JPS6110760A - Air/fuel ratio detection sensor - Google Patents

Air/fuel ratio detection sensor

Info

Publication number
JPS6110760A
JPS6110760A JP59130145A JP13014584A JPS6110760A JP S6110760 A JPS6110760 A JP S6110760A JP 59130145 A JP59130145 A JP 59130145A JP 13014584 A JP13014584 A JP 13014584A JP S6110760 A JPS6110760 A JP S6110760A
Authority
JP
Japan
Prior art keywords
gas
narrow gap
protector
sensor body
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59130145A
Other languages
Japanese (ja)
Other versions
JPH0473100B2 (en
Inventor
Tetsumasa Yamada
哲正 山田
Takao Kojima
孝夫 小島
Hiroyuki Ishiguro
石黒 宏之
Yutaka Nakayama
豊 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP59130145A priority Critical patent/JPS6110760A/en
Priority to US06/734,602 priority patent/US4624770A/en
Priority to DE19853522867 priority patent/DE3522867A1/en
Priority to DE8518535U priority patent/DE8518535U1/en
Publication of JPS6110760A publication Critical patent/JPS6110760A/en
Publication of JPH0473100B2 publication Critical patent/JPH0473100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes

Abstract

PURPOSE:To improve the response of a sensor by a method wherein a cap- shaped protector is enclosed with a gas sensor body and a gas to be measured is introduced into an electrode section through an introduction hole of the protector so that more gas being measured is allowed to be introduced as separated farther from the electrode to keep the gas flow from hitting the electrode. CONSTITUTION:An electrode is provided on both sides of an oxygen ion conductor of an oxygen sensor body 1 and a narrow gap G is formed on an electrode contacting a gas to be measured to build a solid electrolytic pump 4. A sensor body 1 is enclosed with a cap-shaped protector 3. The protector 3 is provided with an introduction hole 13 and a deflection plate is mounted near the introduction hole 13 to introduce the gas being measured. Then, the introduction hole 13 is provided to the tip of the protector 3 from near the head side of the narrow gap G and the number thereof is increased so that more of the gas being measured is introduced as farther from the narrow gap G to adjust the angle theta of mounting the deflection plate 14. Thus, this keeps the sensor body from hitting a rapid gas flow thereby enabling the detection at a high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) ガスセンサ、なかでも空燃比検知のため、内燃機関など
の排気ガス雰囲気下で多用されつつある酸素センサの改
良に関してこの明細書で述べる技術内容はミ被測定ガス
流によるセンサ本体の冷却を伴う不利なく、応答性の改
善を目指した開発研究の成果を提案するところにあり、
非限定的な意味で一般に液体又は気体燃料の燃焼とくに
自動車の燃料供給に関連した技術を含む産業分野に位置
づけられる。
[Detailed Description of the Invention] (Field of Industrial Application) The technical contents described in this specification are related to the improvement of gas sensors, especially oxygen sensors that are increasingly being used in exhaust gas atmospheres of internal combustion engines to detect air-fuel ratios. The aim is to propose the results of research and development aimed at improving responsiveness without the disadvantages associated with cooling the sensor body due to the flow of gas to be measured.
In a non-limiting sense, the field of industry generally includes technology related to the combustion of liquid or gaseous fuels, and in particular to the fueling of motor vehicles.

(従来技術) 特開昭58−153155号公報には、酸素イオン導電
性固体電解質板状体の先側面に電極層を設けた素子の対
を、平行に狭隙を介し対設し、それぞれ酸素ポンプ素子
と酸素濃淡電池素子とする酸素センサが開発さているが
、これを例えば内燃機関の排気ガス雰囲気中にて実用す
る際にははげしい気流の影響を強く受けるところ、これ
についての防護対策に触れられていない。
(Prior art) Japanese Patent Application Laid-Open No. 58-153155 discloses that a pair of elements each having an electrode layer provided on the front side of an oxygen ion conductive solid electrolyte plate is arranged in parallel with a narrow gap in between, and An oxygen sensor that uses a pump element and an oxygen concentration battery element has been developed, but when this sensor is put into practical use, for example, in the exhaust gas atmosphere of an internal combustion engine, it is strongly affected by strong air currents, so we will discuss protective measures for this sensor. It has not been done.

