O4.

一般に、酸化鉄については、FeO,Fe、0.及びγ
−Fe20*が構造的に関連があr)、これら3者とも
酸素原子は、立方最密詰込み構造を有しており、現実に
存在するFe50<は、これらの幅で変動することから
上記の酸化鉄は、Fe0y(1<y≦1.5)で示すの
が適切である。
Generally, regarding iron oxide, FeO, Fe, 0. and γ
-Fe20* is structurally related r), the oxygen atoms in all three have a cubic close-packed structure, and the actually existing Fe50< varies within these widths, so the above The iron oxide of is suitably denoted by Fe0y (1<y≦1.5).

また、得られる粒子は、炭化鉄又は場合により酸化鉄を
含有するが、C,H及びNの元素分析値を参照すると、
通常、X線回折パターンで確認される炭化鉄の化学式で
計算される炭素量よりも炭素を過剰に含有する。かかる
過剰の炭素は、鉄と結合して存在するか遊離の炭素とし
て存在するのか不明である。この意味において、得られ
る粒子には、元素炭素が存在することがある。従って、
得られる粒子は、−大粒子としての形状が平均軸比3以
上の、実質的に炭化鉄から成る粒子又は炭化鉄と、酸化
鉄及び/又は元素炭素からなる粒子である。
In addition, the obtained particles contain iron carbide or iron oxide in some cases, but referring to the elemental analysis values of C, H and N,
Usually, it contains more carbon than the amount of carbon calculated from the chemical formula of iron carbide, which is confirmed by the X-ray diffraction pattern. It is unclear whether such excess carbon exists in combination with iron or as free carbon. In this sense, elemental carbon may be present in the particles obtained. Therefore,
The particles obtained are - particles consisting essentially of iron carbide or particles consisting of iron carbide, iron oxide and/or elemental carbon, in the form of large particles with an average axial ratio of 3 or more.

しかして、得られる粒子における炭化鉄及び酸化鉄の含
有量は、X線回折分析で検出されるそれぞれの主成分で
あるFe5C2及びFe、’O,を炭化鉄及び酸化鉄の
化学式と定め、更に元素分析及び灼熱増量により求める
ことができる。炭化鉄の含有量は20重量%以上が好ま
しく、50重1%以上が更に好ましい。また酸化鉄は7
0重量%以下が好ましく、40重量%以下が更に好まし
い。
Therefore, the content of iron carbide and iron oxide in the obtained particles is determined by defining the respective main components Fe5C2 and Fe,'O, detected by X-ray diffraction analysis as the chemical formulas of iron carbide and iron oxide, and further It can be determined by elemental analysis and scorching heat gain. The content of iron carbide is preferably 20% by weight or more, more preferably 50% by weight or more. Also, iron oxide is 7
It is preferably 0% by weight or less, and more preferably 40% by weight or less.

また、得られる粒子の平均軸比及び平均粒径は、原料の
γ−Fe2O3のそれらと比較して若干小さくなるが殆
ど差はない。従って、この製法で得られる粒子の平均軸
比は、通常3以上、好適には3〜20であり、平均粒径
(長軸)は、通常5μ涌以下、好適には0.1〜2μ転
最適には0.1〜1.0u111である。
Further, the average axial ratio and average particle diameter of the obtained particles are slightly smaller than those of the raw material γ-Fe2O3, but there is almost no difference. Therefore, the average axial ratio of the particles obtained by this manufacturing method is usually 3 or more, preferably 3 to 20, and the average particle diameter (long axis) is usually 5 μm or less, preferably 0.1 to 2 μm. The optimal value is 0.1 to 1.0u111.

本発明の炭化鉄を含有する粒子は、前述の特徴等から明
らかなとおり、磁気記録用磁性材料として用いることが
できるが、これに限られるものではなく、低級脂肪族炭
化水素のCOとH7とがらの合成のための触媒等として
用いることもできる。
As is clear from the above-mentioned characteristics, the iron carbide-containing particles of the present invention can be used as a magnetic material for magnetic recording, but are not limited thereto. It can also be used as a catalyst for the synthesis of

(発明の効果) 本発明の方法によれば入手の容易なγ−F e203を
原料として炭化鉄の含有量が多い、従って磁気特性の優
れた粒子を得ることができる。
(Effects of the Invention) According to the method of the present invention, particles with a high content of iron carbide and therefore excellent magnetic properties can be obtained using easily available γ-Fe203 as a raw material.

(実 施 例) 以下に実施例を挙げて詳しく説明する。(Example) A detailed explanation will be given below using examples.

実施例、において、各種特性等はそれぞれ次の方法によ
って求めた。
In Examples, various characteristics etc. were determined by the following methods.

(1)磁気特性 特別に記載がない限り次の方法によって求める。(1) Magnetic properties Unless otherwise specified, it is determined by the following method.

ホール素子を用いたがウスメーターにより試料充填率0
.2で、測定磁場5kOeで、保磁力(He。
Although a Hall element was used, the sample filling rate was 0 according to the mass meter.
.. 2, the measurement magnetic field was 5 kOe, and the coercive force (He.

