JPS61107646A - Electron beam processing machine - Google Patents

Electron beam processing machine

Info

Publication number
JPS61107646A
JPS61107646A JP22848584A JP22848584A JPS61107646A JP S61107646 A JPS61107646 A JP S61107646A JP 22848584 A JP22848584 A JP 22848584A JP 22848584 A JP22848584 A JP 22848584A JP S61107646 A JPS61107646 A JP S61107646A
Authority
JP
Japan
Prior art keywords
voltage
circuit
electron gun
tension
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22848584A
Other languages
Japanese (ja)
Inventor
Hisanao Kita
喜多 久直
Shinji Yamazaki
信二 山崎
Takamitsu Nakasaki
中崎 隆光
Kiichi Tokunaga
紀一 徳永
Masakazu Midorikawa
正和 緑川
Takeo Uehara
上原 壮夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22848584A priority Critical patent/JPS61107646A/en
Publication of JPS61107646A publication Critical patent/JPS61107646A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/241High voltage power supply or regulation circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To interrupt operation of the captioned machine when electrical discharge is produced in an electron gun by detecting a current flowing in a circuit and voltage applied to load, and operating a high-tension interruption device in a state thereof insulated from an earth by means of optical fibers. CONSTITUTION:A high-tension main circuit of an electron beam processing machine is adapted to have a high-tension power source 1, an electron gun 2, and a high-tension interruption device 3, and adapted to interrupt operation of the electron gun 2 by making use of the high-tension interruption device 3 when electrical discharge is produced in the electron gun 2, and return it to an original state after the elapse of prescribed time for protecting the device. A control circuit 4 thereupon receives signals from a beam current detector circuit 6 disposed serially between the high-tension power source 1 and an earth and an accelerating voltage detector circuit 7 arranged parallely to the high-tension main circuit for controlling the high-tension interruption device 3 with use of optical fibers 5. Accordingly, a problem of dielectric strength of the device against the earth can be eliminated to prevent any electrical discharge form being produced in the electron gun 2 for applying the captioned machine with ease to existing processing machines.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電子ビーム加工機に係り、特に電子銃内で生じ
る放電を防止し、さらに耐圧を考慮した高圧電源の改造
を必唆としない点において従来機への適用に好適な電子
ビーム制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an electron beam processing machine, and particularly to an electron beam processing machine that prevents discharge occurring within an electron gun and does not require modification of a high-voltage power supply in consideration of voltage resistance. The present invention relates to an electron beam control device suitable for application to conventional machines.

〔発明の背景〕[Background of the invention]

本発明の最も近い公知例は特公昭48−27278号で
あ纂。この技術は電子銃内で放電が生じた場合、その高
圧側回路電流を検知し、この値が例えば、0.6人の制
限電流以上になると、電子銃を25マイクロ秒より少な
い時間で遮断(ターンオフ)、35ミリ秒経過後復帰(
ター/オン)することができる高圧回路の制御装置を設
けて、過負荷に起因する装置の保護を目的に開発された
ものである。
The closest known example of the present invention was compiled in Japanese Patent Publication No. 48-27278. This technology detects the high-voltage circuit current when a discharge occurs in the electron gun, and if this value exceeds the current limit of 0.6 people, the electron gun is shut off in less than 25 microseconds ( turn-off), return after 35 milliseconds (
It was developed with the aim of protecting the equipment due to overload by providing a control device for the high voltage circuit that can be turned on and off.

この従来例には3点の問題点がある。This conventional example has three problems.

第1には、高圧回路においては各装置のアースに対する
耐圧が大きな問題となる。この従来技術を既存の電子ビ
ーム加工機に適用する場合、原理的には高圧電源のマイ
ナス側と電子銃間に直列に電子ビームの遮断および制御
を行なう装置を配置することは遮断装置の制御回路自身
の耐圧の問題から困難であり、高圧電源のプラス側とア
ース間に直列に制御装置を配置せざるを得ない。しかし
ながら、この場合高圧電源に電源電圧以上の耐圧を持た
せる必要が生じ、高圧電源の大幅な改造もしくは交換が
要求されることになる。
First, in high-voltage circuits, the withstand voltage of each device with respect to grounding becomes a major problem. When applying this conventional technology to an existing electron beam processing machine, it is theoretically necessary to place a device that interrupts and controls the electron beam in series between the negative side of the high-voltage power supply and the electron gun. This is difficult due to the problem of its own withstand voltage, and a control device must be placed in series between the positive side of the high-voltage power supply and ground. However, in this case, it becomes necessary for the high-voltage power supply to have a withstand voltage higher than the power supply voltage, which requires significant modification or replacement of the high-voltage power supply.