(発明が解決しようとする問題点) 被測定ガス環境に依存する気流の影響に対しては、一般
に多数の導入穴をあけた多孔筒状のプロテクタをかりに
用いたとしても該導入穴から浸入するガス流による素子
の抜熱冷却を防ぐことが困難であり、とくに応答性をよ
り良好にしようとすると抜熱作用も不所望に増強されて
しまうところに問題点があった。
(Problem to be Solved by the Invention) Regarding the influence of airflow depending on the environment of the gas to be measured, generally speaking, even if a multi-hole cylindrical protector with many introduction holes is used, the gas may enter through the introduction holes. It is difficult to prevent the element from being cooled by heat removal due to the gas flow, and there is a problem in that the heat removal effect is undesirably enhanced, especially when an attempt is made to improve responsiveness.

(問題点を解決するための手段) センサ本体の冷却を伴う不利なしに応答性の改善を図る
目的に対しては、 (a)上記素子つまりセンサ本体につき、ガス流が直接
に当たらない配置とすること、 (b)  センサ本体の周囲でガス流が周回する向きの
導入穴をプロテクタに開設すること、 (C)  そしてセンサ本体には直面しない位置での導
入穴の開度を拡げること が、とくに有利であって、(a)  はガス流にょる抜
熱作用を抑制し、(b)  は抜熱防止の下での応答性
の向上、そして(c)  は応答性の改善に役立つこと
が見出された。
(Means for solving the problem) For the purpose of improving responsiveness without the disadvantages associated with cooling the sensor body, (a) The above element, that is, the sensor body, should be arranged so that the gas flow does not directly hit it. (b) opening an inlet hole in the protector in the direction in which the gas flow circulates around the sensor body; (C) widening the opening of the inlet hole at a position that does not face the sensor body; Particularly advantageous are that (a) suppresses the heat removal effect due to the gas flow, (b) improves responsiveness while preventing heat loss, and (c) helps improve responsiveness. discovered.

第1図はこの発明に従う空燃比検知センサを示し、1は
センサ本体、2は取付は金具、3はプロテクタである。
FIG. 1 shows an air-fuel ratio detection sensor according to the present invention, where 1 is a sensor body, 2 is a mounting bracket, and 3 is a protector.

センサ本体lは酸素イオン導電体の両面に電極を構成し
その一方の電極を狭隙G内にて被測定ガス雰囲気と接触
させる配置にして該狭隙により拡散制限が行われる固体
電解質酸素ポンプ4を用いることが前提であり、ここに
特開昭58−153155号公報の開示にしたがって上
記狭隙を形成するよう向い合わせたいま一つの同様な構
造の素子を以て該狭隙部と周囲雰囲気との酸素濃度比の
測定に役立つ電池5に充てた素子対とし、さらに図示の
ように固体電解質酸素ポンプ4の背後に沿わせて配置し
たヒーター6を含むものとすることが好ましい。
The sensor body L has electrodes on both sides of an oxygen ion conductor, and one electrode is placed in contact with the gas atmosphere to be measured within a narrow gap G, and diffusion is restricted by the narrow gap G. A solid electrolyte oxygen pump 4 According to the disclosure of JP-A No. 58-153155, another element having a similar structure is placed opposite to form the narrow gap to connect the narrow gap with the surrounding atmosphere. Preferably, the device is a pair of elements filled with a battery 5 useful for measuring the oxygen concentration ratio, and further includes a heater 6 disposed along the back of the solid electrolyte oxygen pump 4 as shown.

