JPS61108135A - Formation of resist pattern - Google Patents

Formation of resist pattern

Info

Publication number
JPS61108135A
JPS61108135A JP59229908A JP22990884A JPS61108135A JP S61108135 A JPS61108135 A JP S61108135A JP 59229908 A JP59229908 A JP 59229908A JP 22990884 A JP22990884 A JP 22990884A JP S61108135 A JPS61108135 A JP S61108135A
Authority
JP
Japan
Prior art keywords
resist
pattern
irradiated
ultraviolet rays
deep ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59229908A
Other languages
Japanese (ja)
Other versions
JPH0550845B2 (en
Inventor
Hiroyuki Nakamura
洋之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP59229908A priority Critical patent/JPS61108135A/en
Publication of JPS61108135A publication Critical patent/JPS61108135A/en
Publication of JPH0550845B2 publication Critical patent/JPH0550845B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To dispense with a descum process by a method wherein far ultraviolet rays are irradiated on positive resist patterns to be formed by irradiating electron beams and resist residues on the peripheral parts of the patterns are removed. CONSTITUTION:A positive-type electron beam resist is applied on a substrate 1 and a resist film 2 is formed by making the electron beam resist dry. The positive-type resist to be used here is a resist such as a polyhalogenation alkyl methacrylate resist to need a descum process. Then, patterns are drawn with electron beams 3 and a developing is performed to obtain resist patterns 4. At this time, resist residues 5 are generated on the peripheral parts of the patterns 4. Subsequently, far ultraviolet rays 6 are irradiated on the whole surface. By this irradiation, the residues 5 are removed and resist patterns 7 having no resist residues are formed. Accordingly, the descum process for a dry etching becomes unnecessary.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、LSI、超LSI等の高密度集積回路あるい
はそれ等の製造に用いるフォトマスクの製造の際のレジ
ストパターン形成法に関し、更に詳しくはポジ型電子線
レジストのレジストパターン形成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a resist pattern forming method for manufacturing high-density integrated circuits such as LSIs and VLSIs, or photomasks used for manufacturing them. relates to a resist pattern forming method for positive electron beam resist.

〔従来の技術〕[Conventional technology]

周知のように、近年、半導体集積回路等の高来の紫外線
を用いたフォトリソグラフィーに代って、電子線、軟X
線、イオンビーム等を用いるリソグラフィーにより超微
細なパターン加工技術を確立する努力が払われておシ、
フォトマスクの製造では既に電子線リソグラフィーが工
業的に実用されている。
As is well known, in recent years, photolithography using high-quality ultraviolet rays for semiconductor integrated circuits has been replaced by electron beam, soft
Efforts have been made to establish ultra-fine pattern processing technology using lithography using lines, ion beams, etc.
Electron beam lithography is already in practical use industrially in the production of photomasks.

このような超微細リソグラフィー技術を可能とするため
には使用されるレジスト材料はそれに応える特性を有す
るものでなければならない。
In order to enable such ultra-fine lithography technology, the resist material used must have properties corresponding to it.

又、レジスト製版のプロセスも超微細加工の品質を左右
するもので非常に重要である。
Furthermore, the resist plate making process is very important as it influences the quality of ultrafine processing.

一般に、電子線レジストとしては、数多くのものが開発
されている。これらは、電子線の照射によって崩壊反応
を起して照射部が可溶化するポジ型レジストと、電子線
の照射によって架橋反応を起し照射部が不溶化するネガ
型レジストとに分類される。両者のうちポジ型レジスト
は超微細な高解像画像を形成し得る点でネガ型よシも優
れている。
In general, many types of electron beam resists have been developed. These resists are classified into positive resists in which a decay reaction is caused by electron beam irradiation and the irradiated areas become solubilized, and negative resists in which a crosslinking reaction is caused by electron beam irradiation and the irradiated areas become insolubilized. Of the two, positive resists are superior to negative resists in that they can form ultra-fine, high-resolution images.

