JPS61111586A - Manufacture of amorphous silicon solar cell - Google Patents

Manufacture of amorphous silicon solar cell

Info

Publication number
JPS61111586A
JPS61111586A JP59234262A JP23426284A JPS61111586A JP S61111586 A JPS61111586 A JP S61111586A JP 59234262 A JP59234262 A JP 59234262A JP 23426284 A JP23426284 A JP 23426284A JP S61111586 A JPS61111586 A JP S61111586A
Authority
JP
Japan
Prior art keywords
solar cell
conductive film
amorphous silicon
transparent conductive
substrate temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59234262A
Other languages
Japanese (ja)
Inventor
Hitoshi Sannomiya
仁 三宮
Katsuhiko Nomoto
克彦 野元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59234262A priority Critical patent/JPS61111586A/en
Publication of JPS61111586A publication Critical patent/JPS61111586A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent the deterioration in characteristic of the solar cell by a method wherein the clear conductive film of a solar cell having amorphous Si layers is adhered by sputtering at low temperature. CONSTITUTION:Using a stainless steel substrate 1 as the substrate of a solar cell, an amorphous Si P-layer 2 is formed by a plasma CVD apparatus in a mixed atmosphere of SiH4, B2H6, and H2 at a substrate temperature of 150-250 deg.C. Next, an amorphous Si I-layer 3 is formed in a mixed atmosphere of SiH4 and H2, and an amorphous Si N-layer 4 is formed in a mixed atmosphre of SiH4, PH3, and H2. Finally, a clear conductive film 5 is adhered by using a magnetron sputtering apparatus. Since the substrate temperature at the time of adhering the clear conductive film is thus kept at low temperature, the photoelectric conversion efficiency of the solar cell can be markedly improved.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は非晶質シリコン太陽電池の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for manufacturing an amorphous silicon solar cell.

〈発明の技術的背景とその問題点〉 従来より、非晶質シリコン太陽電池を作製する方法は種
々提案されており、導電性基板、例えばステンレス基板
上にP型アモルファス(非晶質)シリコン層、I型アモ
ルファス(非晶t)シリコン層、N型アモルファス(非
晶質)シリコン層をこの順序に積み、その上に透明導電
膜を付着する方法と透光性基板1例えばガラス基板上に
透明導電膜、P型アモルファス(非晶質)シリコン層、
Igアモルファス(非晶質)シリコン層、N型アモルフ
ァス(非晶質)シリコン層をこの順序に積み、その上に
アルミ電1面を蒸着する方法等が提案されてhる。
<Technical background of the invention and its problems> Various methods for producing amorphous silicon solar cells have been proposed in the past. , a method of stacking an I-type amorphous (non-crystalline T) silicon layer and an N-type amorphous (non-crystalline) silicon layer in this order and attaching a transparent conductive film thereon; Conductive film, P-type amorphous silicon layer,
A method has been proposed in which an Ig amorphous silicon layer and an N-type amorphous silicon layer are stacked in this order, and an aluminum layer is deposited thereon.

従来より、導電性基板を用いてアモルファスシリコン太
陽電池を作製する場合、透明導電膜CITO:インジウ
ム錫酸化物)は主に電子ビーム蒸着法によって行なわれ
ている。しかし電子ビーム蒸着法において良好な透過率
と比抵抗を有する透明導電膜を得る為には基板温度を3
00℃程度にする必要がある。ところが通常SiH4ガ
スを用いてプラズマCVD法によって太陽電池を作製す
る場合、その基板温度は200℃程度に保持されて作製
されるものであり1.アモルファスシリコン層を堆積し
た後に温度を上昇させて透明導電膜を付着しなければな
らず、その結果として太陽電池特性が劣化する可能性が
あった。
Conventionally, when producing an amorphous silicon solar cell using a conductive substrate, a transparent conductive film CITO (indium tin oxide) is mainly formed by an electron beam evaporation method. However, in order to obtain a transparent conductive film with good transmittance and specific resistance using electron beam evaporation, the substrate temperature must be increased to 3.
It is necessary to keep the temperature around 00°C. However, when a solar cell is normally fabricated by plasma CVD using SiH4 gas, the substrate temperature is maintained at about 200°C; After depositing the amorphous silicon layer, the temperature must be increased to deposit the transparent conductive film, which could result in deterioration of the solar cell properties.