センサ本体1は上記狭隙Gの先側と反対の元側にて、締
結用ねじ7を設けた取付は金具2の内部で、耐熱性無機
質接着剤たとえばりん酸アルミ系セメントによる充てん
層8、ガラスシール9によって固着する。
The sensor body 1 is mounted on the base side opposite to the front side of the narrow gap G, and the fastening screw 7 is installed inside the metal fitting 2, with a filling layer 8 made of a heat-resistant inorganic adhesive such as aluminum phosphate cement, It is fixed by a glass seal 9.

酸素ポンプ4および電池5は、ともに例えば安定化ジル
コニア磁器の両面に酸素の拡散抵抗性をもつ金属酸化物
を含む多孔質金属質膜よりなるかまたは、酸素の拡散抵
抗性をもつ多孔質耐火゛材料による被覆を有する電極を
そなえる。
The oxygen pump 4 and the battery 5 are both made of, for example, a porous metal membrane containing a metal oxide having oxygen diffusion resistance on both sides of stabilized zirconia porcelain, or a porous refractory film having oxygen diffusion resistance. An electrode is provided with a coating of material.

狭隙Gの先側と反対のセンサ本体1の元側は図のような
接続用導線1oとともにガラスシール9に埋設合体し、
取付は金具2に固着した継管11の内部にかしめ止めす
る耐熱ゴム例えばシリコーンゴムよりなる封塞栓12に
よる防水シールの下に接続用導線10を外部に引出す。
The base side of the sensor body 1 opposite to the front side of the narrow gap G is buried and integrated in the glass seal 9 together with the connecting conductor 1o as shown in the figure.
For installation, the connecting wire 10 is pulled out to the outside under a waterproof seal with a sealing plug 12 made of heat-resistant rubber, for example, silicone rubber, which is caulked inside the joint pipe 11 fixed to the metal fitting 2.

取付は金具7の締結用ねじ7の端部に、被測定ガス環境
と、該ガスの導入穴13を介して連通してセンサ本体1
を包囲するキャップ状のプロテクタ3をかぶせる。
The sensor body 1 is attached to the end of the fastening screw 7 of the metal fitting 7, communicating with the gas environment to be measured via the gas introduction hole 13.
A cap-shaped protector 3 is placed over the area.

導入穴】3には、狭隙Gの先側の近傍にて、該先側から
センサ本体1に対し離れる程、導入ガス量が多くなる旋
回流をプロテクタ3内に導り、゛偏向片14を設ける。
Introductory hole] 3 introduces a swirling flow into the protector 3 near the tip of the narrow gap G, the amount of introduced gas increases as the distance from the tip side to the sensor main body 1 increases, and the deflection piece 14 will be established.

偏向片14は、プレス加工でのいわゆる押抜きによる切
曲げ又は切起し加工によって、通常円筒状をなすプロテ
クタ3の内周に対し接線方向で内向きに突出するように
形成する。ここにセンサ本体1の先側を含みプロテクタ
3の軸心と直交する平面と接するかまたはこれに近接す
る配列αの偏向片14の切曲げ又は切り起し角度に対し
、センサ本体1の先側からプロテクタ3の端部の方より
遠く離れる配列βの偏向片14のそれを、より大きくす
ることが重要で、さらにセンサ本体1を取囲む配列γに
て偏向片を設けるときには、この切曲げ又は切起し角度
はむしろより小さくする。
The deflection piece 14 is formed by cutting, bending or cutting by so-called punching in a press process so as to protrude inward in a tangential direction with respect to the inner circumference of the protector 3, which usually has a cylindrical shape. Here, the tip side of the sensor body 1 is in contact with or close to the plane perpendicular to the axis of the protector 3, including the tip side of the sensor body 1. It is important to make the deflection pieces 14 in the arrangement β that are farther away from the end of the protector 3 from the edge of the protector 3 larger. Rather, the cutting angle should be made smaller.