しかしながら、ポジ型レジストの中でも、2゜2.2.
−トリクロロエチルメタクリレート重合体、2.2.2
−トリフルオロエチル−α−クロロアクリレート重合体
、ヘキサフルオロブチルメタクリレート重合体などのハ
ロゲン化アルキルメタクリレート重合体を主成分とする
電子線ポジ型レジストは、任意の基板に塗布し、乾燥し
、電子線でパターン描画し、所定の現像液で現像した後
に、基板表面に厚さ10〜1001程度のレジスト残渣
がパターン周辺部に残存し、しかもパターン間隔が小さ
くなる程レジスト残渣の残存現像が著しく生じるという
欠点を有する。
However, among positive resists, 2°2.2.
- trichloroethyl methacrylate polymer, 2.2.2
Electron beam positive resists whose main component is halogenated alkyl methacrylate polymers such as -trifluoroethyl-α-chloroacrylate polymers and hexafluorobutyl methacrylate polymers are coated onto any substrate, dried, and then exposed to electron beams. After drawing a pattern with a wafer and developing it with a prescribed developer, a resist residue with a thickness of about 10 to 100 mm remains on the substrate surface around the pattern, and the smaller the pattern interval, the more the resist residue remains and develops. It has its drawbacks.

而してレジスト残渣はレジストパターンの画質を著しく
損ねたシ、次のエツチング工程で障害となシ、工、チン
グむらやエツチング残シを生じて、最終的に製品を不良
としてしまう。
Therefore, the resist residue significantly impairs the image quality of the resist pattern, becomes an obstacle in the next etching process, causes uneven etching, and etching residue, and ultimately makes the product defective.

それゆえ、従来ハロゲン化アルキルメタクリレート重合
体を主成分とする電子線レジストは、次にのべるような
方法によってレジストパターンの形成がなされている。
Therefore, resist patterns of conventional electron beam resists mainly composed of halogenated alkyl methacrylate polymers have been formed by the following method.

先ず、所定の基板上に一定の膜厚で電子線レジストを塗
布し、乾燥させる。次に電子線でパターンを描画し、次
いで所定の現像液で現像して、レジストパターンを得る
。この時パターン周辺部にレジスト残渣が生ずる。次に
ポストベーキングしてレジストを硬化させた後に、ドラ
イエツチング装置内で酸素プラズマガスでレジスト残渣
、いわゆるスカムを除くデスカム工程(又はライトアッ
シング工程)を入れて、レジスト残渣′を除去し所望の
レジストパターンを得ている。そのため、従来デスカム
装置として円筒型又は平行平板型のドライエツチング装
置を必要とし、その操作及び条件設定も複雑で慎重な制
御を必要とするのみならず真空系を使用するためプロセ
スが繁雑であった。
First, an electron beam resist is applied to a predetermined thickness on a predetermined substrate and dried. Next, a pattern is drawn with an electron beam, and then developed with a predetermined developer to obtain a resist pattern. At this time, resist residue is generated around the pattern. Next, after post-baking to harden the resist, a descum process (or light ashing process) is performed to remove resist residue, so-called scum, using oxygen plasma gas in a dry etching device to remove the resist residue and form the desired resist. I'm getting a pattern. For this reason, conventional descam equipment requires a cylindrical or parallel plate type dry etching equipment, and its operation and condition settings are complicated and requires careful control. In addition, the process is complicated because it uses a vacuum system. .

〔発明が解決しようとす問題点〕[Problem that the invention attempts to solve]

そこで本発明が解決しようとする問題点は上記の欠点を
改良した、繁雑な酸素プラズマ等によるドライエツチン
グのデスカム工程なしに高品質のレジストパターンを得
る方法を提供することにある。
Therefore, the problem to be solved by the present invention is to provide a method for obtaining a high-quality resist pattern without the complicated descum process of dry etching using oxygen plasma or the like, which improves the above-mentioned drawbacks.

