JPS61111913A - Production of hydrocyanic acid - Google Patents

Production of hydrocyanic acid

Info

Publication number
JPS61111913A
JPS61111913A JP22986784A JP22986784A JPS61111913A JP S61111913 A JPS61111913 A JP S61111913A JP 22986784 A JP22986784 A JP 22986784A JP 22986784 A JP22986784 A JP 22986784A JP S61111913 A JPS61111913 A JP S61111913A
Authority
JP
Japan
Prior art keywords
acetonitrile
hydrocyanic acid
platinum
mixture
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22986784A
Other languages
Japanese (ja)
Inventor
Masayuki Otake
大竹 正之
Masakatsu Hatano
波多野 正克
Kazunori Oshima
一典 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP22986784A priority Critical patent/JPS61111913A/en
Publication of JPS61111913A publication Critical patent/JPS61111913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To produce hydrocyanic acid in high yield at a lower reaction temperature than conventional process, by reacting a mixture of acetonitrile and a saturated hydrocarbon with oxygen and ammonia in vapor phase in the presence of a catalyst consisting of platinum or platinum and rhodium. CONSTITUTION:Hydrocyanic acid is produced by reacting a mixture of acetonitrile and a saturated hydrocarbon with oxygen and ammonia in vapor phase in the presence of a catalyst consisting of platinum or platinum and rhodium. The ratio of the oxygen to the raw material mixture is 0.5-2 times, preferably 0.8-1.2 times the theoretical value calculated by the formula (alpha is molar fraction of acetonitrile in the mixture of acetonitrile and hydrocarbon). The ratio of the ammonia to the raw material mixture is <=2 times the above theoretical value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は青酸の工業的製造法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an industrial method for producing hydrocyanic acid.

詳しくはアセトニトリルと飽和炭化水素との混合物を酸
素およびアンモニアと触媒の存在下、気相で反応させて
青酸を製造する方法に関するものである。
Specifically, it relates to a method for producing hydrocyanic acid by reacting a mixture of acetonitrile and a saturated hydrocarbon with oxygen and ammonia in the presence of a catalyst in the gas phase.

〔従来技術とその問題点〕[Prior art and its problems]

プロピレンとアンモニアと酸素または酸系含有ガスとか
ら気相でアクリロニトリルを製造する際、副生物として
青酸やアセトニトリルが生成する。青酸は工業原料とし
て広い用途を有するのに対し、アセトニトリルの用途は
狭く、その工業的価値は低い。従ってアセトニトリルを
青酸に変換せしめることは工業上、非常に有意義なこと
である。
When acrylonitrile is produced in the gas phase from propylene, ammonia, and oxygen or acid-containing gas, hydrocyanic acid and acetonitrile are produced as byproducts. Hydrocyanic acid has wide uses as an industrial raw material, whereas acetonitrile has narrow uses and its industrial value is low. Therefore, converting acetonitrile into hydrocyanic acid is of great industrial significance.

従来アセトニトリルから青酸を製造する方法としては■
白金族金属触媒の存在下酸素を共存させないでアセトニ
トリルとアンモニアをttoo−iqoo℃で反応させ
る方法(特分昭or−tlIsbo) 、■酸化物触媒
の存在下温度参〇〇〜!r00℃でアセトニトリルを酸
素および場合によりアンモニアと気相で反応させる方法
(公開昭Sφ−りttoo)、■白金/アルミナ触媒、
あるいは白金触媒の存在下、アセトニトリルとアンモニ
アと酸素を温度700〜100℃で反応させる方法(工
業化学雑誌6g巻二号−g3〜−g6ページ)などが知
られている。
The conventional method for producing hydrocyanic acid from acetonitrile is ■
A method of reacting acetonitrile and ammonia at ttoo-iqoo°C in the presence of a platinum group metal catalyst without the coexistence of oxygen (Special Show or-tlIsbo), ■ Temperature in the presence of an oxide catalyst: A method of reacting acetonitrile with oxygen and optionally ammonia in the gas phase at r00°C (Published in Showa Sφ-rittoo), ■Platinum/alumina catalyst,
Alternatively, a method is known in which acetonitrile, ammonia, and oxygen are reacted at a temperature of 700 to 100° C. in the presence of a platinum catalyst (Industrial Chemistry Magazine, Vol. 6g, No. 2, pages g3 to g6).

他方メタンの如き低級飽和炭化水素から青酸を製造する
方法としてはAndrusmaw法を始めとじて8eh
■nigan法、BMA法等多数提案されている。
On the other hand, methods for producing hydrocyanic acid from lower saturated hydrocarbons such as methane include the Andrusmaw method and 8eh
■Many proposals have been made, including the Nigan method and the BMA method.