この角度は、偏向片14の導入穴13と対向する面の、
プロテクタ3の内周面との交点における該内周面の接線
に対する交角θ(第1図A−A断面図参照)で定義し、
配列αにつき0〜45°、配列βにつき30〜90°と
して、αくβの関係とする。
This angle is determined by the surface of the deflection piece 14 facing the introduction hole 13.
Defined by the intersection angle θ with respect to the tangent of the inner circumferential surface at the intersection with the inner circumferential surface of the protector 3 (see the sectional view taken along the line A-A in FIG. 1),
The arrangement α is set at 0 to 45°, and the arrangement β is set at 30 to 90°, so that the relationship is α × β.

偏向片14は、たとえば内径10mm程度のプロテクタ
3に対し半径はぼ2mmの半円形の導入穴13を、プロ
テクタ3の母線方向に沿う向きにて、弦を限界するもの
として、配列αについて4こ程度、また配列βについて
は4〜8こ程度を何れもプロテクタ3の円周に沿う等間
隔で配列αとβとにおける導入穴13の開口縁がオーバ
ーラツプしないように配置するのか好ましい。ちなみに
この場合プロテクタ3の全長は、幅はぼ4mmとしたセ
ンサ本体1の取付は金具2上の突出高さのほぼ2倍、図
示の例では20mm程度が好ましい。
For example, the deflection piece 14 has four semicircular introduction holes 13 with a radius of approximately 2 mm for the protector 3 having an inner diameter of about 10 mm, with respect to the arrangement α, in a direction along the generatrix direction of the protector 3, with the limit of the chord. Regarding the arrangement β, it is preferable that about 4 to 8 holes are arranged at equal intervals along the circumference of the protector 3 so that the opening edges of the introduction holes 13 in the arrangements α and β do not overlap. Incidentally, in this case, the overall length of the protector 3 is preferably about twice the height of the protrusion on the metal fitting 2, about 20 mm in the illustrated example, when mounting the sensor main body 1 with a width of about 4 mm.

(作  用) 上記の構成において被測定ガス環境へ設置し、たとえば
酸素ポンプ4の狭隙に面する電極に負、反対面の電極で
正となる電圧を印加することにより、固体電解質内を酸
素イオンが移動して狭隙Gから汲み出され、被測定ガス
環境との間に酸素濃度の差が生じる。
(Function) The above configuration is installed in a gas environment to be measured, and by applying a negative voltage to the electrode facing the narrow gap of the oxygen pump 4 and a positive voltage to the electrode on the opposite side, oxygen is introduced into the solid electrolyte. The ions move and are pumped out from the narrow gap G, creating a difference in oxygen concentration between the ions and the measured gas environment.

この濃度差によって電池5に起電力を生じ、この起電力
は、狭隙Gの3方の開口端から流入拡散する酸素量と酸
素ポンプ4により上記のように汲み出される酸素量とが
平衡に達したとき一定値に収斂するのでこの平衡が維持
される酸素ポンプ4の電流調節にて、はぼ一定温度下に
その電流値は被測定ガス環境の酸素濃度とほぼ比例する
ことから、その酸素濃度を求めることができる。
This concentration difference generates an electromotive force in the battery 5, and this electromotive force is caused by the balance between the amount of oxygen flowing in and diffusing from the three open ends of the narrow gap G and the amount of oxygen pumped out by the oxygen pump 4 as described above. When the temperature reaches a constant temperature, the current value of the oxygen pump 4 converges to a constant value, so this equilibrium is maintained. Concentration can be determined.