第2には、本技術を用いた場合加速電圧30kV以上の
電子ビーム加工機においてターンオフ時間が25マイク
ロ秒以下ではサージ電圧が大となシ、電子制御回路の亀
子部品等が高圧回路のLによるサージにより破壊する。
Second, when using this technology, in an electron beam processing machine with an accelerating voltage of 30 kV or more, if the turn-off time is less than 25 microseconds, the surge voltage will be large, and the parts of the electronic control circuit will be affected by the L of the high voltage circuit. Destroyed by surge.

第3には、本技術の遮断経過時間35ミリ秒では、例え
ば100 ミIJ厚の横向き貫通溶接で溶接の連続性が
保持できずボイド欠陥が発生してしまう。
Thirdly, with the interruption elapsed time of 35 milliseconds according to the present technology, weld continuity cannot be maintained in horizontal penetration welding of, for example, 100 mm IJ thickness, resulting in void defects.

以上のことより現状では従来機への適用において大幅な
高圧電源の改造が必要であり、さらに溶接においては放
電が生じることによシ溶接部に発生するボイド等の溶接
欠陥を防止することはできない。
As a result of the above, currently it is necessary to significantly modify the high-voltage power supply when applying it to conventional machines, and furthermore, it is not possible to prevent welding defects such as voids that occur in the welded part due to the generation of electrical discharge during welding. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点を解決して電
子ビーム加工において、電子銃内で放電が生じないよう
にし、良好な加工結果が得られ、かつ既存の電子ビーム
加工機に容易に適用可能な電子ビーム制御装置Ct−提
供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, to prevent discharge from occurring in the electron gun during electron beam processing, to obtain good processing results, and to be easily integrated into existing electron beam processing machines. An object of the present invention is to provide an applicable electron beam control device Ct.

〔発明の概要〕[Summary of the invention]

本発明は、かかる目的を達成するために、電子ビーム加
工機の高圧電源および該″@、#tの負荷である゛電子
銃で構成される高圧電気回路に2いて、回路内に流れる
電流、前記負荷に印加される電圧を検知し、例えば光フ
ァイバーを用いることによってアースに対して絶縁され
た状態で高圧遮断装置の制御回路からアースに対して電
位差の大きい高圧遮断装置に該検知信号を伝達すること
により、高圧電気回路を選定せる任意の時間遮断し、電
子銃の作動を停止する遮断および制1111機構を、間
圧電源のマイナス側と該電源の負荷である電子銃間に配
置可能とした。
In order to achieve such an object, the present invention provides a high-voltage electric circuit composed of a high-voltage power supply of an electron beam processing machine and an electron gun, which is a load of the electron beam processing machine, and a current flowing in the circuit. The voltage applied to the load is detected, and the detection signal is transmitted from the control circuit of the high-voltage cut-off device to the high-voltage cut-off device having a large potential difference with respect to the ground while being insulated from the ground by using, for example, an optical fiber. By doing so, it is possible to place the cutoff and control mechanism 1111, which cuts off the high-voltage electric circuit for a selected period of time and stops the operation of the electron gun, between the negative side of the voltage power supply and the electron gun, which is the load of the power supply. .

〔発明の冥電例〕[Examples of inventions]

以下、不発明を図示の実施例に基づき、詳細に説明する
。第1図は本発明の一実喝例の構成図である。同図にお
いて、電子ビーム加工機は、高圧電源1、電子銃2、高
圧遮断装置3が高圧主回路を構成している。高圧遮断装
置3は制御回路4の信号により高圧主回路のターンオン
およびターンオフを行なう。制御回路4から高圧遮断装
置3への4H号の伝達はここでは光ファイバー5を用い
ている。また制御回路4に送られてくる信号は、高圧!
、源1とアース間に直列に配置されるビーム電流検知回
路6、高圧主回路と並列に配置される加速電圧検知回路
7から送られてくる。
Hereinafter, the invention will be described in detail based on illustrated embodiments. FIG. 1 is a block diagram of one practical example of the present invention. In the figure, in the electron beam processing machine, a high voltage power supply 1, an electron gun 2, and a high voltage cutoff device 3 constitute a high voltage main circuit. The high voltage cutoff device 3 turns on and off the high voltage main circuit in response to a signal from the control circuit 4. Here, the optical fiber 5 is used to transmit the 4H signal from the control circuit 4 to the high voltage cutoff device 3. Also, the signal sent to the control circuit 4 is high voltage!
, a beam current detection circuit 6 arranged in series between the source 1 and ground, and an acceleration voltage detection circuit 7 arranged in parallel with the high voltage main circuit.