これらの低級炭化水素を原料とする反応はいずれも/θ
OOC以上の高温を必要とする点に難点がある。このよ
うにアセトニトリルやメタンを各々個別に用いて青酸を
製造する方法は知られているが、アセトニトリルとメタ
ンの如き低級飽和炭化水素の両方を含む混合物よシ育酸
を製造することは全く知られていない。これはアセトニ
トリルとメタンの如き低級飽和炭化水素とでは反応性が
異なり、従来アセトニトリルから青酸を製造する場合の
触媒はメタンの如き低級飽和炭化水素に対しては酸化活
性が低すぎて不適当であるし、またメタンの如き低級飽
和炭化水素から青酸を製造する場合の触媒はアセトニト
リルに対しては酸化活性が高すぎるというのが大きな難
点であった。
All reactions using these lower hydrocarbons as raw materials /θ
The drawback is that it requires a high temperature higher than OOC. Although it is known to produce hydrocyanic acid using acetonitrile and methane individually, it is completely unknown to produce hydrocyanic acid from a mixture containing both acetonitrile and lower saturated hydrocarbons such as methane. Not yet. This is because acetonitrile and lower saturated hydrocarbons such as methane have different reactivities, and conventional catalysts for producing hydrocyanic acid from acetonitrile have too low oxidation activity for lower saturated hydrocarbons such as methane, making them unsuitable. However, a major drawback was that the catalyst used to produce hydrocyanic acid from lower saturated hydrocarbons such as methane had too high oxidizing activity for acetonitrile.

本発明者らはアセトニトリルとメタンの如き低級飽和炭
化水素との混合物を原料として用いることにより、白金
もしくは白金−ロジウム合金触媒の存在下、1..00
〜700℃程度の温度で、従来不活性と思われていた炭
化水素をも高い転化率を与えることができ、その目的を
達成し得ることを見出し本発明に到達した。
By using a mixture of acetonitrile and a lower saturated hydrocarbon such as methane as a raw material, the present inventors have demonstrated that 1. .. 00
The present invention has been accomplished by discovering that a high conversion rate can be achieved even for hydrocarbons that were conventionally thought to be inert at temperatures of about 700° C., and that the objective can be achieved.

すなわち本発明の目的はアセトニトリルと飽和炭化水素
との混合物を原料として高い空時収率で効率よく青酸を
製造する方法を提供することにあシ、この目的は白金ま
たは白金およびロジウムよりなる触媒の存在下、アセト
ニトリルと飽和炭化水素との混合物を酸素およびアンモ
ニアと気相で反応させること2により達成される。
That is, an object of the present invention is to provide a method for efficiently producing hydrocyanic acid with a high space-time yield using a mixture of acetonitrile and a saturated hydrocarbon as a raw material, and this object is to provide a method for efficiently producing hydrocyanic acid with a high space-time yield. This is achieved by reacting a mixture of acetonitrile and a saturated hydrocarbon with oxygen and ammonia in the gas phase 2 in the presence of acetonitrile and a saturated hydrocarbon.

本発明方法において白金あるいは白金およびロジウムよ
りなる触媒としては金属状の白金または白金とロジウム
の合金が使用されるが、これらの触媒はアンモニアの酸
化による酸化窒素の製造に使用される触媒として知られ
ており、その製造法は例えば米国特許t70&0!!号
に記載されている。
In the method of the present invention, metallic platinum or an alloy of platinum and rhodium is used as a catalyst consisting of platinum or platinum and rhodium, and these catalysts are known as catalysts used for the production of nitrogen oxide by oxidation of ammonia. For example, the manufacturing method is disclosed in the US patent t70&0! ! listed in the number.

触媒として白金−ロジウム合金触媒を使用する場合は、
触媒中のロジウム含量として2〜コO重量%までの白金
−ロジウム合金が好適である。
When using a platinum-rhodium alloy catalyst as a catalyst,
Platinum-rhodium alloys with a rhodium content in the catalyst of from 2 to 0% by weight are preferred.

触媒の形態としてはガーゼ状すなわち網状または網の層
状体の形態になっていることが好ましく網目としては1
−o−is:oメツシュ、白金または白金−ロジウム合
金の線の直径としては0.05〜0.09 mのものが
好適である。
The catalyst is preferably in the form of a gauze, that is, a network or a layered network.
-o-is: The diameter of the mesh, platinum or platinum-rhodium alloy wire is preferably 0.05 to 0.09 m.