〈発明の目的〉 本発明は上記諸点に鑑みて成されたものでありアモルフ
ァスシリコン層を堆積した後の透明導電膜の付着工程が
太陽電池特性を劣化させない非晶質太陽電池の製造方法
を提供することを目的としている。
<Object of the Invention> The present invention has been made in view of the above points, and provides a method for manufacturing an amorphous solar cell in which the step of attaching a transparent conductive film after depositing an amorphous silicon layer does not deteriorate solar cell characteristics. It is intended to.

〈発明の構成〉 上記目的を達成するため、本発明の非晶質太陽電池の製
造方法は、透明導電膜付着工程時の基板温度を150℃
から250℃の間に保持するように構成している。
<Structure of the Invention> In order to achieve the above object, the method for manufacturing an amorphous solar cell of the present invention is such that the substrate temperature during the transparent conductive film deposition step is 150°C.
The temperature is maintained between 250°C and 250°C.

〈発明の実施例〉 本発明の詳細な説明に先立って、本発明の特徴を述べれ
ば次の通りである。
<Embodiments of the Invention> Prior to detailed description of the present invention, the characteristics of the present invention will be described as follows.

即ち1本発明は非晶質太陽電池を作製する場合透明導電
膜を付着する場合の基板温度を150℃〜250℃、好
ましくは200℃に設定することにより、より高効率な
太陽電池の作製を可能とするものであり、より具体的に
は、後述する実施例の説明からも明らかなように、透明
導電膜の付着工程を例えば電子ビーム蒸着法に代えてス
パッタリング法を用いるようになして、より低温での透
明導電膜の付着を行なうようにしたものである。
That is, 1. When producing an amorphous solar cell, the substrate temperature when attaching a transparent conductive film is set at 150°C to 250°C, preferably 200°C, thereby making it possible to produce a solar cell with higher efficiency. More specifically, as will be clear from the description of the examples below, the transparent conductive film can be deposited by using sputtering instead of electron beam evaporation, for example. The transparent conductive film is attached at a lower temperature.

スパッタリング法は電子ビーム蒸着法と比較して長時間
の連続放電が可能であり、量産性に富むという利点を持
っている。透明導電膜を作製する際のスパッタリングの
ターゲットにITOCインジウム錫酸化物)の焼結体を
用いて行なった結果第2図に示したように基板温度20
0 ℃以上では透過率はほぼ一定であり、比抵抗は基板
温度の上昇に従って低くはなっていくものの200℃以
上では比較的良好な比抵抗を示す透明導電膜が得られた
。この透明導電膜を用いてアモルファスシリコン太陽電
池を200℃で作製した結果、従来の電子ビーム蒸着法
で300℃で作製した場合と比較して光電変換効率が大
幅に改善された。以下本発明を実施例を示して詳細に説
明する。
The sputtering method has advantages over the electron beam evaporation method in that it allows continuous discharge for a long time and is highly suitable for mass production. When producing a transparent conductive film, a sintered body of ITOC (indium tin oxide) was used as a sputtering target, and as shown in Figure 2, the substrate temperature was 20.
At temperatures above 0° C., the transmittance was almost constant, and although the resistivity decreased as the substrate temperature increased, a transparent conductive film was obtained that exhibited relatively good resistivity at temperatures above 200° C. When an amorphous silicon solar cell was fabricated at 200°C using this transparent conductive film, the photoelectric conversion efficiency was significantly improved compared to when it was fabricated at 300°C using the conventional electron beam evaporation method. The present invention will be described in detail below with reference to Examples.

実施例1 アモルファスシリコン太陽電池の基板としては鏡面仕上
げをしたステンレス基板を用いた。その基板上にプラズ
マCVD装置を用いてSiH4゜B、H6,H2混合雰
囲気中において基板温度200℃でアモルファスシリコ
72層を形成した。次に、5iH,、H2の混合雰囲気
中において基板温度200℃でアモルファスシリコンI
iを形成t、り。
Example 1 A mirror-finished stainless steel substrate was used as a substrate for an amorphous silicon solar cell. 72 layers of amorphous silicon were formed on the substrate using a plasma CVD apparatus in a mixed atmosphere of SiH4°B, H6, and H2 at a substrate temperature of 200°C. Next, amorphous silicon I was deposited at a substrate temperature of 200°C in a mixed atmosphere of 5iH, H2.
Form i, t, ri.

