JPS61110854A - Intermittent operation type heat pump device - Google Patents

Intermittent operation type heat pump device

Info

Publication number
JPS61110854A
JPS61110854A JP23261684A JP23261684A JPS61110854A JP S61110854 A JPS61110854 A JP S61110854A JP 23261684 A JP23261684 A JP 23261684A JP 23261684 A JP23261684 A JP 23261684A JP S61110854 A JPS61110854 A JP S61110854A
Authority
JP
Japan
Prior art keywords
container
heat
metal hydride
heat pump
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23261684A
Other languages
Japanese (ja)
Other versions
JPH0555789B2 (en
Inventor
功 竹下
敬 井波
実 田頭
啓一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23261684A priority Critical patent/JPS61110854A/en
Publication of JPS61110854A publication Critical patent/JPS61110854A/en
Publication of JPH0555789B2 publication Critical patent/JPH0555789B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、作動気体の可逆的な吸脱着反応での発熱、吸
熱を利用したケミカルヒートポンプの原理による間欠作
動式ヒートポンプ装置に関するものであり、優れた性能
を生かして熱駆動の冷暖房、給湯装置として広く利用で
きるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an intermittent-operating heat pump device based on the principle of a chemical heat pump that utilizes heat generation and heat absorption in a reversible adsorption/desorption reaction of a working gas. Taking advantage of its performance, it can be widely used as heat-driven air conditioning, heating, and water heating equipment.

従来例の構成とその問題点 まず始めに、このような間欠作動式のヒートポンプ装置
の性能をあられす成績係数、すなわち、出力エネルギー
を入力エネルギーで除した値を左右する要因について説
明する。
The structure of the conventional example and its problems First, we will explain the factors that influence the coefficient of performance, that is, the value obtained by dividing the output energy by the input energy, which determines the performance of such an intermittent heat pump device.

説明をわかり易くするため吸着材を金属水素化物、作動
媒体を水素とした時の例について説明する。
To make the explanation easier to understand, an example will be explained in which the adsorbent is a metal hydride and the working medium is hydrogen.

今、第1の容器に1つの金属水素化物を形成しうる合金
粉末を充し、第2の容器に前者に比べ、同一温度で平衡
圧の高い金属水素化物を形成する合金粉末を充し、まず
前者を十分水素化したとする。
Now, the first container is filled with an alloy powder capable of forming one metal hydride, the second container is filled with an alloy powder capable of forming a metal hydride with a higher equilibrium pressure at the same temperature than the former, First, let us assume that the former is sufficiently hydrogenated.

次に両容器を管で連結すると水素は第2の容器に移動し
うるが、第2の容器の合金の水素化物の方が平衡圧が高
いので、第1の容器内の水素ガス圧を第2の容器内の圧
力以上にするだめには、第1の容器を加熱する必要があ
る。この際第2の容器は常温に保つものとする。又、水
素ガスを脱着させるためには脱着熱が必要で、この熱を
供給する必要がある。この熱量をQal とし、容器と
その内容物を所定の温度にまで暖めるに必要な熱量をQ
  とすれば入力はQa1+Qs1になる。
Next, by connecting both containers with a pipe, hydrogen can move to the second container, but since the equilibrium pressure of the alloy hydride in the second container is higher, the hydrogen gas pressure in the first container is In order to raise the pressure above the pressure in the second container, it is necessary to heat the first container. At this time, the second container shall be kept at room temperature. Furthermore, in order to desorb hydrogen gas, desorption heat is required, and this heat must be supplied. This amount of heat is Qal, and the amount of heat required to warm the container and its contents to a specified temperature is Q.
Then, the input becomes Qa1+Qs1.

Q  は容器とその内容物との熱容量の和(C1)と、
昇温幅ΔT1  の積である。
Q is the sum of the heat capacities of the container and its contents (C1),
It is the product of the temperature increase width ΔT1.

このように加熱をすると、第1の容器から第2の容器に
水素が移動し、第2の容器の合金は、はぼ全部が金属水
素化物となり、第1の容器の内容物はほとんどもとの合
金の状態になる。
When heated in this way, hydrogen moves from the first container to the second container, and the alloy in the second container becomes almost entirely metal hydride, while the contents of the first container are almost entirely replaced by metal hydrides. becomes an alloy state.