なお電池5の代わりに、たとえばその電極を省略した形
の断熱性耐火材料を狭隙Gの形成に用いた酸素ポンプ4
のみを素子に用いる酸素濃度の検出は、たとえば酸素ポ
ンプ4に十分高い一定の電圧を印加しその時にポンプに
流れる電流すなわち狭隙を介して汲み出される酸素量が
被測定ガス環境中の酸素濃度に依存することを利用して
、酸素濃度を測定するようにすればよい。
Note that instead of the battery 5, an oxygen pump 4 may be used in which the narrow gap G is formed using a heat-insulating fire-resistant material with the electrode omitted, for example.
Detection of oxygen concentration using a single element is possible, for example, when a sufficiently high constant voltage is applied to the oxygen pump 4, and the current flowing through the pump at that time, that is, the amount of oxygen pumped out through the narrow gap, determines the oxygen concentration in the gas environment to be measured. The oxygen concentration can be measured by taking advantage of the fact that

何れにしてもプロテクタ3の導入穴13を通して流入す
る被測定ガスの気流が激しいと、それによる抜熱作用に
て一定温度の前提が崩れるわけであるが、この導入穴1
3の上述配置と、偏向片の適切な配置をもってプロテク
タ3内に旋回流動を生じさせることにより、被測定ガス
の甚だしい気流による、センサ本体1に不所望な抜熱作
用が有効に回避されしかも応答性の向上に著しい寄与を
呈する。
In any case, if there is a strong airflow of the gas to be measured flowing in through the introduction hole 13 of the protector 3, the assumption of a constant temperature will collapse due to the heat removal effect.
By creating a swirling flow in the protector 3 through the above-mentioned arrangement of 3 and the appropriate arrangement of the deflection pieces, it is possible to effectively avoid an undesirable heat removal effect on the sensor body 1 due to the severe airflow of the gas to be measured, and to improve response. It makes a significant contribution to improving sexual performance.

(実施例) 第1図に従い内径10mm 、肉厚0.3nonの薄肉
をなすキャップ状のプロテクタ3に配列α、βとも4こ
宛、何れも半径2mmの半円形をなして開口する導入穴
13を円周上等間隔配置にて、配列αの偏向片14の切
曲げ角度θを25°とした例(No、1 )、配列βの
偏向片14のみθ:60°に変えた例(No、2)  
、および配列α、βはNo、 2と同じにしてとくに配
列Tにてθ;10°の偏向片14を加えた例(No、3
 )につき、配列α、βとも半径2mmの円形打抜き孔
とし、偏向片をもたない参考例(No、4 )と、セン
サ本体lをその狭隙Gの先側と対応する位置に至る高さ
で取囲む偏向配列α9とこれを上下に挟む配列β9 。
(Example) As shown in Fig. 1, introduction holes 13 are arranged in a cap-like protector 3 having an inner diameter of 10 mm and a thin wall of 0.3 non, each having a semicircular opening with a radius of 2 mm and 4 holes for both α and β. are arranged at equal intervals on the circumference, and the bending angle θ of the deflection pieces 14 in the arrangement α is set to 25° (No. 1), and the example in which only the deflection pieces 14 in the arrangement β is changed to θ: 60° (No. ,2)
, and the arrays α and β are the same as No. 2, but an example in which a deflection piece 14 of θ; 10° is added to the array T (No. 3).
), the arrangement α and β are both circular punched holes with a radius of 2 mm, and the reference example (No. 4) without a deflection piece has a height that brings the sensor body l to a position corresponding to the tip side of the narrow gap G. A deflection array α9 surrounded by , and an array β9 sandwiching this above and below.

TV の導入穴13に、何れも切曲げ又は切起し角度θ
:25°の偏向片14を設けた参考例(No、5 )お
よびNα4の配列αを廃し、βのみとした参考例(No
、6 )とを比較して、次の条件に従う性能を対比した
結果を表1にまとめて示した。なお上記各側の導入穴配
列を第2図(a)  〜(e)  に示した。
The TV introduction hole 13 is cut and bent or cut and raised at an angle θ.
: A reference example (No. 5) with a 25° deflection piece 14 and a reference example (No. 5) in which the arrangement α of Nα4 is eliminated and only β is provided.
, 6), and the results of comparing the performance according to the following conditions are summarized in Table 1. The arrangement of the introduction holes on each side is shown in FIGS. 2(a) to 2(e).