□〔問題点を解決するための手段〕 本発明者は上記の問題点を解決すべく研究の結果、電子
線の照射によりポジ型となり、且つ遠紫外線の照射によ
ってもポジ型となるレジスト組成物を用いて、加工を施
こすべき基板上にレジスト被膜を形成し、電子線照射に
よりバターンを描画し、次いで現像してレジストパター
ンを生成し、次いで遠紫外線を数分間全面照射すること
によりレジスト残渣を除去することができること、及び
遠紫外線の照射を基板を加熱しながら行なうことにより
レジスト残漬の除去効果を更に高めることができること
を見いだし、かかる知見にもとすいて本発明を完成した
ものポジ型となり、且っ遠紫外線の照射によってもポジ
型となるレジスト組成物を用いて、加工を施こすべき基
板上にレジスト被膜を形成し、電子線照射によりバター
ンを描画し、次いで現像してレジストパターンを生成し
、次いで遠紫外線を全面照射してパターン周辺部に残存
するレジスト残渣を除去すること、及び遠紫外線照射工
程の前もしくは後においてボストベーキングを行なって
レジストを硬化させることを特徴とするレジストパター
ンの形成方法であシ、第2の発明の要旨は電子線の照射
によりポジ型となり、且つ遠紫外線の照射によってポジ
型となるレジスト組成物を用いて、加工を施こすべき基
板上にレジスト被膜を形成し、電子線照射によりパター
ンを描画し、次いで現像してレジストパターンを生成し
5次いで基板を加熱しながら遠紫外線を全面照射してパ
ターン周辺部に残存するレジスト残渣を除去すること、
及び遠紫外線照射工程の前もしくは後に、ボストベーキ
ングを行なってレジストを硬化させることを特徴とする
レジストパターンの形成方法である。
□ [Means for Solving the Problems] In order to solve the above problems, the present inventor has conducted research and has developed a resist composition that becomes positive when irradiated with electron beams and also becomes positive when irradiated with deep ultraviolet rays. A resist film is formed on the substrate to be processed using a resist film, a pattern is drawn by electron beam irradiation, a resist pattern is created by development, and the resist residue is removed by irradiating the entire surface with deep ultraviolet rays for several minutes. The present inventors have discovered that the effect of removing residual resist can be further enhanced by irradiating the substrate with deep ultraviolet rays while heating the substrate, and based on this knowledge, the present invention has been completed. Using a resist composition that becomes a mold and becomes positive even when irradiated with deep ultraviolet rays, a resist film is formed on the substrate to be processed, a pattern is drawn by electron beam irradiation, and then developed to form a resist. The process is characterized by generating a pattern, then irradiating the entire surface with deep ultraviolet rays to remove resist residue remaining around the pattern, and performing post baking before or after the deep ultraviolet irradiation step to harden the resist. The gist of the second invention is to form a resist pattern on a substrate to be processed using a resist composition that becomes positive when irradiated with an electron beam and becomes positive when irradiated with deep ultraviolet rays. Forming a resist film, drawing a pattern by electron beam irradiation, developing to generate a resist pattern, and then heating the substrate while irradiating the entire surface with deep ultraviolet rays to remove resist residue remaining around the pattern. ,
A resist pattern forming method is characterized in that the resist is hardened by performing boss baking before or after the deep ultraviolet irradiation step.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図aに示す如く、シリコンウニへやフォトマスクブ
ランクなどの加工対象とする所定の基板1の上に、スピ
ンナーなどにょシポジ型電子線レジストを回転塗布し、
乾燥させて、厚さ0.2μrn〜2μmの均一なレジス
ト膜2を得る。レジストの乾燥温度や時間は、レジスト
それぞれのポリマーや溶媒の特性によって異なるが、一
般に70℃〜150℃、30分が用いられている。
As shown in FIG. 1a, a positive electron beam resist is spin-coated using a spinner or the like on a predetermined substrate 1 to be processed, such as a silicon urchin or a photomask blank.
It is dried to obtain a uniform resist film 2 having a thickness of 0.2 μrn to 2 μm. The drying temperature and time of the resist vary depending on the characteristics of the polymer and solvent of each resist, but generally 70° C. to 150° C. and 30 minutes are used.