最後にS i Ha 、 PH3、H2の混合雰囲気中
において基板温度200℃でアモルファスシリコンN層
を形成した。このようにして作製したものの上にマグネ
トロンスパッタリング装置を用いて透明導電膜を付着し
た。第1図はこのようにして作製した太陽電池の構造を
示しており、1はステンレス基i、2はアモルファスシ
リコ72層、3はアモルファスシリコ71層、4はアモ
ルファスシリコンN層、5はスパッタリング法で作製さ
れた透明導電膜である。
Finally, an amorphous silicon N layer was formed at a substrate temperature of 200° C. in a mixed atmosphere of S i Ha , PH3, and H2. A transparent conductive film was deposited on the thus produced material using a magnetron sputtering device. Figure 1 shows the structure of the solar cell fabricated in this way. 1 is a stainless steel base i, 2 is a 72-layer amorphous silicon layer, 3 is a 71-layer amorphous silicon layer, 4 is an amorphous silicon N layer, and 5 is a sputtering method. This is a transparent conductive film made with.

以下、この太陽電池に透明導電膜を付着する際の基板温
度による光電変換効率の変化につカて説明する。
Hereinafter, the change in photoelectric conversion efficiency depending on the substrate temperature when attaching a transparent conductive film to this solar cell will be explained.

第3図は130ルツクス(Ix)の白色螢光打丁で、得
られた光電変換効率の温度依存性を示したグラフであり
、この第3図から明らかなように、基板温度が200℃
前後で充電変換効率が最大となり、300℃ではその6
4係の充電変換効率しか示さないことか判明した。この
第3図に示す例はスパッタリング法によって透明導電膜
5を形成した場合の結果であるが、基板温度300 ℃
の場合の光電変換効率は電子ビーム蒸着法の場合とほぼ
同等である。。
Figure 3 is a graph showing the temperature dependence of the photoelectric conversion efficiency obtained with a 130 lux (Ix) white fluorescent plate.As is clear from this figure, when the substrate temperature is 200°C
The charging conversion efficiency is maximum at around 300℃, and at 300℃
It turns out that it only shows the charge conversion efficiency of Section 4. The example shown in FIG. 3 is the result when the transparent conductive film 5 was formed by sputtering method, but the substrate temperature was 300°C.
The photoelectric conversion efficiency in this case is almost equivalent to that in the case of electron beam evaporation. .

第4図はAMl 、l OQgW、/+2下での光電変
換効率の基板温度依存性を示したものである。
FIG. 4 shows the dependence of photoelectric conversion efficiency on substrate temperature under AMl , l OQgW, /+2.

白色螢光燈の場合とは多少異なっているが、基板温度が
200 ℃前後で光電変換効率が最大値を示す点では同
様である。
Although it is somewhat different from the case of a white fluorescent light, it is similar in that the photoelectric conversion efficiency reaches its maximum value when the substrate temperature is around 200°C.

実施例2 実施例1の場合と同様、基板には鏡面仕上げをしたステ
ンレス基板を用いた。その基板上にプラズマCVD装置
を用カて5i2Hs、B2Hs、Hz。
Example 2 As in Example 1, a mirror-finished stainless steel substrate was used as the substrate. A plasma CVD device was used to deposit 5i2Hs, B2Hs, and Hz on the substrate.

’Heの混合雰囲気中において基板温度290 ℃でア
モルファスシリコンP層を形成した。次に5izHs、
Hzの混合雰囲気中において基板温度250℃でアモル
ファスシリコンI層を形成シタ。
An amorphous silicon P layer was formed at a substrate temperature of 290° C. in a mixed He atmosphere. Next, 5izHs,
An amorphous silicon I layer was formed at a substrate temperature of 250° C. in a mixed atmosphere of Hz.

最後にSiF4.PHa 1H21Arの混合雰囲気中
において基板温度250℃で微結晶シリコンN層を形成
した。このようにして作製したものの上にマグネトロン
スパッタリング装置を用いて透明導電膜を付着した。
Finally, SiF4. A microcrystalline silicon N layer was formed at a substrate temperature of 250° C. in a mixed atmosphere of PHa 1H 21Ar. A transparent conductive film was deposited on the thus produced material using a magnetron sputtering device.

第5図に130ルツクス(Ix)の白色螢光打丁で得ら
れた充電変換効率の基板温度依存性を示している。この
第5図から男ら力・なように実施伊↓1のSiH4を用
すて作製した太陽電池の場合と同様200℃前後で光電
変換効率は最大となる。
FIG. 5 shows the substrate temperature dependence of the charge conversion efficiency obtained with a 130 lux (Ix) white fluorescent knife. As can be seen from FIG. 5, the photoelectric conversion efficiency reaches its maximum at around 200° C., as in the case of the solar cell fabricated using SiH4 in Example 1.