次に第1の容器を常温にもどし、第1と第2容器を再び
連通ずると、第2の容器の水素は解離し第1の容器の合
金は水素化されてゆくが、この際、第2の容器では吸熱
反応が生じ、容器およびその内容物の温度か下シ、第1
の容器の温度で定まる平衡圧に対応する第2の容器内の
金属水素化物の平衡温度で吸熱が継続する。この吸熱能
力が出力であるが、この値は、反応によって生ずる全吸
熱量Qa□から、容器および内容物を、常温から低温吸
熱が持続する温度まで下げるのに必要な熱量Qs 2 
 を差し引いた値Qa2−Qs2になる。なお、Qa2
 は第2の容器とその内容物の熱容量C2と温度下げ幅
ΔT2 の積である。
Next, when the first container is returned to room temperature and the first and second containers are communicated again, the hydrogen in the second container is dissociated and the alloy in the first container is hydrogenated. An endothermic reaction occurs in the second container, and the temperature of the container and its contents decreases below the first container.
The endotherm continues at the equilibrium temperature of the metal hydride in the second container, which corresponds to the equilibrium pressure determined by the temperature of the container. This endothermic capacity is the output, and this value is calculated from the total amount of heat absorbed by the reaction Qa □ to the amount of heat required to lower the container and contents from room temperature to a temperature where low-temperature endotherm persists Qs 2
The value obtained by subtracting Qa2 - Qs2 is obtained. In addition, Qa2
is the product of the heat capacity C2 of the second container and its contents and the temperature reduction width ΔT2.

で与えられる。is given by

このことから明らかなことはQsl、C82をいかに小
さくするかということがCOPを大きくする要因である
ということである。
What is clear from this is that how to reduce Qsl and C82 is a factor in increasing COP.

第1図は従来の金属水素化物容器を示す図であり、熱媒
体通路を形成するため、2重管構造になっている。すな
わち金属製容器2の中に金属水素化物3が充填されてお
シ、管1から水素が出入する。この管2と同心状の管4
によって2重管が構成され流入口5から管4内に熱媒体
7が流入し、流出口6から流出することにより、金属水
素化物O脱着熱を供給したり、吸着熱を除去したりする
ことができる。今、金属水素化物3を温める場合を例に
考えてみると、熱媒体によって暖められねばならないも
のは、金属水素化物3以外に、管2および管4がある。
FIG. 1 is a diagram showing a conventional metal hydride container, which has a double tube structure to form a heat medium passage. That is, a metal hydride 3 is filled in a metal container 2, and hydrogen flows in and out from a pipe 1. A tube 4 concentric with this tube 2
A double pipe is formed, and a heat medium 7 flows into the pipe 4 from the inlet 5 and flows out from the outlet 6, thereby supplying heat of desorption of metal hydride O and removing heat of adsorption. I can do it. Now, if we consider the case of heating the metal hydride 3 as an example, there are tubes 2 and 4 in addition to the metal hydride 3 that must be warmed by the heat medium.

今、例えば、管2の内径が14B、長さが330雫、厚
みが1間であるとすると、銅を使用し端部を無視すると
約1301、熱容量は0.0131al/K、管4の内
径が20m+、長さ、厚みは管2と同一とすると、約1
859 、熱容量は0.01851cal/にである。
Now, for example, if the inner diameter of tube 2 is 14B, the length is 330 drops, and the thickness is 1 mm, if copper is used and the end is ignored, it will be about 1301 mm, the heat capacity is 0.0131 al/K, and the inner diameter of tube 4 is 20m+, and the length and thickness are the same as pipe 2, approximately 1
859, the heat capacity is 0.01851 cal/.