試験条件 温度計測:電池5の電極表面に0.32mmφのクロメ
ルアルメル熱電対を接着してそ れによる熱起電力により、電池5の 表面温度を試験中測定した。
Test conditions Temperature measurement: A chromel-alumel thermocouple with a diameter of 0.32 mm was adhered to the electrode surface of the battery 5, and the surface temperature of the battery 5 was measured during the test using the resulting thermoelectromotive force.

応答性+ 2000ccガソリン噴射エンジンの排気管
に装着して排ガス平均温度450 ℃の運転中、ヒーター出力14 (15W)で一定とし
、吸入混合気の空燃比に つき、空気過剰率λを1.1 から1.3に変更したと
きにおける応答時間を 調べた。
Responsiveness + Attached to the exhaust pipe of a 2000cc gasoline injection engine, during operation at an average exhaust gas temperature of 450°C, the heater output is kept constant at 14 (15W), and the excess air ratio λ is set from 1.1 to the air-fuel ratio of the intake mixture. The response time when changing to 1.3 was investigated.

なおガス流速に由来した。指示のばらつきについてはエ
ンジン暖機状態の700〜11000rp 、約600
j7/min低流速時のセンサ出力をベースとし、排ガ
ス流量が約300017m1nとなる3000〜400
0rpm相当の高流速時のセンサ出力との差を比較し、
調べた。
Note that this was derived from the gas flow rate. Regarding the variation in the instructions, the engine is warmed up from 700 to 11,000 rpm, approximately 600 rpm.
Based on the sensor output at low flow rate of j7/min, the exhaust gas flow rate is 3000 to 400, which is approximately 300017mln.
Compare the difference with the sensor output at high flow rate equivalent to 0 rpm,
Examined.

この結果から明らかなように参考例No、4. No、
5 では、応答性につき参考例No、6 に比べてすぐ
れていて実用可能範囲であるが、センサ本体1の温度低
下が800 ℃以下ではげしく、指示のばらつきも大き
くて不具合であるに反し、実施例のNo、 l〜3では
、センサ本体1の抜熱が少なくして、しかも応答性の改
善がみられる。
As is clear from this result, Reference Example No. 4. No,
5 has excellent responsiveness compared to Reference Example No. 6 and is within the practical range, but the temperature drop of the sensor body 1 is severe below 800 °C, and the dispersion of indications is large, which is a problem. In the example Nos. 1 to 3, the amount of heat removed from the sensor body 1 is reduced, and the responsiveness is improved.

第3図には酸素濃度の測定に適合する被測定ガス温度に
対するセンサ本体1の温度の関係を、第1図の例(No
、 1 )における場合と、第2図(d)  の(No
、 5 )の例の場合を曲線(イ)と(ロ)にて比較し
たが、図に破線で示した直線で示される安定測定領域を
曲線(ロ)は下まわっているので、被測定ガス温度がほ
ぼ400 ℃以下のとき、安定な測定が困難となり、測
定可能範囲が狭く実用に適合し難い。
Figure 3 shows the relationship between the temperature of the sensor body 1 and the temperature of the gas to be measured, which is suitable for oxygen concentration measurement, as shown in the example of Figure 1 (No.
, 1) and (No. 1) in Figure 2(d).
, 5) We compared curves (a) and (b) in the case of example, but since curve (b) is below the stable measurement area indicated by the broken straight line in the figure, the measured gas When the temperature is approximately 400° C. or lower, stable measurement becomes difficult, and the measurable range is narrow, making it difficult to put it into practical use.