電流検知回路6および鑞圧検知回w!r7の信号により
制御回路4が駆動する場合の具体例を第2図に示す。
Current detection circuit 6 and solder pressure detection circuit lol! A specific example in which the control circuit 4 is driven by the signal r7 is shown in FIG.

第2図は高圧電源1、電子銃2および高圧半導体モジュ
ール9をN個直列に連結して構成される高圧遮断装#、
3を高圧主回路としている。それぞれの高圧半導体モジ
ュール9はサージ吸収器10によってサージから保護さ
れている。高圧半導体モジュール9の駆動電源は絶縁ト
ランス11よシインバータ12を介して送られてくる。
FIG. 2 shows a high-voltage isolation system #, which is constructed by connecting N high-voltage power supplies 1, electron guns 2, and high-voltage semiconductor modules 9 in series;
3 is used as the high voltage main circuit. Each high voltage semiconductor module 9 is protected from surges by a surge absorber 10. The driving power for the high voltage semiconductor module 9 is sent via an isolation transformer 11 and an inverter 12.

絶縁トランス11は51.流鴫源13から゛電力を供給
される。
The isolation transformer 11 is 51. Power is supplied from a droplet source 13.

また高圧半導体モジュール9のターンオン・ターンオフ
はLED発信回路14によって制御され、LED発信回
路14内のLED15から元ファイバー5を通って光ト
リガーが筒圧半碑体モジュール9円の受光ダイオード1
6に伝送される。
The turn-on and turn-off of the high-voltage semiconductor module 9 is controlled by the LED transmitter circuit 14, and a light trigger is transmitted from the LED 15 in the LED transmitter circuit 14 through the original fiber 5 to the light receiving diode 1 of the cylindrical half-shaped module 9.
6.

LED発信回路14に送られてくる信号は、本実施例で
は、ビーム電流検知回路6および加速電圧検知回路7よ
り発せられる。
In this embodiment, the signals sent to the LED oscillation circuit 14 are generated by the beam current detection circuit 6 and the acceleration voltage detection circuit 7.

以下本実施例を用いた電子ビーム溶接時の放電制御につ
いて説明する。
Discharge control during electron beam welding using this embodiment will be explained below.

放電の発生しない定常状態における高圧遮断装置3は導
通の状態であり、LED%伯回路14よシターンオンの
信号が送られている。電子Vcz内で異常放電が生じる
とビーム電流検知回路6および電圧検知回路7の出力電
圧が変化する。ビーム電流検出回路6の出力電圧の変化
は電圧設定器17の設定電圧とビーム電流比較回路18
で比較され直流の出力信号を出す。又、加速電圧検知回
W&7の出力電圧の変化は電圧設定器19の設定電圧と
加速電圧比較回路20で比較され直流の出力信号を出す
。マルチバイブレータ21の出力信号は上記出力信号の
いずれかを選択することによシ発せられ、フォトカプラ
22を動作させLED発信回路14内のNOT回路23
によシ信号が逆転されトランジスタ24をオフする。こ
れによりLE]J15は発光をやめ光ファイバー5を通
して高圧半導体モジュール9内の受光ダイオード16が
トランジスタ17のベース11tR,をl;FJシMO
8FET260ゲート電圧をカットオフ電圧以下にし、
第6図に示す原理で高圧半導体モジュール9内の全MO
8FETをターンオフする。この動作はN個の高圧半導
体モジュール9について同時に行なわれることによって
高圧遮断装置3は高圧回路を遮断することができる。遮
断後、設定した時間の後マルチバイブレータ21の出力
信号が0となり、再び高圧遮断装置t3は導通状態とな
り電子銃の運転を再開する。
In a steady state in which no discharge occurs, the high-voltage cutoff device 3 is in a conductive state, and a turn-on signal is sent to the LED circuit 14. When abnormal discharge occurs within the electron Vcz, the output voltages of the beam current detection circuit 6 and the voltage detection circuit 7 change. Changes in the output voltage of the beam current detection circuit 6 are determined by the setting voltage of the voltage setting device 17 and the beam current comparison circuit 18.
are compared and output a DC output signal. Further, the change in the output voltage of the accelerating voltage detection circuit W&7 is compared with the set voltage of the voltage setting device 19 by an accelerating voltage comparison circuit 20 to output a DC output signal. The output signal of the multivibrator 21 is generated by selecting one of the above output signals, operates the photocoupler 22, and connects the NOT circuit 23 in the LED transmitting circuit 14.
The signal is inverted, turning off transistor 24. As a result, the light receiving diode 16 in the high-voltage semiconductor module 9 connects the base 11tR of the transistor 17 through the optical fiber 5.
Set the 8FET260 gate voltage below the cutoff voltage,
All MO in the high-voltage semiconductor module 9 according to the principle shown in FIG.
Turn off the 8FET. By performing this operation simultaneously for N high voltage semiconductor modules 9, the high voltage cutoff device 3 can cut off the high voltage circuit. After the cutoff, the output signal of the multivibrator 21 becomes 0 after a set time, and the high voltage cutoff device t3 becomes conductive again and the operation of the electron gun is resumed.