上記触媒を固定床反応器に充填し反応温度を200〜1
00℃に保ち、アセトニトリルとメタンの如き低級飽和
炭化水素、酸素または酸素含有ガス及びアンモニアを含
む混合ガスを接触させる。原料のアセトニトリルは必ず
しも高純度である必要はなく、アクリロニトリル、プロ
ピオニトリル等の脂肪族ニトリル類、アセトン、アクロ
レイン、アセトアルデヒド等のカルボニル化合物、更に
はプロピレンなどの炭化水素を含有していてもよい。
The above catalyst was packed into a fixed bed reactor and the reaction temperature was set at 200-1.
The temperature is maintained at 00°C, and acetonitrile is brought into contact with a mixed gas containing a lower saturated hydrocarbon such as methane, oxygen or an oxygen-containing gas, and ammonia. The raw material acetonitrile does not necessarily have to be highly pure, and may contain aliphatic nitriles such as acrylonitrile and propionitrile, carbonyl compounds such as acetone, acrolein, and acetaldehyde, and even hydrocarbons such as propylene.

アセトニトリルと共に用いる原料である飽和炭化水素と
しては分子中の炭素数が7%4gの飽和炭化水素が好ま
しく、メタン、エタン、プロン、ブタンが挙げられる。
The saturated hydrocarbon which is a raw material used together with acetonitrile is preferably a saturated hydrocarbon having a carbon number of 7%/4 g in the molecule, and examples thereof include methane, ethane, purone, and butane.

またこれらの炭化水素は必ず′しも純品である必要はな
く数種の混合物であってもよい。
Furthermore, these hydrocarbons do not necessarily have to be pure products, and may be a mixture of several types.

原料中のアセトニトリルと飽和炭化水素の比率は特に限
定される本のではないが、本発明の目的からして好まし
い範囲はモル比で/ : 0.0 /〜/ :10であ
る。
The ratio of acetonitrile to saturated hydrocarbon in the raw material is not particularly limited, but from the purpose of the present invention, the preferred range is /: 0.0 / to /: 10 in terms of molar ratio.

工業的には酸素含有ガスとしては空気が好ましく用いら
れる。
Industrially, air is preferably used as the oxygen-containing gas.

原料混合物に対する酸素の供給比率理論量は次式により
算出し得るが、理論量の005〜2倍の範囲、好ましく
は0.g〜ハコ倍の範囲から選択される。
The theoretical amount of oxygen to be supplied to the raw material mixture can be calculated using the following formula, but it is in the range of 0.05 to 2 times the theoretical amount, preferably 0.005 to 2 times the theoretical amount. Selected from the range of g to box times.

αCHsCN+(/−a)CnHm+tモ〔α+(n+
o、s ) (を−α))O1+〔α十m(/−a))
NH8→ (コα+1(/<)lHCN+2〔α+(n
+o、r)(/−a) ]HtO(1) (但しαはアセトニトリルと炭化水素との原料混合物中
のアセトニトリルのモル分率) また原料混合物に対するアンモニアの供給比率は同じく
(1)式に示す理論量の一倍までの範囲で選択される。
αCHsCN+(/-a)CnHm+tmo[α+(n+
o, s ) (-α)) O1+ [α0m(/-a))
NH8→ (koα+1(/<)lHCN+2[α+(n
+o, r) (/-a) ]HtO(1) (where α is the molar fraction of acetonitrile in the raw material mixture of acetonitrile and hydrocarbon) The supply ratio of ammonia to the raw material mixture is also shown in equation (1). It is selected within a range up to one times the theoretical amount.

反応は通常、常圧付近で行なわれるが必要に応じ減圧ま
たは加圧下で行なってもよい。
The reaction is usually carried out near normal pressure, but may be carried out under reduced pressure or increased pressure if necessary.

原料ガスと触媒との接触時間は0.00 /〜O1θ/
秒の範囲から適宜選択される。
The contact time between the raw material gas and the catalyst is 0.00 /~O1θ/
Appropriately selected from the range of seconds.

〔実施例〕〔Example〕

次に実施例によシ本発明を具体的に説明するが本発明は
その侠旨を越えない限り以下の実施例に限定されるもの
ではない。
Next, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the following examples unless it exceeds the scope of the invention.

なお以下の例においてアセトニトリルの反応率、飽和炭
化水素の反応率、青酸選択率、青酸収率は次式により定
義される。
In the following examples, the reaction rate of acetonitrile, the reaction rate of saturated hydrocarbons, the selectivity of hydrocyanic acid, and the yield of hydrocyanic acid are defined by the following equations.