又、金属水素化物3の量は約165y、熱容量は0.0
18bl/にであり、合わせて0.0495Ig、l/
にある。従って昇温幅を60″Cとすると3.0−加熱
に必要となる。一方、165Fの金属水素化物から水素
を脱着させるに必要な熱量は4.7H程度であるから、
余分な入力は本質的に必要な入力の60%以上にもなる
。実際にはさらに外管4からの熱の漏洩もあるので、こ
の外側に断熱材8を置くが、これからの洩れも加算され
る。このような観点から、管4の内側を断熱することに
よシ、管4の温度が間欠運転中にそれぞれの冷暖出力の
温度幅に加熱冷却されることを防ぎ、熱損失を減少させ
る方法が考えられているが、多くの場合熱媒体に水を用
いると、断熱材が吸湿して断熱効果が減少するなどの問
題があった。
Also, the amount of metal hydride 3 is about 165y, and the heat capacity is 0.0
18bl/, totaling 0.0495Ig, l/
It is in. Therefore, if the temperature increase width is 60"C, 3.0-heating is required. On the other hand, the amount of heat required to desorb hydrogen from a metal hydride at 165F is about 4.7H, so
The extra input can amount to more than 60% of the essentially required input. In reality, there is also heat leakage from the outer tube 4, so a heat insulating material 8 is placed on the outside of this, but the leakage from this is also added. From this point of view, there is a method to reduce heat loss by insulating the inside of the pipe 4 to prevent the temperature of the pipe 4 from heating or cooling to the temperature range of each cooling/heating output during intermittent operation. However, in many cases, when water is used as a heat medium, the heat insulating material absorbs moisture, reducing the heat insulating effect.

発明の目的 本発明の目的は、吸着材の収容容器とそれに付随する部
分の熱容量をできるだけ小さくして、システムの成績係
数を向上することにある。
OBJECTS OF THE INVENTION An object of the present invention is to improve the coefficient of performance of the system by minimizing the heat capacity of the adsorbent container and its associated parts.

発明の構成 本発明の間欠作動式ヒートポンプ装置は、吸着媒体を収
容する容器と、その容器壁を還流して吸着媒体に熱を供
給し、或は熱を取り去るだめの熱媒体との両者を収容す
る外容器を、間を10パスカル以下に真空排気した二重
壁構造とすると共に、真空部に断熱性の充填物を充填し
た構成としてなるものである。
Structure of the Invention The intermittent-operating heat pump device of the present invention accommodates both a container containing an adsorption medium and a heat medium that circulates through the container wall to supply heat to the adsorption medium or remove heat. The outer container has a double-walled structure in which the space is evacuated to 10 Pascal or less, and the vacuum part is filled with a heat-insulating filler.

実施例の説明 以下、本発明の一実施例について詳しく説明する。従来
例に説明した時と同様に、金属製容器12の中に、金属
水素化物13が充填されており、管11から水素ガスが
出入する。なお、管11には金属水素化物13とは温度
平衡圧力特性の異なる吸着媒体を収容する他の容器(図
示せず)が連結されている。この容器12と同心の管1
4によって二重管が構成され、熱媒流人口15から熱媒
が流入し、流出口16から流出することにより、金属水
素化物の脱着熱を供給したり、吸着熱を除去したりする
ことができる。従来の構成と異る点は、管14は内壁1
9と共に二重壁構造を形成し、その間の空間部18は1
0パスカル以下に真空排気されると共に、断熱性充填物
2oを充填しである。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described in detail below. As in the case of the conventional example, a metal hydride 13 is filled in a metal container 12, and hydrogen gas enters and exits from the pipe 11. Note that another container (not shown) containing an adsorption medium having different temperature equilibrium pressure characteristics from the metal hydride 13 is connected to the pipe 11. A tube 1 concentric with this container 12
4 constitutes a double pipe, and the heat medium flows in from the heat medium flow port 15 and flows out from the outlet 16, thereby supplying the heat of desorption of the metal hydride and removing the heat of adsorption. can. The difference from the conventional configuration is that the tube 14 has an inner wall 1
9 to form a double wall structure, and the space 18 between them is 1
It is evacuated to 0 Pa or less and is filled with a heat insulating filler 2o.

その理由は効果の説明として詳しく後述するごとく、内
壁19はできるだけ薄いことが必要であるが、そうする
ことによって、空間17を流れる熱媒体の圧力と、真空
の負圧忙よる力で押しつぶされるので、これを避けるだ
めのものである。
The reason for this is that the inner wall 19 needs to be as thin as possible, as will be explained in detail later to explain the effect. , this should be avoided.