第3図は、上記した回路の#作をより詳細に表わしたも
のである。
FIG. 3 shows the operation of the circuit described above in more detail.

定常状態では電子銃にビーム加速電圧V、が印加されて
電子ビーム溶接が行なわれている。しかし、溶接中、溶
接金属から放出される金属蒸気等が、電子銃内に侵入す
ると高圧(陰極−陽極間、又は、バイアス−陽慢閣)の
絶縁破壊が生じ、電子銃内で放電が生ずる。
In a steady state, a beam acceleration voltage V is applied to the electron gun to perform electron beam welding. However, during welding, if metal vapor etc. released from the weld metal enters the electron gun, high voltage (cathode-anode or bias-yoshikaku) dielectric breakdown occurs, causing discharge within the electron gun. .

このため、加速電圧V、が低下し、ビーム電流工、が増
加する。しかしながら、放・亀の程度により加速電圧の
低下およびビーム磁流の増加の程度は異なる。放電が生
じ、ビーム電流がI=(Is=LI1.)となるとすな
わち点35から点36に増加したとき前記のビーム電流
検知回路6と電圧設定器17の出力電圧を比較するビー
ム′)h、流比較回路18が作動しマルチバイブレータ
21を動作させLED発光回路14内のNOT回路23
により信号を逆転されその信号によりLED15はオフ
され島田遮断装置i3は遮断動作にはいる。この間ビー
ム電流は点36から点37に増加するがこの時間1oは
数マイクロ秒以下で十分無視できる時間である。このL
ED15のオフにより1゜秒でビーム電流は点37から
点38(零アンペア)になるように高圧遮断装置3のア
ノード・カソード間に電圧が印加される。これに伴って
、ビーム電流の低下とともに加速電圧も低下し、点27
から点28、点29そして点30(零電位)になる。
Therefore, the accelerating voltage V decreases and the beam current E increases. However, the degree of decrease in accelerating voltage and increase in beam magnetic current differs depending on the degree of release. When a discharge occurs and the beam current becomes I=(Is=LI1.), that is, when it increases from point 35 to point 36, the output voltages of the beam current detection circuit 6 and the voltage setting device 17 are compared; The current comparison circuit 18 operates to operate the multivibrator 21 and the NOT circuit 23 in the LED light emitting circuit 14.
The signal is reversed, the LED 15 is turned off, and the Shimada shutoff device i3 enters the shutoff operation. During this time, the beam current increases from point 36 to point 37, but this time 1o is less than a few microseconds and is sufficiently negligible. This L
When the ED 15 is turned off, a voltage is applied between the anode and the cathode of the high voltage cutoff device 3 so that the beam current changes from point 37 to point 38 (zero ampere) in 1 second. Along with this, the acceleration voltage also decreases as the beam current decreases, and the point 27
to point 28, point 29, and then point 30 (zero potential).

この時、点28すなわちVb(Vb=0.9v、)にな
ると、前記した加速電圧比較回路から直流電圧が出力さ
れ、マルチバイブレータにON信号が与えられる。この
時、ビーム電流は零でめるため、前記したビーム電流比
較回路の出力は1.秒後に零になっている。しかしなが
らマルチバイブレータは前記したようにビーム電流検知
回路と加速電圧検知回路の出力信号のいずれかを選択す
るためマルチバイブレータの出力により制圧遮断回路の
アノード・カソード間に電圧が印加される。またマルチ
バイブレータの出力はt1秒間保持するよ。
At this time, at point 28, that is, Vb (Vb=0.9v), a DC voltage is output from the acceleration voltage comparison circuit described above, and an ON signal is given to the multivibrator. At this time, since the beam current is zero, the output of the beam current comparison circuit described above is 1. It becomes zero after a second. However, as described above, since the multivibrator selects either the output signal of the beam current detection circuit or the accelerating voltage detection circuit, a voltage is applied between the anode and cathode of the suppression cutoff circuit by the output of the multivibrator. Also, the output of the multivibrator will be held for t1 seconds.