本発明において用いられるポジ型レジストとしては、デ
スカム工程を必要とする一般のポジ型レジストが使用さ
れ、その好適な例としてポリ−2,2,3,4,4,4
,−へキサフルオロブチルメタクリレート(商品名 ダ
イキン工業Q F BM ) vポリ−1,1−ジメチ
ル−2!、λ3,3−テトラフルオロプロピルメタクリ
レート(商品名 ダイギン工業製FPM)、ポリ−42
,’ 2− )リクロロエチルメタクリレート(商品名
 束しM EBa−1)。
As the positive resist used in the present invention, a general positive resist that requires a descum process is used, and a preferred example thereof is poly-2,2,3,4,4,4
,-hexafluorobutyl methacrylate (trade name Daikin Industries Q FBM) v poly-1,1-dimethyl-2! , λ3,3-tetrafluoropropyl methacrylate (trade name: Daigin Kogyo FPM), poly-42
,' 2-)lichloroethyl methacrylate (trade name: Bundled MEBa-1).

、t’!J−2,2,2−)リフルオロエチル−α−ク
ロ・ロアクリレート(商品名 東し製FiBR−9)、
等のポリハロゲン化アルキルメタクリレート系レジスト
があげられる。
,t'! J-2,2,2-)lifluoroethyl-α-chlororoacrylate (trade name Toshi FiBR-9),
Examples include polyhalogenated alkyl methacrylate resists such as.

次に第1図すの如く、電子線3でパターン描画し、所定
の現像液で現像して、第1図Cの如く、レジストパター
ン4を得る。この時本発明に用いられるデスカム工程を
必要とするポジ型レジストは、パターン周辺部にレジス
ト残渣5が生ずる。現像液としては、各々のレジストの
所定の現像液が用いられる。
Next, as shown in FIG. 1, a pattern is drawn with an electron beam 3 and developed with a predetermined developer to obtain a resist pattern 4 as shown in FIG. 1C. At this time, in the positive type resist which requires a descum process used in the present invention, resist residue 5 is generated around the pattern. As the developer, a predetermined developer for each resist is used.

次に第1図dに示す如く、レジストパターン4を有する
基板1の全面にパターン側よシ波長18Qnm〜3QQ
nmの遠紫外線6を全面照射する。照射時間は使用する
レジスト、照射波長、光源の出力により若干異なるが、
数分〜数10分が適用し得る。遠紫外線6を照射するこ
とによりンシスト残渣(スカム)5は取υ除かれ、第1
図eに示す如く所望の良好なレジスト残渣のないレジス
トパターン7を形成せしめる。第1図eの次に通常実施
されているレジスト工程、即ちポストベーク工程、基板
エツチング工程、レジスト剥膜工程が順次行なわれる。
Next, as shown in FIG. 1d, the entire surface of the substrate 1 having the resist pattern 4 is coated with a wavelength of 18Q nm to 3QQ from the pattern side.
The entire surface is irradiated with nm deep ultraviolet rays 6. Irradiation time varies slightly depending on the resist used, irradiation wavelength, and light source output, but
A few minutes to several tens of minutes can be applied. Cyst residue (scum) 5 is removed by irradiation with far ultraviolet rays 6, and the first
As shown in FIG. e, a desired good resist pattern 7 without any resist residue is formed. After FIG. 1e, the normally performed resist steps, ie, a post-bake step, a substrate etching step, and a resist stripping step, are sequentially performed.