Si2H6を用いたアモルファスシリコン太陽電池では
そのアモルファスシリコンの作製温度がSiH。
In an amorphous silicon solar cell using Si2H6, the manufacturing temperature of the amorphous silicon is SiH.

を用いた場合よりも高いにもかかわらず、同様の傾向を
示している。
Although it is higher than when using , it shows a similar trend.

第6図にAMl 、100mW/備2下における光電変
換効率の基板温度依存性を示している。この場合250
℃でも200℃とほぼ同等の光電変換効率を示している
が、傾向としては他の場合と同様である。基板温度が2
00℃以下で光電変換効率が減少するのは主に透明導電
膜の透過率の減少が原因であると考えられるか、200
°C以上での充電変換効率の低下の原因は明らかではな
い。
FIG. 6 shows the dependence of photoelectric conversion efficiency on substrate temperature under AMI of 100 mW/2. In this case 250
Although the photoelectric conversion efficiency at 200° C. is almost the same as that at 200° C., the tendency is the same as in other cases. The board temperature is 2
It is thought that the decrease in photoelectric conversion efficiency at temperatures below 00°C is mainly due to a decrease in the transmittance of the transparent conductive film.
The cause of the decrease in charge conversion efficiency at temperatures above °C is not clear.

実施例3 上記した実施例1及び実施例2において、マグネトロン
スパッタリング装置を用いて透明導電膜を付着した後、
150℃〜250℃の間の温度範囲で1分から60分間
アニール処理を行なった。
Example 3 In Example 1 and Example 2 described above, after depositing a transparent conductive film using a magnetron sputtering device,
Annealing treatment was performed at a temperature range of 150°C to 250°C for 1 minute to 60 minutes.

この結果、透明導電膜の透明度か上がると共に面抵抗が
低下し、充電変換効率がより向上した。
As a result, the transparency of the transparent conductive film increased, the sheet resistance decreased, and the charge conversion efficiency further improved.

〈発明の効果〉 以上のように本発明の非晶質シリコン太陽電池の製造方
法は透明導電膜付着工程時の基板温度を150℃から2
50℃の間に保持するように成しているため、アモルフ
ァスシリコン太陽電池の光電変換効率を大幅に改善する
ことが出来る。
<Effects of the Invention> As described above, the method for manufacturing an amorphous silicon solar cell of the present invention can reduce the substrate temperature from 150°C to 2°C during the transparent conductive film deposition step.
Since the temperature is maintained between 50° C., the photoelectric conversion efficiency of the amorphous silicon solar cell can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアモルファスシリコン太陽電池の構造を示す断
面図、第2図はスパッタリング法で作製した透明導電膜
の比抵抗と透過率の基板温度依存性を示す図、第3図は
SiH4を用カて作製した太陽電池の白色蛍光灯130
ルックス(Ix)下での光電変換効率の透明導電膜付着
時における基板温度依存性を示す図、第4図はSiH4
を用いて作製した太陽電池のA M l 、 100 
mW’/ ”2下での光電変換効率の透明導電膜付着時
における基板温度依存性を示す図、第5図はS jzH
sを用りて作製した太陽電池の白色蛍光灯130ルック
ス(Ix)下での光電変換効率の透明導電膜付着時にお
ける基板温度依存性を示す図、第6図はSi2H6を用
いて作製した太陽電池のAMI。 100 rnW/備  下での光電変換効率の透明導電
膜付着時における基板温度依存性を示す図である。 1・・・ステンレス基板、2・・・アモルファスシリコ
ンP層、3・・・アモルファスシリコンI層、4・・・
アモルファスシリコンN層、5・・・透qsti代理人
 弁理士 福 士 愛 彦(他2名)第1図 & aLH)>  t−cノ vJ2図 1Q#4Ktmci 幕板4/I/℃ノ
Figure 1 is a cross-sectional view showing the structure of an amorphous silicon solar cell, Figure 2 is a diagram showing the substrate temperature dependence of the specific resistance and transmittance of a transparent conductive film produced by sputtering, and Figure 3 is a diagram showing the substrate temperature dependence of a transparent conductive film fabricated by a sputtering method. Solar cell white fluorescent lamp 130 made by
Figure 4 shows the dependence of photoelectric conversion efficiency on substrate temperature when a transparent conductive film is attached under lux (Ix).
A M l of the solar cell produced using
Figure 5 shows the dependence of the photoelectric conversion efficiency on the substrate temperature when a transparent conductive film is attached under mW'/2.
Figure 6 shows the dependence of the photoelectric conversion efficiency on the substrate temperature when a transparent conductive film is attached under a white fluorescent lamp of 130 lux (Ix) for a solar cell fabricated using Si2H6. Battery AMI. FIG. 3 is a diagram showing the dependence of photoelectric conversion efficiency on substrate temperature at the time of attachment of a transparent conductive film under 100 rnW/b. DESCRIPTION OF SYMBOLS 1... Stainless steel substrate, 2... Amorphous silicon P layer, 3... Amorphous silicon I layer, 4...
Amorphous silicon N layer, 5... Transparent qsti agent Patent attorney Aihiko Fukushi (and 2 others) Fig. 1 & aLH)