うにセットされており、従って13秒後マルチバイブレ
ータの出力がオフされるとLEDは発光を開始し、高圧
半導体モジュールのMOSFETにター/オン信号を送
り筒圧半導体モジュールはターンオンされ高圧遮断装置
のアノード・カソード間。
Therefore, when the output of the multivibrator is turned off after 13 seconds, the LED starts emitting light and sends a turn-on signal to the MOSFET of the high-voltage semiconductor module.The cylinder-pressure semiconductor module is turned on and the anode of the high-voltage cut-off device is turned on.・Between cathodes.

電圧は工4秒後に零となる。これに伴なって、電子銃の
加速電圧は点30から点31を経て、最初に設定され九
V、値となシ、ビーム′亀流も同様に点3Bから点39
を経て点40の工、値にもどり、再び連続した電子ビー
ム溶接が可能である。
The voltage becomes zero after 4 seconds. Accordingly, the acceleration voltage of the electron gun is initially set from point 30 to point 31, and the value becomes 9V, and the beam current also changes from point 3B to point 39.
After that, the process returns to the value at point 40, and continuous electron beam welding is possible again.

また、放電が生じ、ビーム電流が大きく変化せず、加速
電圧のみが低下し、Vb  (Vb =0.9V−)と
なった論合は、前記したように、加速電圧比較回路から
直流電圧が出力され、直ちにマルチバイブレータがON
し、同様の動作をし、@ 、 −)−t z +t3+
ta秒後に定常状態に復帰し連続した電子ビーム溶接が
可能となる。
In addition, the theory that discharge occurs and the beam current does not change significantly and only the accelerating voltage decreases to Vb (Vb = 0.9V-) is because the DC voltage is output from the accelerating voltage comparison circuit as described above. is output and the multivibrator is turned on immediately.
and performs the same operation, @ , −)−t z +t3+
After ta seconds, the steady state is restored and continuous electron beam welding becomes possible.

さらに、本装置においては、加速電圧の再点弧に失敗し
た場合、マルチバイブレータが点31よJtl+ts秒
後再び前記した動作を行ない、加速電圧を点33よシ回
復し、点34で正常に回復する機能を有している。この
場合の各要素への動作例を一点鎖線で示している。さら
に、加速電圧の再点弧時に過大なビーム電流(≧より)
が流れた場合は前記した動作を行ない、正常に回復する
機能を有している。以上の各要素の動作で最も重要す4
 ツカ、Ib 、 Vb 、 t2 、 t3  およ
びt4である。これらの具体的設定値とその結果を以下
に示す。
Furthermore, in this device, if the re-ignition of the accelerating voltage fails, the multivibrator performs the above operation again after Jtl+ts seconds from point 31, recovers the accelerating voltage from point 33, and recovers normally at point 34. It has the function of An example of the operation of each element in this case is shown by a dashed line. Furthermore, excessive beam current (from ≧) upon restriking the accelerating voltage
If a flow occurs, the above-mentioned operation is performed to restore normal operation. The most important factor in the operation of each element above is 4.
Tsuka, Ib, Vb, t2, t3 and t4. These specific setting values and their results are shown below.

t、とt4は装置の保護的な面より500マイクロ秒か
ら1ミリ秒に設定すべきである。
t, and t4 should be set from 500 microseconds to 1 millisecond to protect the device.

これは高圧回路に存在するインダクタンスLにより急激
な回路遮断でのサージ電圧が発生し、電子部品が破損す
るためである。実験的には、加速電圧30kVで100
mAのビーム電流のとき、t2が100マイクロ秒以下
で前記破損が発生した。このため使用するビームtR,
に応じて500マイクロ秒から1ミリ秒の間で設定する
ことが効果的であることが判明した。
This is because the inductance L present in the high-voltage circuit generates a surge voltage when the circuit is abruptly interrupted, damaging electronic components. Experimentally, at an accelerating voltage of 30 kV, 100
At a beam current of mA, the damage occurred when t2 was 100 microseconds or less. The beam tR used for this purpose,
It has been found that it is effective to set the time between 500 microseconds and 1 millisecond depending on the situation.