尚、本発明においてポストペーキング工程を遠紫外線照
射工程の前に行なっても良い。
In the present invention, the post-paking process may be performed before the deep ultraviolet irradiation process.

本発明において遠紫外線の照射によるレジスト残渣を除
去する工程を酸素雰囲気中で行なうことによりンシスト
残渣の除去をよυ効果的に行なうことができる。
In the present invention, by performing the step of removing resist residue by irradiation with deep ultraviolet rays in an oxygen atmosphere, the resist residue can be removed more effectively.

以上は第1の発明の方法についての説明である。The above is a description of the method of the first invention.

次に第2の発明の方法について説明する。Next, the method of the second invention will be explained.

この第2の発明の方法は遠紫外線の照射を基板を50〜
150℃に加熱しながら行なう点が第1の発明の方法と
異なるのみで、他の構成は第1の発明の構成と同一であ
る。
The method of this second invention involves irradiating the substrate with far ultraviolet rays for 50 to 50 minutes.
The only difference from the method of the first invention is that the process is carried out while heating to 150° C., and the other configurations are the same as those of the first invention.

基板の加熱によりンシスト残渣の除去が早められる。こ
の場合加熱温度は使用するレジストの種類によυ異なる
が、レジストパターンの解像性を低下させないためには
、各々のレジストのガラス転移温度以下に抑える必要が
ある。又、照射時間は数分〜10分が適当である。
Heating the substrate speeds up the removal of cyst residue. In this case, the heating temperature varies depending on the type of resist used, but in order not to reduce the resolution of the resist pattern, it is necessary to keep it below the glass transition temperature of each resist. Moreover, the appropriate irradiation time is several minutes to 10 minutes.

〔作用〕[Effect]

遠紫外線6の照射によりレジスト残渣5が除去される。 The resist residue 5 is removed by irradiation with deep ultraviolet rays 6.

このレジスト残渣が除去される機構の詳細は明らかでは
ないが、次の様に推定される。ポジ型レジストであるポ
リハロゲン化アルキルメタクリレート系のレジスト残渣
(スカム)は、電子線照射によりレジストが主鎖切断な
どを起こし低分子量化した化合物である。このスカムに
高エネルギー線である遠紫外線が再び照射されることに
より、低分子量化したスカムは更に分解し、気化性の物
質即ち、水素、炭酸ガス、−酸化炭素、メタン、ハロゲ
ンガスなどが生成し、留去されると考えられる。
Although the details of the mechanism by which this resist residue is removed are not clear, it is presumed as follows. Resist residue (scum) of polyhalogenated alkyl methacrylate, which is a positive type resist, is a compound whose molecular weight has been reduced due to main chain scission of the resist due to electron beam irradiation. By irradiating this scum with deep ultraviolet rays, which are high-energy rays, the scum, which has lowered its molecular weight, further decomposes, producing volatile substances such as hydrogen, carbon dioxide, carbon oxide, methane, and halogen gas. It is thought that it will be distilled off.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例1 クロムマスクブランク基板上にポリ−2,2,3゜4、
4.4−ヘキサフルオロブチルメタクリレートを主成分
とするレジスト(商品名 ダイキン工業製FBM−12
0)  をスピンナー塗布し、140℃で30分間プリ
ベーキングし、膜厚0.5μmのレジスト膜を得た0次
に電子線露光装置にてパターン描画し専用の現像液(商
品名 FBM−120D)で23℃、60秒スプレー現
像し、専用のリンス液(商品名、 pBM−12oR)
で23℃、30秒スプレーリンスし、レジストパターン
を得た。このレジストパターンは光学顕微鏡下でレジス
ト残渣(スカム)の存在が認められた。
Example 1 Poly-2,2,3°4, on a chrome mask blank substrate
4. Resist whose main component is 4-hexafluorobutyl methacrylate (product name: Daikin Industries, Ltd. FBM-12)
0) was applied with a spinner and prebaked at 140°C for 30 minutes to obtain a resist film with a thickness of 0.5 μm.Then, a pattern was drawn using an electron beam exposure device and a special developer (product name FBM-120D) was applied. Spray develop at 23°C for 60 seconds and use a special rinse solution (trade name, pBM-12oR).
A resist pattern was obtained by spray rinsing at 23° C. for 30 seconds. The presence of resist residue (scum) was observed in this resist pattern under an optical microscope.