実施例t〜3 内径/jamの5US−,3108製反応管を同じ材質
の内径jjmの管状炉に垂直に挿入し、反応管の中央部
に線径0.0 ? A vmφ、10メツシユのPt−
10%Rh合金よりなる金網q枚を重ねて張った。これ
に反応管上部に設けた予熱器で、yoocに予熱したア
セトニトリル、メタン、アンモニアおよび空気の混合ガ
スを所定流量で供給した。
Example t~3 A reaction tube made of 5US-, 3108 with an inner diameter of /jam is vertically inserted into a tube furnace made of the same material and with an inner diameter of jjm, and a wire diameter of 0.0? A vmφ, 10 mesh Pt-
Q pieces of wire mesh made of 10% Rh alloy were stacked and stretched. To this, a preheated mixed gas of acetonitrile, methane, ammonia, and air was supplied to the yooc at a predetermined flow rate using a preheater provided at the top of the reaction tube.

反応は常圧で行ない、反応温度は触媒床直下に挿入した
熱電対によシ測定した。
The reaction was carried out at normal pressure, and the reaction temperature was measured with a thermocouple inserted directly below the catalyst bed.

表−lに反応条件及び反応結果を示す。Table 1 shows the reaction conditions and reaction results.

実施例ダ〜t メタンの代わシに各々エタン、プロパン、ブタンを使用
したこと以外は実施例/と同様の実験を繰υ返した。
Examples D-T The same experiment as in Example 1 was repeated except that ethane, propane, and butane were used in place of methane, respectively.

表−lに反応条件及び反応結果を示す。Table 1 shows the reaction conditions and reaction results.

比較例 「特願昭3g−790AAJ記載の方法で下記触媒を調
製した。
Comparative Example The following catalyst was prepared by the method described in Japanese Patent Application No. 3G-790AAJ.

攪拌下20重量%シリカゲルコO?に鉄として1モル/
lの硝酸第コ鉄(”(NOs)s・’HtO〕の水溶液
7.7 j mt及びリンとして1モル/lのリン酸[
H,PO,:)の水溶液q、−9tdを順次加えた。
20% by weight silica gelco O under stirring? 1 mol of iron/
An aqueous solution of ferrous nitrate ("(NOs)s・'HtO) of 7.7 j mt and 1 mol/l of phosphoric acid [as phosphorus]
Aqueous solutions q and -9td of H, PO, :) were sequentially added.

次いで五酸化バナジウム(V、05) 9.099 f
を水30−および蓚酸[(C00H)、・コH,O]2
θ%混合し加熱して溶解させ、メスフラスコで水で10
0tntに希釈し、バナジウムとして1モル/lの溶液
を調製しこの溶液0.t A−を上記溶液に加えて液の
pHをコ、コ に調節し攪拌下ホットプレート上で加熱
し乾固させた。′4られた固形物を直径Am、厚さ3−
のタブレットに成型し空気流通下にtro℃で一時間焼
成した。
Then vanadium pentoxide (V, 05) 9.099 f
water 30- and oxalic acid [(C00H),・CoH,O]2
θ% Mix, heat to dissolve, and dilute with water in a volumetric flask for 10
0tnt to prepare a 1 mol/l solution as vanadium. tA- was added to the above solution to adjust the pH of the solution to C, C, and the mixture was heated on a hot plate with stirring to dryness. '4 The solid material has a diameter of Am and a thickness of 3-
The mixture was molded into a tablet and baked at tro°C for one hour under air circulation.

このようにして得られた触媒の組成はF@。。v61P
つ50nであり触媒成分と担体としてのシリカの割合は
重量でユo :goであった。
The composition of the catalyst thus obtained was F@. . v61P
The ratio of the catalyst component to the silica as a carrier was 1:0 by weight.

この触媒l−を内径ettaxの耐熱ガラス製反応管に
充填し、実施例−の組成の混合ガスを空間速度コ0.0
0 hr−’  (接触時間へg秒)で反応管に供給し
、usocで反応を行なわせた。
This catalyst l- was filled in a heat-resistant glass reaction tube with an inner diameter ettax, and a mixed gas having the composition of Example-
0 hr-' (g seconds to contact time) was fed into the reaction tube, and the reaction was run at usoc.

その結果アセトニトリルの転化率は99.6%、メタン
の反応率はu%、青酸選択率は7 Lコ%、青酸収率は
+ o、r%であった。
As a result, the conversion rate of acetonitrile was 99.6%, the conversion rate of methane was u%, the selectivity of hydrocyanic acid was 7 L co%, and the yield of hydrocyanic acid was +o.r%.