■−は30〜50ミリ秒間で20%程度の降下で溶接に
対して問題ないため、その半分の10%に設定した。さ
らに、Ibについて30〜50ミリ秒で、20%程度の
増加は溶接にtWないことを確認しているため、その半
分の10%に設定した。
(2) - is a drop of about 20% in 30 to 50 milliseconds, which poses no problem for welding, so it was set to half that, 10%. Furthermore, since it has been confirmed that an increase in tW of about 20% in 30 to 50 milliseconds for Ib does not occur in welding, it was set to half of that, 10%.

t3は溶接の連続性を保持する上で、すなわち健全な溶
接部を得るために紋も重要な値である。
t3 is also an important value for maintaining weld continuity, that is, for obtaining a sound weld.

板厚100W級を負通して溶接速度100wR/分で電
子ビーム浴接した結果、tz+t、+t4が12ミリ秒
以下では良好な結果が得られたが、これを越えると、急
速な復帰にも拘らずボイド欠陥が発生した。この状況を
第4図、第5図に示す。
As a result of electron beam bath contacting a plate of 100 W grade with a negative welding speed at a welding speed of 100 WR/min, good results were obtained when tz+t, +t4 was 12 milliseconds or less, but when this was exceeded, despite rapid recovery, A void defect occurred. This situation is shown in FIGS. 4 and 5.

第4図は板厚100mの被加工材41.42を突合せ溶
接し、前記した゛電子銃内で発生する放電の復帰を、1
.+1.+1.を12ミリ秒以下に設定して電子ビーム
溶接した結果であり、溶接部の横断面を(a)、そのA
−A断面すなわち縦断面を(b)に示している。溶接金
属43はいずれの断面とも欠陥のない良好な品質を示し
た。また、裏ビード44も均一で良好な形状を示してい
る。これに対して、12ミリ秒以上では、第5図にその
縦断面を示すが、ビード表面に凹み46および裏面に芙
起47が生じ、一部にボイド45が発生している。
Figure 4 shows that workpieces 41 and 42 with a thickness of 100 m are butt welded, and the recovery of the discharge generated in the electron gun described above is 1
.. +1. +1. This is the result of electron beam welding with the time set to 12 milliseconds or less, and the cross section of the weld is (a) and its A
-A section, that is, a longitudinal section is shown in (b). Weld metal 43 showed good quality with no defects in any cross section. Further, the back bead 44 also shows a uniform and good shape. On the other hand, when the time is longer than 12 milliseconds, as shown in FIG. 5, a vertical cross section is shown, a depression 46 and a ridge 47 are formed on the bead surface, and a void 45 is formed in a part of the bead surface.

さらに、板厚9.3〜30.9■の薄板についても同様
の結束が得られた。
Furthermore, similar binding was obtained for thin plates having a thickness of 9.3 to 30.9 cm.

以上のことよりt3は10ミリ秒以下が望ましい。From the above, it is desirable that t3 be 10 milliseconds or less.

以上、本発明の実施例を示した。さらに本実施例による
多大な効果は既設設備に付加する際に、高圧電源の大幅
表改造を考慮する必要がない点である。第1図において
、従来技術では回路のプラス側49において、アース5
0とビーム電流検知回路6との間に遮断装置、例えば真
空管を配置することになり、放電発生時はこの真空看に
より遮断動作が行なわれ、高圧電源のプラス端子はアー
スに対して電源電圧に相当する電圧がかかった状態にな
る。すなわち、安全の為に高圧電源の外箱をアースして
おくものとすれば、高圧電源装置の外箱とプラス側端子
およびプラス側回路は電源電圧に応じて絶縁しなければ
ならない。ところが遮断装置を持たない高圧電源のプラ
ス側端子と外箱は一般にアースされておシ、本発明によ
る遮断回路をプラス側49に挿入する場合には、高圧電
源の改造が必要になシ、必要な耐電圧間隙を取るため外
箱を大きくせねばならず深刻な問題となる。
The embodiments of the present invention have been described above. Furthermore, a great effect of this embodiment is that when adding it to existing equipment, there is no need to consider major modifications to the high-voltage power supply. In FIG. 1, in the prior art, on the positive side 49 of the circuit, the ground 5
A breaking device, such as a vacuum tube, is placed between 0 and the beam current detection circuit 6, and when a discharge occurs, the vacuum is used to perform the breaking operation, and the positive terminal of the high-voltage power supply is connected to the power supply voltage with respect to ground. The corresponding voltage will be applied. That is, if the outer box of the high voltage power supply is to be grounded for safety, the outer box of the high voltage power supply, the positive terminal, and the positive circuit must be insulated according to the power supply voltage. However, the positive side terminal and outer box of a high-voltage power supply that does not have a cutoff device are generally grounded, and when the cutoff circuit according to the present invention is inserted into the positive side 49, modification of the high-voltage power supply is not necessary. In order to provide a sufficient voltage gap, the outer box must be made larger, which poses a serious problem.