次に波長19 Q nm−25Q nmの遠紫外線を出
す500WのXe −Hgランプにより、距離50cI
nにて常温、大気中でレジストパターンを約3公金面照
射した。
Next, a 500W Xe-Hg lamp that emits far ultraviolet light with a wavelength of 19Q nm to 25Q nm was used at a distance of 50cI.
The resist pattern was irradiated with about 300 ml of metal in the atmosphere at room temperature.

この全面照射したレジストパターンを再ヒ光学顕微鏡下
で観察すると、レジスト残渣(スカム)は完全に除去さ
れ、良好なレジストパターンが形成されていることが確
認された。
When this entire surface irradiated resist pattern was observed under an optical microscope, it was confirmed that the resist residue (scum) was completely removed and a good resist pattern was formed.

次に80℃ 30分ポストベーキングし、硝酸第2セリ
ウムアンモニウム水溶液で40秒間ウェットエツチング
し、レジストパターン通シにクロムがエツチングされた
。次に酸素プラズマでレジストを除去し、パターニング
したクロムフォトマスクを得た。
Next, post-baking was performed at 80° C. for 30 minutes, and wet etching was performed for 40 seconds with an aqueous ceric ammonium nitrate solution, so that chromium was etched through the resist pattern. Next, the resist was removed using oxygen plasma to obtain a patterned chrome photomask.

実施例2 表面低反射2層クロムマスクブランク基板上にポリ−2
,2,2−)リフルオロエチル−α−クロロアクリレー
トを主成分とするレジスト(商品名、東し製EBR−g
)をスピンナー塗布し、200℃で30分間ブリベーキ
ングしレジスト膜を得た。次に電子線でパターン描画し
、専用現像液、リンス液で現像、リンスし、レジストパ
ターンを得た。
Example 2 Poly-2 on the surface low reflection two-layer chrome mask blank substrate
, 2, 2-) Resist whose main component is trifluoroethyl-α-chloroacrylate (trade name, Toshi EBR-g)
) was coated with a spinner and baked at 200° C. for 30 minutes to obtain a resist film. Next, a pattern was drawn using an electron beam, and the resist pattern was developed and rinsed using a special developer and a rinsing solution to obtain a resist pattern.

次にホットプレート上で基板を80℃に加熱しながら4
00Wの重水素ランプにより300mの距離から大気中
で約3分間レジストパターンを全面照射し、レジスト残
渣(スカム)の除去されたパターンを形成した。
Next, while heating the substrate to 80℃ on a hot plate,
The entire surface of the resist pattern was irradiated with a 00W deuterium lamp from a distance of 300 m in the atmosphere for about 3 minutes to form a pattern from which resist residue (scum) was removed.

〔発明の効果〕〔Effect of the invention〕

以上、詳記した通シ、本発明の方法によればドライエツ
チング装置を用いずしてレジスト残渣の除去を簡単に行
なうことができる。
As detailed above, according to the method of the present invention, resist residue can be easily removed without using a dry etching device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の方法の過程を示す模式
図である。 1・・・・・・・・・基 板 2・・・・・・・・・レジスト膜 3・・・・・・・・・電子線 4・・・・・・・・・レジストパターン5・・・・・・
・・・レジスト残渣 6・・・・・・・・・遠紫外線 特許出願人 大日本印刷株式会社 、代 理 人 弁理士小西淳美 レシスレでゾーン 綜級
FIGS. 1(a) to 1(e) are schematic diagrams showing the process of the method of the present invention. 1...Substrate 2...Resist film 3...Electron beam 4...Resist pattern 5.・・・・・・
・・・Resist residue 6・・・・・・Far ultraviolet ray patent applicant Dai Nippon Printing Co., Ltd., agent Atsumi Konishi, patent attorney Resisure, zone synthesis level