なお上記したところのほか第4図(a)、 (b)  
および(c)  に示すように、配列α、βにまたがる
長スリツト状の導入穴13を、センサ本体1から離れる
程切曲げによる穴の幅が大きくなる偏向片14でプロテ
クタ3内に周回流を導く場合、また、配列βについての
み単純な円形孔とする変形の場合、さらに配列βについ
て半円形偏向片付の導入穴の数を8こに増した変形のば
あいいも、実施例1〜3におけると同等の機能が発揮さ
れ得た。
In addition to the above, Figures 4 (a) and (b)
As shown in (c), the long slit-shaped introduction hole 13 spanning the arrays α and β is deflected into the protector 3 by a deflection piece 14 whose width increases as the distance from the sensor body 1 increases. In addition, in the case of a modification in which only the arrangement β is a simple circular hole, and in the case of a modification in which the number of introduction holes with semicircular deflection pieces is increased to 8 for the arrangement β, Examples 1 to Functions equivalent to those in 3 could be exhibited.

(発明の効果) 被測定ガス雰囲気の激しいガス流動の下にセンサ本体の
不所望な抜熱冷却を免れつつ応答性の改善を導くことが
できる。
(Effects of the Invention) It is possible to improve responsiveness while avoiding undesired cooling of the sensor body under intense gas flow in the gas atmosphere to be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は断面図、 第2図は要部の外観正面図、 第3図は被測定ガス温度に対するセンサ本体温度の関係
グラフ1、 第4図は変形実施例の外観正面図である。 G・・・挾隙       1・・・センサ本体2・・
・取付は金具    3・・・プロテクタ13・・・導
入穴      14・・・偏向片。
FIG. 1 is a sectional view, FIG. 2 is an external front view of the main part, FIG. 3 is a graph 1 of the relationship between the sensor body temperature and the measured gas temperature, and FIG. 4 is an external front view of a modified example. G...Gap 1...Sensor body 2...
・Mounting with metal fittings 3...Protector 13...Introduction hole 14...Deflection piece.

Claims (1)

【特許請求の範囲】 1、酸素イオン導電体の両面にそれぞれ形成された電極
のうち、一方の電極を、狭隙内に浸入する被測定ガスと
接触させる配置とし、該狭隙をもってする拡散制限に供
した固体電解質酸素ポンプを用いるセンサ本体と、上記
狭隙の先側と反対のセンサ本体の元側を保持固定する取
付け金具とをそなえる空燃比検知センサであって、 被測定ガス環境と該ガスの導入穴を介し連 通してセンサ本体を包囲するキャップ状のプロテクタを
取付け金具にかぶせ、該導入穴に上記狭隙の先側の近傍
にて、該先側からセンサ本体に対し離れるほど導入ガス
量が多くなる旋回流をプロテクタ内に導く偏向片を設け
たことを特徴とする、空燃比検知センサ。 2、偏向片が切曲げ又は切起し加工によるものである、
1記載のセンサ。 3、プロテクタの導入穴が、狭隙の先側を含む平面と接
し又は近接して開口する配列である、1または2記載の
センサ。 4、導入穴の配列が、互い違いの複列である1〜3の何
れか1に記載のセンサ。 5、偏向片の切曲げ又は切り起し角度が、狭隙の先側を
含む平面に接するものを最小にして、先側からセンサ本
体に対し離れるにつれより大きくした、4記載のセンサ
[Claims] 1. Among the electrodes formed on both sides of the oxygen ion conductor, one electrode is placed in contact with the gas to be measured that enters the narrow gap, and the narrow gap is used to restrict diffusion. An air-fuel ratio detection sensor comprising a sensor body that uses a solid electrolyte oxygen pump subjected to the above-mentioned narrow gap, and a mounting bracket that holds and fixes the base side of the sensor body opposite to the front side of the narrow gap, the air-fuel ratio detection sensor comprising: A cap-shaped protector that communicates through the gas introduction hole and surrounds the sensor body is placed over the mounting bracket, and the gas is introduced into the gas introduction hole near the tip of the narrow gap as it becomes farther away from the sensor body from the tip. An air-fuel ratio detection sensor characterized by being provided with a deflection piece that guides a swirling flow that increases the amount of gas into a protector. 2. The deflection piece is cut and bent or cut and raised;
1. The sensor according to 1. 3. The sensor according to 1 or 2, wherein the introduction hole of the protector is arranged to open in contact with or close to a plane including the front side of the narrow gap. 4. The sensor according to any one of 1 to 3, wherein the introduction holes are arranged in alternate double rows. 5. The sensor according to 4, wherein the bending or cutting angle of the deflection piece is such that the angle in contact with a plane including the front side of the narrow gap is minimized, and increases as the distance from the front side to the sensor body increases.
JP59130145A 1984-06-26 1984-06-26 Air/fuel ratio detection sensor Granted JPS6110760A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59130145A JPS6110760A (en) 1984-06-26 1984-06-26 Air/fuel ratio detection sensor
US06/734,602 US4624770A (en) 1984-06-26 1985-05-16 Air-fuel ratio sensor
DE19853522867 DE3522867A1 (en) 1984-06-26 1985-06-26 SENSOR FOR DETERMINING THE AIR / FUEL RATIO
DE8518535U DE8518535U1 (en) 1984-06-26 1985-06-26 Sensor for determining the air / fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130145A JPS6110760A (en) 1984-06-26 1984-06-26 Air/fuel ratio detection sensor