一方、本実施例においては、第1図の該当位置の状態か
ら明らかなように、尚圧電源の対アース電位は、定常加
速電圧印加時、放電による高圧主回路遮断時ともに変動
する仁となく零ボルトである。すなわち高圧電源につい
て耐電圧を考慮する必要がなく(設計上要求される必要
最小限、の耐電圧は考慮されてよい)、高圧電源装置の
小を化が可能であり、さらに電子ビーム加工機自身の小
を化につながり、高い経済性を有する装置となる。
On the other hand, in this embodiment, as is clear from the state of the relevant position in FIG. It's zero volts. In other words, there is no need to consider the withstand voltage of the high-voltage power supply (the minimum necessary design-required withstand voltage may be taken into account), the high-voltage power supply can be made smaller, and the electron beam processing machine itself can be made smaller. This results in a device with high economic efficiency.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電子ビーム溶接において、電子銃内で
発生する放電に起因した溶接欠陥をなくすことが可能で
ある。また、放電により生じるサージに起因する装置の
電子部品の破損をなくすことが可能となる。さらに従来
の電子ビーム加工機に、高圧電源の耐圧の問題において
大幅な改造あるいは交換を必要とすることなく本装置を
適用することか可能となる。
According to the present invention, it is possible to eliminate welding defects caused by discharge generated within an electron gun in electron beam welding. Furthermore, it is possible to eliminate damage to electronic components of the device due to surges caused by discharge. Furthermore, the present device can be applied to conventional electron beam processing machines without requiring major modification or replacement due to the problem of withstand voltage of the high-voltage power supply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図はその具体
例、第3図は制御装置の作動を示す線図、第4図(a)
は本装置による被加工材の溶接部横断面図、第4図(b
)は第4図(a)のA−A線断面図、第5図は本発明以
外の方法による被加工材の溶接部欠陥発生状況説明図で
ある。 1・・・高圧電源、2・・・電子銃、3・・・高圧遮断
装置、4・・・制御回路、5・・・光ファイバー、6・
・・ビーム電流検知回路、7・・・加速電圧検知回路、
8・・・電子銃内真空度検知回路、9・・・高圧半導体
モジュール、10・・・サージ吸収器、11・・・絶縁
トランス、12・・・インバータ、13・・・交流電源
、14・・・LED発信回路、15・・・LED、16
・・・受光ダイオード、17・・・電圧設定器、18・
・・ビーム電流比較回路、19・・・電圧設定器、20
・・・加速電圧比較回路、衰 21・・・マルチバイブレータ、22・・・7オトカブ
ラ、23・・・NOT回路、24・・・トランジスタ、
25・・・トランジスタ、26・・・MOSFET、2
7〜34・・・加速電圧の変化状況を説明する走めの点
を示す、35〜40・・・ビームを流の変化状況を説明
するための点を示す、41.42・・・被加工材、43
・・・溶接金属、44・・・裏ビード、45・・・ボイ
ド欠陥、46・・・表ビード凹み、47・・・裏ビード
突起、48・・・回路のマイナス側、49・・・回路の
プラス側(アース側)、50・・・アース。 箪 T 図 ! ′43国 時間 → 箪4 品 扇 5 図
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a specific example thereof, Fig. 3 is a diagram showing the operation of the control device, and Fig. 4 (a)
is a cross-sectional view of the welded part of the workpiece processed by this device, and Figure 4 (b
) is a sectional view taken along the line A-A in FIG. 4(a), and FIG. 5 is an explanatory diagram of the occurrence of defects in welded parts of workpieces by a method other than the present invention. DESCRIPTION OF SYMBOLS 1... High voltage power supply, 2... Electron gun, 3... High voltage cutoff device, 4... Control circuit, 5... Optical fiber, 6...
...beam current detection circuit, 7...acceleration voltage detection circuit,
8... Vacuum level detection circuit within the electron gun, 9... High voltage semiconductor module, 10... Surge absorber, 11... Insulation transformer, 12... Inverter, 13... AC power supply, 14... ...LED transmitter circuit, 15...LED, 16
... Light receiving diode, 17... Voltage setting device, 18.
...Beam current comparison circuit, 19...Voltage setting device, 20
...Acceleration voltage comparison circuit, Decay 21...Multi-vibrator, 22...7 Otokabura, 23...NOT circuit, 24...Transistor,
25...Transistor, 26...MOSFET, 2
7-34... Indicates a running point to explain the change situation of the acceleration voltage, 35-40... Indicates a point to explain the change situation of the beam flow, 41.42... Workpiece Material, 43
... Weld metal, 44... Back bead, 45... Void defect, 46... Front bead dent, 47... Back bead protrusion, 48... Negative side of circuit, 49... Circuit The positive side (earth side) of 50...earth. Kan T figure! '43 Country Time → Kan 4 Shinogi 5 Diagram