Claims (6)

【特許請求の範囲】[Claims] (1)電子線の照射によりポジ型となり、且つ遠紫外線
の照射によってもポジ型となるレジスト組成物を用いて
、加工を施こすべき基板上にレジスト被膜を形成し、電
子線照射によりパターンを描画し、次いで現像してレジ
ストパターンを生成し、次いで遠紫外線を全面照射して
パターン周辺部に残存するレジスト残渣を除去すること
、及び遠紫外線照射工程の前もしくは後においてポスト
ベーキングを行なってレジストを硬化させることを特徴
とするレジストパターンの形成方法。
(1) Using a resist composition that becomes positive when irradiated with electron beams and also becomes positive when irradiated with deep ultraviolet rays, a resist film is formed on the substrate to be processed, and a pattern is formed by irradiation with electron beams. A resist pattern is generated by drawing and then developing, and then the entire surface is irradiated with deep ultraviolet rays to remove resist residue remaining around the pattern, and post-baking is performed before or after the deep ultraviolet irradiation process to remove the resist. A method for forming a resist pattern, comprising curing the resist pattern.
(2)前記レジスト組成物としてポリハロゲン化アルキ
ルメタクリレートからなる群から選ばれた重合体よりな
るレジスト組成物を用いることを特徴とする特許請求の
範囲第1項記載のレジストパターンの形成方法。
(2) The method for forming a resist pattern according to claim 1, wherein a resist composition comprising a polymer selected from the group consisting of polyhalogenated alkyl methacrylates is used as the resist composition.
(3)遠紫外線の照射を酸素雰囲気中で行なうことを特
徴とする特許請求の範囲第1項又は第2項記載のレジス
トパターンの形成方法。
(3) The method for forming a resist pattern according to claim 1 or 2, wherein the irradiation with deep ultraviolet rays is performed in an oxygen atmosphere.
(4)電子線の照射によりポジ型となり、且つ遠紫外線
の照射によってもポジ型となるレジスト組成物を用いて
、加工を施こすべき基板上にレジスト被膜を形成し、電
子線照射によりパターンを描画し、次いで現像してレジ
ストパターンを生成し、次いで基板を加熱しながら遠紫
外線を全面照射してパターン周辺部に残存するレジスト
残渣を除去すること、及び遠紫外線照射工程の前もしく
は後においてポストベーキングを行なってレジストを硬
化させることを特徴とするレジストパターンの形成方法
(4) Using a resist composition that becomes positive when irradiated with electron beams and also becomes positive when irradiated with deep ultraviolet rays, a resist film is formed on the substrate to be processed, and a pattern is formed by irradiation with electron beams. A resist pattern is generated by drawing and then developing, and then the entire surface is irradiated with deep ultraviolet rays while heating the substrate to remove resist residue remaining around the pattern, and post-treatment is performed before or after the deep ultraviolet irradiation process. A method for forming a resist pattern, which comprises curing the resist by baking.
(5)前記レジスト組成物としてポリハロゲン化アルキ
ルメタクリレートからなる群から選ばれた重合体よりな
るレジスト組成物を用いることを特徴とする特許請求の
範囲第4項記載のレジストパターンの形成方法。
(5) The method for forming a resist pattern according to claim 4, wherein a resist composition made of a polymer selected from the group consisting of polyhalogenated alkyl methacrylates is used as the resist composition.
(6)遠紫外線の照射を酸素雰囲気中で行なうことを特
徴とする特許請求の範囲第4項又は第5項記載のレジス
トパターンの形成方法。
(6) The method for forming a resist pattern according to claim 4 or 5, wherein the irradiation with deep ultraviolet rays is performed in an oxygen atmosphere.
JP59229908A 1984-10-31 1984-10-31 Formation of resist pattern Granted JPS61108135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229908A JPS61108135A (en) 1984-10-31 1984-10-31 Formation of resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229908A JPS61108135A (en) 1984-10-31 1984-10-31 Formation of resist pattern