上記構成において、今、金属水素化物の容器12は従来
例に示した寸法であるとする。この場合、当然金属水素
化物13の持つ熱容量とその容器12の熱容量は変わら
ない。又、金属水素化物13が発生、又は吸収する熱量
も、入っている金属水素化物13の量が同じだから変わ
らない。
In the above configuration, it is assumed that the metal hydride container 12 has the dimensions shown in the conventional example. In this case, the heat capacity of the metal hydride 13 and the heat capacity of its container 12 are naturally the same. Further, the amount of heat generated or absorbed by the metal hydride 13 does not change because the amount of the metal hydride 13 contained is the same.

今、真空二重壁容器の内壁19に、0.1m厚みのステ
ンレス管を使用したとすれば、その熱容量は約0.00
1381al/にであり、従来例の鳥取下である。
Now, if a 0.1m thick stainless steel tube is used for the inner wall 19 of the vacuum double-walled container, its heat capacity is approximately 0.00.
1381al/, which is below Tottori of the conventional example.

又、真空断熱を施してあり、例えば充填物として、けい
酸カル7ウムを用いた場合、熱伝導度は0.011al
/ mhk以下テあルカラ、内壁19ノ表面積を、従来
例の外管の内径と、前記内壁の径を同じとして求めると
、約94c4であり、温度差を60°、二重壁の厚みを
2cmとし、1サイクルを10分とすると、この間に二
重壁を通して流れる熱量は0.04711i程度である
。これらを総合して1サイクルの間に失われる熱量は2
d程度であり、発熱量は4.71alとすれば損失は出
力の43%である。
In addition, it is vacuum insulated and, for example, when calcium silicate is used as the filling, the thermal conductivity is 0.011al.
/ mhk or less If the surface area of the inner wall 19 is determined by assuming that the inner diameter of the conventional outer tube and the diameter of the inner wall are the same, it is approximately 94c4, with a temperature difference of 60° and a double wall thickness of 2cm. If one cycle is 10 minutes, the amount of heat flowing through the double wall during this period is about 0.04711i. Putting these together, the amount of heat lost during one cycle is 2
If the amount of heat generated is 4.71al, the loss is 43% of the output.

これを従来の構成と比べると、この場合の損失は、熱の
逃げは本発明と同程度になるごとく外周を断熱したとす
れば、約3−となり出力の6εチが失われる。この損失
の減少は特に出力側の場合に大きく影響し成績係数を改
善する効果が大きい。
Comparing this with the conventional configuration, if the outer periphery is insulated so that the heat escape is to the same extent as in the present invention, the loss in this case is about 3-, which means that 6ε of the output is lost. This reduction in loss has a large effect especially on the output side, and has a large effect on improving the coefficient of performance.

又、熱媒体の通路は金属壁でできており、真空断熱され
ているから、使用中の断熱性能の劣化は生じない。
Further, since the heat medium passage is made of metal walls and vacuum insulated, the heat insulation performance does not deteriorate during use.

発明の効果 以上の説明から明らかなように、本発明によれば、吸着
媒体を収容する容器とこの容器を加熱又は冷却する熱媒
体とを収容する外容器を備え、この外容器内を10パス
カル以下に真空排気した二重壁構造とし、この真空部に
断熱性の充填物を充填してなるので、吸着媒体を収容す
る容器およびこれに付随する部分の熱容量が小さく、シ
ステムの成績係数を向上することができる。
Effects of the Invention As is clear from the above description, the present invention includes an outer container that accommodates a container that accommodates an adsorption medium and a heat medium that heats or cools the container, and heats the inside of this outer container at a temperature of 10 Pascals. The double wall structure is evacuated and this vacuum part is filled with an insulating material, so the heat capacity of the container containing the adsorption medium and its associated parts is small, improving the coefficient of performance of the system. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の間欠作動式ヒートポンプ装置の要部断面
図、第2図は本発明の一実施例を示す間欠作動式ヒート
ポンプ装置の要部断面図である。 12・・・、金属製容器、13・・・・・金属水素化物
(吸着媒体)、14・・・・管、18・−・・空間部、
19・・内壁、20・・−・断熱性充填物。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名il
1図 °I 第2図
FIG. 1 is a cross-sectional view of a main part of a conventional intermittent-operating heat pump apparatus, and FIG. 2 is a cross-sectional view of a main part of an intermittent-operating heat pump apparatus showing an embodiment of the present invention. 12... Metal container, 13... Metal hydride (adsorption medium), 14... Tube, 18... Space part,
19...Inner wall, 20...Insulating filling. Name of agent: Patent attorney Toshio Nakao and one other person
Figure 1°I Figure 2