Publications (2)

Publication Number Publication Date
JPS6110760A true JPS6110760A (en) 1986-01-18
JPH0473100B2 JPH0473100B2 (en) 1992-11-19

Family

ID=15027044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130145A Granted JPS6110760A (en) 1984-06-26 1984-06-26 Air/fuel ratio detection sensor

Country Status (1)

Country Link
JP (1) JPS6110760A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149551A (en) * 1986-12-12 1988-06-22 Ngk Spark Plug Co Ltd Air/fuel ratio sensor
JPH01169350A (en) * 1987-12-25 1989-07-04 Ngk Insulators Ltd Oxygen sensor
JPH034262U (en) * 1989-05-31 1991-01-17

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130146A (en) * 1983-01-10 1984-07-26 Kawaguchi:Kk Dissolution of protein, fatty acid, etc. of snapping turtle in honey

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130146A (en) * 1983-01-10 1984-07-26 Kawaguchi:Kk Dissolution of protein, fatty acid, etc. of snapping turtle in honey

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149551A (en) * 1986-12-12 1988-06-22 Ngk Spark Plug Co Ltd Air/fuel ratio sensor
JPH01169350A (en) * 1987-12-25 1989-07-04 Ngk Insulators Ltd Oxygen sensor
JPH034262U (en) * 1989-05-31 1991-01-17

Also Published As

Publication number Publication date
JPH0473100B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
US4624770A (en) Air-fuel ratio sensor
US3844920A (en) Air fuel ratio sensor
US3847778A (en) Air-fuel ratio sensor
US4824550A (en) Heated solid electrolyte oxygen sensor and securing element therefor
US6348141B1 (en) Gas sensor
US4732663A (en) Oxygen sensor
JP2000171429A (en) Gas sensor
US6222372B1 (en) Structure of gas sensor
JPS634141B2 (en)
US6948353B2 (en) Quick response structure of gas sensor
JPH0147737B2 (en)
US4980044A (en) Oxygen sensor having a flat plate element and heater
US4076608A (en) Oxygen sensor
US11946897B2 (en) Gas sensor
JP3827721B2 (en) Electrochemical sensor for measuring nitrogen oxides in gas mixtures
US5804699A (en) Air-fuel ratio sensor unit
JPS6110760A (en) Air/fuel ratio detection sensor
JP2005506548A (en) Gas measurement sensor
US4591422A (en) Electrochemical oxygen sensor
JPS6110761A (en) Air/fuel ratio detection sensor
JP2653831B2 (en) Oxygen sensor
KR940701543A (en) Air / fuel ratio sensor of internal combustion engine
Ueno et al. Wide-range air-fuel ratio sensor
JPH0648258B2 (en) Oxygen concentration detector
JP3696456B2 (en) Explosion-proof combustible gas sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term