Oe)、飽和磁化!(σs、 e、m、u)及び残留磁
化量(σr、 e、w、u)を測定する。
Oe), saturation magnetization! (σs, e, m, u) and residual magnetization (σr, e, w, u) are measured.

(2)C,H及びNの元素分析 元素分析は(株)柳本製作所製のMT2CHNeORD
ERYanacoを使用し、900℃で酸素(ヘリウム
キャリヤ)を通じることにより常法に従って行う。
(2) Elemental analysis of C, H and N Elemental analysis is performed using MT2CHNeORD manufactured by Yanagimoto Seisakusho Co., Ltd.
It is carried out according to a conventional method by using ERYanaco and passing oxygen (helium carrier) at 900°C.

(3)組成の求め方 酸化鉄および炭化鉄の化学式をXM回折分析により求め
て、Cの元素分析値および次に述べる加熱処理による重
量増から求めた6例えばFe=0゜はその重量の1.0
35倍に相当するFe2O,に、またF es C2は
その重量の1,317倍に相当するFe2O。
(3) How to determine the composition The chemical formulas of iron oxide and iron carbide were determined by XM diffraction analysis, and the elemental analysis value of C and the weight increase due to the heat treatment described below were determined.6 For example, Fe=0° is 1 of the weight. .0
Fe2O, which is equivalent to 35 times its weight, and Fe2O, which is equivalent to 1,317 times its weight.

に変化するものとして計算を行なう。加熱処理による重
量増は、試料を白金るつぼに入れてマツフル炉により6
00℃で1時間加熱処理し、X線回折によりQ −F 
e 203の存在を確認して、常法に従って加熱処理に
よる重量増を求める。
Calculations are performed assuming that the value changes to . Weight increase due to heat treatment can be measured by placing the sample in a platinum crucible and heating it in a Matsufuru furnace for 6 hours.
After heat treatment at 00℃ for 1 hour, Q-F was determined by X-ray diffraction.
After confirming the presence of e203, the weight increase due to heat treatment is determined according to a conventional method.

更に具体的に述べるとFe、C2、F e= O−及び
元素炭素の組成割合をそれぞれXs Y及び2重量%、
炭素分析値及び加熱処理による重量増をそれぞれA及び
8重量%とすると、X1V及び2は下記の3元方程式よ
り求めることができる。
More specifically, the composition ratios of Fe, C2, Fe=O- and elemental carbon are Xs Y and 2% by weight, respectively.
Assuming that the carbon analysis value and the weight increase due to heat treatment are A and 8% by weight, respectively, X1V and 2 can be determined from the following three-dimensional equation.

に+y 十z = 100 1.317x+ 1.0357= 100+ Bz +
 0.079x ” A 参考例1 α−FeOOH3gを600℃で1時間脱水してα−F
 e 203とし、400℃で1時間H2還元し350
℃で1時間空気中で酸化してγ−Fe20−を得た。こ
のγ−F C20aを2%水酸化ナトリウム水溶液10
0■1中に入れ、室温で1時間撹拌して、口割乾燥して
アルカリ処理したχ−Fe20*を得た。
+y 10z = 100 1.317x+ 1.0357= 100+ Bz +
0.079x ” A Reference Example 1 3 g of α-FeOOH was dehydrated at 600°C for 1 hour to form α-F.
e 203, H2 reduction was carried out at 400℃ for 1 hour, and 350
It was oxidized in air at ℃ for 1 hour to obtain γ-Fe20-. This γ-F C20a was added to 10% of a 2% aqueous sodium hydroxide solution.
The mixture was stirred at room temperature for 1 hour, and then split and dried to obtain alkali-treated χ-Fe20*.

参考例2 Q−FeOOH3gを2%水酸化ナトリウム水溶液20
0m I中に入れ、室温で1時間撹拌して、口割乾燥し
た。
Reference example 2 3 g of Q-FeOOH was added to 2% sodium hydroxide aqueous solution 20
The mixture was poured into a 0ml solution, stirred at room temperature for 1 hour, and then cracked and dried.

このα−FeooHをマツフル炉に入れ、300℃で1
時間加熱してγ−Fe2O3を得た。
This α-FeooH was placed in a Matsufuru furnace and heated to 300℃ for 1
After heating for a period of time, γ-Fe2O3 was obtained.

次にこれを2%硫酸コパル) 100m1中に入れ撹拌
しながらNaOH水溶液でpHを10にし、80°Cで
30分間撹拌して、口割乾燥してCo被着したγ−F 
C20sを得た。
Next, this was poured into 100 ml of 2% copal sulfate, adjusted to pH 10 with aqueous NaOH solution with stirring, stirred at 80°C for 30 minutes, and dried to remove the Co-coated γ-F.
C20s was obtained.

参考例3 CI−FeOOH3gを600℃で1時間脱水して得ら
れた(1−Fe、03を400℃で1時間H2還元、更
に350℃で1時間空気中で酸化してγ−Fe20.を
得た。以下、参考例2と同様にしてCo被着し□たγ−
Fe20コを得た。
Reference Example 3 3 g of CI-FeOOH was dehydrated at 600°C for 1 hour to obtain γ-Fe20. Hereinafter, Co-coated γ-
Obtained 20 Fe.