Claims (1)

【特許請求の範囲】 1、電子ビーム加工機の高圧電源および該電源の負荷で
ある電子銃で構成される高圧電気回路で回路内に流れる
ビーム電流、前記負荷に印加される加速電圧を検知し、
該検知信号を高圧遮断装置の制御回路から高圧遮断装置
に絶縁された信号で伝達することにより高圧電気回路を
選定せる任意の時間遮断し、電子銃の作動を停止する遮
断および制御機構において、高圧電源の耐圧を考慮しな
くても良いように高圧電源のマイナス側と該電源の負荷
である電子銃間に配置可能としたことを特徴とする電子
ビーム加工機。 2、電子銃の作動を停止する時間が10ミリ秒以下でか
つターンオン、ターンオフ時間を500マイクロ秒から
1ミリ秒で制御することを特徴とする特許請求の範囲第
1項に係る電子ビーム加工機。
[Claims] 1. A high-voltage electric circuit consisting of a high-voltage power source of an electron beam processing machine and an electron gun that is a load of the power source, and detects the beam current flowing in the circuit and the accelerating voltage applied to the load. ,
In the cutoff and control mechanism, the high voltage electric circuit is cut off for a selected period of time by transmitting the detection signal from the control circuit of the high voltage cutoff device to the high voltage cutoff device as an insulated signal, and the operation of the electron gun is stopped. An electron beam processing machine characterized in that it can be placed between the negative side of a high-voltage power source and an electron gun that is a load of the power source so that there is no need to consider the withstand voltage of the power source. 2. The electron beam processing machine according to claim 1, characterized in that the time for stopping the operation of the electron gun is 10 milliseconds or less, and the turn-on and turn-off times are controlled within 500 microseconds to 1 millisecond. .
JP22848584A 1984-10-30 1984-10-30 Electron beam processing machine Pending JPS61107646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22848584A JPS61107646A (en) 1984-10-30 1984-10-30 Electron beam processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22848584A JPS61107646A (en) 1984-10-30 1984-10-30 Electron beam processing machine

Publications (1)

Publication Number Publication Date
JPS61107646A true JPS61107646A (en) 1986-05-26

Family

ID=16877202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22848584A Pending JPS61107646A (en) 1984-10-30 1984-10-30 Electron beam processing machine

Country Status (1)

Country Link
JP (1) JPS61107646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311149A (en) * 2006-05-18 2007-11-29 Jeol Ltd Electron beam generating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311149A (en) * 2006-05-18 2007-11-29 Jeol Ltd Electron beam generating device

Similar Documents

Publication Publication Date Title
US6937455B2 (en) Spark management method and device
EP0951961B1 (en) Plasma pilot arc control
CA2240104C (en) Apparatus for controlling an ozone generator
US3174027A (en) Pilot arc starting-arc working systems
US5264679A (en) Alternating current welding apparatus
JPH1046324A (en) Arc ion plating apparatus
US4950864A (en) DC arc weld starter
JPS61107646A (en) Electron beam processing machine
US3328635A (en) Electrical discharge machining power supply
US3617680A (en) Process and circuit arrangement for the switching of short circuits of installations for the electrochemical removal of material
JPS5991650A (en) Electron-beam welder
US4642518A (en) Installation of electron beam metalworking
US3260890A (en) Power arc initiation by preheat and capacitor discharge
JP4468078B2 (en) Abnormal discharge suppression device for vacuum equipment
JPS5991649A (en) Electron-beam welder
JPS6015083A (en) Electron beam working machine
JP3076946B2 (en) Arc welding machine and plasma cutting machine
JP2507474B2 (en) Power supply for electronic beam welding equipment
JP3463965B2 (en) Plasma arc processing equipment
EP3324704B1 (en) Anti-shock device for high frequency welding machines
JPS611473A (en) Electric power source circuit of plasma cutting and welding device
JP3696923B2 (en) Arc processing equipment
JP3584095B2 (en) DC arc processing equipment
JPH0813416B2 (en) Arc welding equipment
EP3388180A1 (en) Welding systems with short circuit welding using self-shielded electrode