Publications (2)

Publication Number Publication Date
JPS61108135A true JPS61108135A (en) 1986-05-26
JPH0550845B2 JPH0550845B2 (en) 1993-07-30

Family

ID=16899614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229908A Granted JPS61108135A (en) 1984-10-31 1984-10-31 Formation of resist pattern

Country Status (1)

Country Link
JP (1) JPS61108135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143473A (en) * 1998-05-20 2000-11-07 Fujitsu Limited Film patterning method utilizing post-development residue remover
US20100328809A1 (en) * 2009-06-24 2010-12-30 Jo Inagaki Method for removing resist and for producing a magnetic recording medium, and systems thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518638A (en) * 1978-07-27 1980-02-08 Chiyou Lsi Gijutsu Kenkyu Kumiai Ionized radiation sensitive positive type resist
JPS5833246A (en) * 1981-08-24 1983-02-26 Oki Electric Ind Co Ltd Formation of positive type resist pattern
JPS6177852A (en) * 1984-09-26 1986-04-21 Fujitsu Ltd Method and device for removing resist

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518638A (en) * 1978-07-27 1980-02-08 Chiyou Lsi Gijutsu Kenkyu Kumiai Ionized radiation sensitive positive type resist
JPS5833246A (en) * 1981-08-24 1983-02-26 Oki Electric Ind Co Ltd Formation of positive type resist pattern
JPS6177852A (en) * 1984-09-26 1986-04-21 Fujitsu Ltd Method and device for removing resist

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143473A (en) * 1998-05-20 2000-11-07 Fujitsu Limited Film patterning method utilizing post-development residue remover
US20100328809A1 (en) * 2009-06-24 2010-12-30 Jo Inagaki Method for removing resist and for producing a magnetic recording medium, and systems thereof
US8679732B2 (en) * 2009-06-24 2014-03-25 HGST Netherlands B.V. Method for removing resist and for producing a magnetic recording medium, and systems thereof

Also Published As

Publication number Publication date
JPH0550845B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
JPH07261392A (en) Chemical amplification resist and resist pattern forming method using the same
JPS61108135A (en) Formation of resist pattern
EP0359342B1 (en) Process for forming a layer of patterned photoresist
US5882825A (en) Production method of a phase shift photomask having a phase shift layer comprising SOG
JPS61241745A (en) Negative type photoresist composition and formation of resist pattern
JPH0128374B2 (en)
JPH0451151A (en) Production of phase shift reticle
JPS6156867B2 (en)
JPS63214742A (en) Resist pattern forming method
JPS6161153A (en) Formation of pattern of negative type resist
JP3722597B2 (en) Water-soluble polymer coating method and pattern forming method
JP2682430B2 (en) Method for manufacturing semiconductor device
JPH06123976A (en) Formation of resist pattern
JPS63202025A (en) Manufacture or semiconductor device
JP2002006506A (en) Undercoating resin composition and method for manufacturing resist image using the same
JPS63288016A (en) Manufacture of photomask
JPH05291130A (en) Multilayer resist method and manufacture of semiconductor device
JPH05241350A (en) Resist pattern forming method
JPS625241A (en) Production of photomask
JPH0348253A (en) Formation of pattern
JPS62183449A (en) Formation of pattern
JPH02143253A (en) Precise pattern forming method
JPH03235947A (en) Photomask having phase shift layer and production thereof
JPS62269953A (en) Resist pattern forming method
JPH0296159A (en) Production of mask for photolithography