実施例1〜5 第1表に記載のアルカリ処理又はCo被着した所定平均
粒径(長軸)および平均軸比の針状のγ−Fe201粒
子2gを磁製ボートに入れて管状炉に挿入し、窒素を流
して空気を置換した後、所定接触温度に袢温し、その温
度で所定の流速で接触気体と所定時間接触させ、その後
室温まで放冷し黒色の粉末を得た。
Examples 1 to 5 2 g of acicular γ-Fe201 particles having a predetermined average particle diameter (long axis) and average axial ratio that have been treated with alkali or coated with Co as shown in Table 1 are placed in a porcelain boat and inserted into a tube furnace. After replacing the air with nitrogen, the mixture was heated to a predetermined contact temperature, contacted with a contact gas at a predetermined flow rate for a predetermined time at that temperature, and then allowed to cool to room temperature to obtain a black powder.

生成物のX線回折パターンは、いずれも^STMのX 
 Ray Powder Data  File 20
−509のFe5C2I ron Carbideと一
致した。磁気特性及び組成を#52表に示す。
The X-ray diffraction patterns of the products are both ^STM
Ray Powder Data File 20
-509 Fe5C2Iron Carbide. The magnetic properties and composition are shown in Table #52.

IjS1表 第2表 (以 上)IjS1 table Table 2 (that's all)

Claims (4)

【特許請求の範囲】[Claims] (1)アルカリ処理又はCo被着したγ−Fe_2O_
3にCOもしくはこれとH_2との混合物を接触させる
ことを特徴とする炭化鉄を含有する針状粒子の製法。
(1) γ-Fe_2O_ treated with alkali or coated with Co
A method for producing acicular particles containing iron carbide, characterized in that 3 is brought into contact with CO or a mixture of CO and H_2.
(2)接触温度が250〜400℃である特許請求の範
囲第1項に記載の製法。
(2) The manufacturing method according to claim 1, wherein the contact temperature is 250 to 400°C.
(3)アルカリ処理が被処理物をアルカリの水溶液と接
触させて、ロ別、乾燥することからなる特許請求の範囲
第1項に記載の製法。
(3) The manufacturing method according to claim 1, wherein the alkali treatment comprises contacting the object to be treated with an aqueous alkali solution, filtering and drying.
(4)Co被着が被処理物をCo塩の水溶液に投入して
、アルカリ水溶液でアルカリ性としロ別、乾燥すること
からなる特許請求の範囲第1項に記載の製法。
(4) The manufacturing method according to claim 1, wherein the Co deposition comprises placing the object to be treated in an aqueous solution of Co salt, making it alkaline with an alkaline aqueous solution, separating it, and drying it.
JP59231588A 1984-11-01 1984-11-01 Production of acicular particle containing iron carbide Pending JPS61111922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59231588A JPS61111922A (en) 1984-11-01 1984-11-01 Production of acicular particle containing iron carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59231588A JPS61111922A (en) 1984-11-01 1984-11-01 Production of acicular particle containing iron carbide

Publications (1)

Publication Number Publication Date
JPS61111922A true JPS61111922A (en) 1986-05-30

Family

ID=16925866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59231588A Pending JPS61111922A (en) 1984-11-01 1984-11-01 Production of acicular particle containing iron carbide

Country Status (1)

Country Link
JP (1) JPS61111922A (en)

Similar Documents

Publication Publication Date Title
US4668414A (en) Process for producing acicular particles containing an iron carbide
KR860000485B1 (en) Process for producing ferromagnetic metallic particles
JPS6323137B2 (en)
JPH0230626A (en) Iron carbide fine granule and production thereof
JPS61111922A (en) Production of acicular particle containing iron carbide
JPS61111921A (en) Production of acicular particle containing iron carbide
KR890003868B1 (en) Process for producing acicular particles containing an iron carbide
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPS61106410A (en) Particles containing iron carbide, its preparation and use
JPS5850005B2 (en) Jikikirokuyouji Seifun Matsuno Seizouhou
KR890002666B1 (en) Acicular particulate material containing iron carbide
JPS6071509A (en) Needlelike particle containing iron carbide
JPH01192713A (en) Production of iron carbide fine particles
JP2002050508A (en) Method of manufacturing magnetic powder
JPS64322B2 (en)
JPS5939730A (en) Manufacture of ferromagnetic iron oxide
JPS5860624A (en) Ferromagnetic powder and its preparation
JPS5941453A (en) Needle crystal iron alloy magnetic particulate powder for magnetic recording and preparation thereof
JPS58167432A (en) Production of needle-like crystalline iron oxide particle powder
JPS60155522A (en) Production of acicular particle containing iron carbide
JPS6349722B2 (en)
JPS59199533A (en) Magnetic powder
KR820001794B1 (en) Magnetic recording medium
JPS639735B2 (en)