Claims (1)

【特許請求の範囲】 1、非晶質シリコン太陽電池において、 透明導電膜付着工程時の基板温度を150℃から250
℃の間に保持することを特徴とする非晶質シリコン太陽
電池の製造方法。 2、前記透明導電膜付着工程をスパッタリング法を用い
て行なうように成したことを特徴とする特許請求の範囲
第1項記載の非晶質シリコン太陽電池の製造方法。 3、前記透明導電膜付着工程は透明導電膜付着後150
℃から250℃の間の温度範囲で1乃至60分間アニー
ル処理する工程を含んで成ることを特徴とする特許請求
の範囲第1項記載の非晶質シリコン太陽電池の製造方法
[Claims] 1. In an amorphous silicon solar cell, the substrate temperature during the process of attaching a transparent conductive film is adjusted from 150°C to 250°C.
A method for manufacturing an amorphous silicon solar cell characterized by maintaining the cell at between ℃. 2. The method of manufacturing an amorphous silicon solar cell according to claim 1, wherein the step of attaching the transparent conductive film is performed using a sputtering method. 3. The transparent conductive film adhesion step is carried out at 150°C after the transparent conductive film is attached.
2. The method for manufacturing an amorphous silicon solar cell according to claim 1, further comprising the step of annealing at a temperature in the range from 1 to 60 minutes.
JP59234262A 1984-11-06 1984-11-06 Manufacture of amorphous silicon solar cell Pending JPS61111586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59234262A JPS61111586A (en) 1984-11-06 1984-11-06 Manufacture of amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59234262A JPS61111586A (en) 1984-11-06 1984-11-06 Manufacture of amorphous silicon solar cell

Publications (1)

Publication Number Publication Date
JPS61111586A true JPS61111586A (en) 1986-05-29

Family

ID=16968212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59234262A Pending JPS61111586A (en) 1984-11-06 1984-11-06 Manufacture of amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPS61111586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218469A (en) * 1992-02-05 1993-08-27 Canon Inc Photovoltaic element and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218469A (en) * 1992-02-05 1993-08-27 Canon Inc Photovoltaic element and manufacture thereof

Similar Documents

Publication Publication Date Title
US4365107A (en) Amorphous film solar cell
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
JPH0677510A (en) Photovolatic element
JP2012502450A (en) Hetero solar cell and hetero solar cell manufacturing method
US5342452A (en) Photovoltaic device
US5034333A (en) Method of manufacturing an amorphous silicon solar cell
JP2733176B2 (en) Photovoltaic element and power generation device using the same
JPS61111586A (en) Manufacture of amorphous silicon solar cell
JPH01201968A (en) Photoelectric conversion device
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JP2785882B2 (en) Photovoltaic element and method for manufacturing the same
JP2905004B2 (en) Method for manufacturing photovoltaic element
JP2788798B2 (en) Photovoltaic element
TWI405343B (en) Flexible solar cell with high conversion efficiency and the manufacturing method
JP2915628B2 (en) Photovoltaic element
JP2785883B2 (en) Photovoltaic element and method for manufacturing the same
JP2984430B2 (en) Photovoltaic element
JPH0510835B2 (en)
JPS5996775A (en) Amorphous silicon photoelectric conversion device
JP4400945B2 (en) Photovoltaic element and manufacturing method thereof
JPH0456170A (en) Manufacture of thin-film solar cell
JPS62188381A (en) Manufacture of amorphous silicon solar cell
JPS63169769A (en) Pin type photovoltaic element and manufacture thereof
JPH10321889A (en) Solar battery and its manufacture
JPS63244888A (en) Semiconductor device