Claims (1)

【特許請求の範囲】[Claims] 温度平衡圧力特性の異なる2種類の吸着媒体をそれぞれ
収容する容器と、これらの容器を連結する作動媒体通路
と、前記容器を加熱又は冷却する熱媒体通路と、前記吸
着媒体を収容する容器およびその容器壁を還流する前記
熱媒体の両者を収容する外容器を具備し、前記外容器内
を10パスカル以下に真空排気した二重壁構造とすると
共に、前記真空部に断熱性の充填物を充填した間欠作動
式ヒートポンプ装置。
A container containing two types of adsorption media having different temperature equilibrium pressure characteristics, a working medium passage connecting these containers, a heating medium passage heating or cooling the container, a container containing the adsorption medium, and the An outer container is provided for accommodating both of the heat medium flowing back through the container wall, and the outer container has a double wall structure in which the inside of the outer container is evacuated to 10 Pascal or less, and the vacuum part is filled with a heat insulating filler. Intermittently operated heat pump equipment.
JP23261684A 1984-11-05 1984-11-05 Intermittent operation type heat pump device Granted JPS61110854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23261684A JPS61110854A (en) 1984-11-05 1984-11-05 Intermittent operation type heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23261684A JPS61110854A (en) 1984-11-05 1984-11-05 Intermittent operation type heat pump device

Publications (2)

Publication Number Publication Date
JPS61110854A true JPS61110854A (en) 1986-05-29
JPH0555789B2 JPH0555789B2 (en) 1993-08-17

Family

ID=16942122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23261684A Granted JPS61110854A (en) 1984-11-05 1984-11-05 Intermittent operation type heat pump device

Country Status (1)

Country Link
JP (1) JPS61110854A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235560A (en) * 1992-12-18 1994-08-23 Matsushita Electric Ind Co Ltd Movable body using hydrogen storage metallic alloy
JP2006258335A (en) * 2005-03-16 2006-09-28 Japan Steel Works Ltd:The Heat transfer device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235560A (en) * 1992-12-18 1994-08-23 Matsushita Electric Ind Co Ltd Movable body using hydrogen storage metallic alloy
JP2006258335A (en) * 2005-03-16 2006-09-28 Japan Steel Works Ltd:The Heat transfer device

Also Published As

Publication number Publication date
JPH0555789B2 (en) 1993-08-17

Similar Documents

Publication Publication Date Title
US4637218A (en) Heat pump energized by low-grade heat source
US4111002A (en) Cyclic desorption refrigerator and heat pump, respectively
US3823305A (en) Arrangement for regulating supply of heat from a heat accumulating device
JPH07501394A (en) Cooling equipment for electronic and computer components
US5442931A (en) Simplified adsorption heat pump using passive heat recuperation
JPS5937395A (en) Vacuum heat-insulating type fluid transport pipe
WO1996009504A1 (en) Thermal compressive device
Sheft et al. Current status and performance of the Argonne HYCSOS chemical heat pump system
JPS61110854A (en) Intermittent operation type heat pump device
US3633373A (en) Method and apparatus for the generation of refrigerating energy
Cacciola et al. Influence of the adsorber heat exchanger design on the performance of the heat pump system
JP2920860B2 (en) Heating device
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
Shelton Solid adsorbent heat pump system
JPH0575943B2 (en)
Tchernev Heat pump energized by low-grade heat source
JP3246639B2 (en) Hydrogen storage alloy heat pump
JP3211855B2 (en) Hydrogen storage alloy heat pump
JPH0830632B2 (en) Intermittent heater
JP2643235B2 (en) Metal hydride heating and cooling equipment
JPS61175283A (en) Adsorption compressor
JPH06194077A (en) Heat-exchanging device
JPH0429198Y2 (en)
JPS6183847A (en) Intermittent operation type heat pump device
JPH05296677A (en) Hydrogen absorbing and discharging heat exchanger