なお上記触媒は供給原料がアセトニトリル単独の場合に
は同一空間速度、同一反応温度でt /、0 %の青酸
収率を与えた。
Note that the above catalyst gave a hydrocyanic acid yield of t/0% at the same space velocity and the same reaction temperature when the feedstock was acetonitrile alone.

〔発明の効果〕〔Effect of the invention〕

本発明は原料としてアセトニトリルと飽和炭化水素との
混合物を使用するととを特徴としており、アクリロニト
リル製造時の副生物であるアセトニトリルのみを原料と
する場合に比べて豊富に入手し得る飽和炭化水素を同時
に使用するために原料入手の点で制約が少く、一方、飽
和炭化水素のみを原料とする方法に比較するとよ)低い
反応温度でより高い収率で青酸を得ることができる。
The present invention is characterized in that a mixture of acetonitrile and saturated hydrocarbons is used as a raw material, and compared to the case where only acetonitrile, which is a by-product during the production of acrylonitrile, is used as a raw material, saturated hydrocarbons, which are abundantly available, can be used at the same time. There are fewer restrictions on the availability of raw materials for use, and on the other hand, hydrocyanic acid can be obtained in higher yields at lower reaction temperatures (compared to methods using only saturated hydrocarbons as raw materials).

尚、飽和炭化水素としてプロパン、n−ブタンを使用す
る場合は、メタンあるいはエタンを使用する場合に比較
して青酸収率が低いが、特開昭s r −t a ? 
tコ3等の公知技術においてプロパンやブタンを原料と
して使用した場合の炭素重量基準の青酸収率は21−2
?優であり、本発明はこれらの公知技術をはるかに凌駕
するものである。
Note that when propane or n-butane is used as the saturated hydrocarbon, the yield of hydrocyanic acid is lower than when methane or ethane is used.
When propane or butane is used as a raw material in known techniques such as Tco3, the yield of hydrocyanic acid based on carbon weight is 21-2.
? The present invention far exceeds these known techniques.

ほか1名1 other person

Claims (1)

【特許請求の範囲】[Claims] (1)白金または白金およびロジウムよりなる触媒の存
在下、アセトニトリルと飽和炭化水素との混合物を酸素
およびアンモニアと気相で反応させることを特徴とする
青酸の製造法。
(1) A method for producing hydrocyanic acid, which comprises reacting a mixture of acetonitrile and a saturated hydrocarbon with oxygen and ammonia in the gas phase in the presence of a catalyst consisting of platinum or platinum and rhodium.
JP22986784A 1984-10-31 1984-10-31 Production of hydrocyanic acid Pending JPS61111913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22986784A JPS61111913A (en) 1984-10-31 1984-10-31 Production of hydrocyanic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22986784A JPS61111913A (en) 1984-10-31 1984-10-31 Production of hydrocyanic acid

Publications (1)

Publication Number Publication Date
JPS61111913A true JPS61111913A (en) 1986-05-30

Family

ID=16898940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22986784A Pending JPS61111913A (en) 1984-10-31 1984-10-31 Production of hydrocyanic acid

Country Status (1)

Country Link
JP (1) JPS61111913A (en)

Similar Documents

Publication Publication Date Title
US3948959A (en) Process for preparing alpha, beta unsaturated acids by catalytic oxidation of corresponding saturated acids in the gas phase
KR100786051B1 (en) Improved catalyst for the manufacture of acrylonitrile
JPS6117546B2 (en)
JPS6299360A (en) Manufacture of 3-cyanopyridine from mixture of 3-methylpyridine and 3-methylpiperidine
JPS5827255B2 (en) Method for producing unsaturated fatty acids
JPH03109943A (en) Preparation of catalyst for production of methacrolein and methacylic acid
EP0107639B1 (en) Catalysts for the oxidation and ammoxidation of alcohols
TWI466828B (en) Process of catalytic ammoxidation for hydrogen cyanide production
SU648083A3 (en) Method of obtaining acrylonitrile
JPH05237388A (en) Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPS61111913A (en) Production of hydrocyanic acid
JPH03246269A (en) Method for increasing yield of acetonitrile
US4521395A (en) Process for oxidation and ammoxidation
KR970011453B1 (en) Process for producing acrylonitrile
JP2003170044A (en) Catalyst preparation method
JPS625420B2 (en)
JPS6026046B2 (en) Production method of cyanide
JPH09176102A (en) Production of methacrylonitrile
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPH08183753A (en) Production of pyruvic acid
KR100324872B1 (en) A process for preparing Acrolein
JPH0283348A (en) Production of acrolein
JP3487516B2 (en) Preparation of phenoxy-substituted benzonitrile
JPS6144857B2 (en)
KR810000461B1 (en) Method for catalytical production of acrylonitrile