JPH0473100B2 - - Google Patents

Info

Publication number
JPH0473100B2
JPH0473100B2 JP59130145A JP13014584A JPH0473100B2 JP H0473100 B2 JPH0473100 B2 JP H0473100B2 JP 59130145 A JP59130145 A JP 59130145A JP 13014584 A JP13014584 A JP 13014584A JP H0473100 B2 JPH0473100 B2 JP H0473100B2
Authority
JP
Japan
Prior art keywords
sensor body
gas
sensor
protector
narrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59130145A
Other languages
Japanese (ja)
Other versions
JPS6110760A (en
Inventor
Tetsumasa Yamada
Takao Kojima
Hiroyuki Ishiguro
Yutaka Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP59130145A priority Critical patent/JPS6110760A/en
Priority to US06/734,602 priority patent/US4624770A/en
Priority to DE8518535U priority patent/DE8518535U1/en
Priority to DE19853522867 priority patent/DE3522867A1/en
Publication of JPS6110760A publication Critical patent/JPS6110760A/en
Publication of JPH0473100B2 publication Critical patent/JPH0473100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) ガスセンサは、なかでも空燃比検知のため、内
燃機関などの排気ガス雰囲気下で多用されつつあ
る酸素センサの改良に関してこの明細書で述べる
技術内容は、被測定ガス流によるセンサ本体の冷
却を伴う不利なく、応答性の改善を目指した開発
研究の成果を提案するところにあり、非限定的な
意味で一般に液体又は気体燃料の燃焼とくに自動
車の燃料供給に関連した技術を含む産業分野に位
置づけられる。 (従来の技術) 特開昭58−153155号公報には、酸素イオン導伝
性固体電解質板状体の先端側両面にそれぞれ電極
層を形成した素子の対を、それらの互に向い合う
電極間で平行に狭〓を介し対設し、それぞれ酸素
ポンプ素子と酸素濃淡電池素子とする酸素センサ
が開発されているが、これは例えば内燃機関の排
気ガス雰囲気中にて実用する際にははげしい気流
の影響を強く受けるところ、これについての防護
対策に触れられていない。 (発明が解決しようとする問題点) 被測定ガス環境に依存する気流の影響に対して
は、一般に多数の導入穴をあけた多孔筒状のプロ
テクタをかりに用いたとしても該導入穴から浸入
するガス流による素子の抜熱冷却を防ぐことが困
難であり、とくに応答性をより良好にしようとす
ると抜熱作用も不所望に増強されてしまうところ
に問題点があつた。 (問題点を解決するための手段) センサ本体の冷却を伴う不利なしに応答性の改
善を図る目的に対しては、 (a) 上記素子つまりセンサ本体につき、ガス流が
直接に当たらない配置とすること、 (b) センサ本体の周囲でガス流が周回する向きの
導入穴をプロテクタに開設すること、 (c) そしてセンサ本体には直面しない位置での導
入穴の開度を拡げること が、とくに有利であつて、(a)はガス流による抜熱
作用を抑制し、(b)は抜熱防止の下での応答性の向
上、そして(c)は応答性の改善に役立つことが見出
された。 第1図はこの発明に従う空燃比検知センサを示
し、1はセンサ本体、2は取付け金具、3はプロ
テクタである。 センサ本体1は酸素イオン導伝性固体電解質板
状体(以下単にイオン導伝体という)の両面に電
極を形成した素子の対よりなり両素子の互いに向
き合う電極間に狭〓Gを設け、この狭〓G内にて
被測定ガス雰囲気と接触させる配置として該狭〓
Gにより拡散の制限が行われるようにした固体電
解質酸素ポンプ4及び酸素濃淡電池5を用いるこ
とが前提である。さらに図示のように固体電解質
酸素ポンプ4の背後に沿わせて配置したヒーター
6を含むものとすることが好ましい。 センサ本体1は上記狭〓Gの先側と反対の元側
にて、締結用ねじ7を設けた取付け金具2の内部
で、耐熱性無機質接着剤たとえばりん酸アルミ系
セメントによる充てん層8、ガラスシール9によ
つて固着する。 酸素ポンプ4および電池5は、ともに例えば安
定化ジルコニア磁器の両面に酸素の拡散抵抗性を
もつ金属酸化物を含む多孔質金属質膜よりなるか
または、酸素の拡散抵抗性をもつ多孔質耐火材料
による被覆を有する電極をそなえる。 狭隙Gの先側と反対のセンサ本体1の元側は図
のような接続用導線10とともにガラスシール9
に埋設合体し、取付け金具2に固着した継管11
の内部にかしめ止めする耐熱ゴム例えばシリコー
ンゴムよりなる封塞栓12による防水シールの下
に接続用導線10を外部に引出す。 取付け金具7の締結用ねじ7の端部に、被測定
ガス環境と、該ガスの導入穴13を介して連通し
てセンサ本体1を包囲するキヤツプ状のプロテク
タ3をかぶせる。 導入穴13には、狭隙Gの先側の近傍にて、該
先側からセンサ本体1に対し離れる程、導入ガス
量が多くなる旋回流をプロテクタ3内に導く、偏
向片14を設ける。 偏向片14は、プレス加工でのいわゆる押抜き
による切曲げ又は切起し加工によつて、通常円筒
状をなすプロテクタ3の内周に対し接続方向で内
向きに突出するように形成する。ここにセンサ本
体1の先側を含みプロテクタ3の軸心と直交する
平面と接するかまたはこれに近接する配列αの偏
向片14の切曲げ又は切り起し角度に対し、セン
サ本体1の先側からプロテクタ3の端部の方へよ
り遠く離れる配列βの偏向片14のそれを、より
大きくすることが重要で、(第2図bのように)
さらにセンサ本体1を取囲む配列γにて偏向片を
設けるときには、この切曲げ又は切起し角度はむ
しろより小さくする。 この角度は、偏向片14の導入穴13と対向す
る面の、プロテクタ3の内周面との交点における
該内周面の接線に対する交角θ(第1図A−A断
面図参照)で定義し、配列αにつき5〜45゜、配
列βにつき30〜90゜として、α<βの関係とする。 偏向片14は、たとえば内径10mm程度のプロテ
クタ3に対し半径ほぼ2mmの半円形の導入穴13
を、プロテクタ3の母線方向に沿う向きにて、弦
を限界するものとして、配列αについて4こ程
度、また配列βについては4〜8こ程度を何れも
プロテクタ3の円周に沿う等間隔で配列αとβと
における導入穴13の開口縁がオーバーラツプし
ないように配置するのか好ましい。ちなみにこの
場合プロテクタ3の全長は、幅ほぼ4mmとしたセ
ンサ本体1の取付け金具2上の突出高さのほぼ2
倍、図示の例では20mm程度が好ましい。 (作用) 上記の構成において被測定ガス環境へ設置し、
たとえば酸素ポンプ4の狭隙に面する電極に負、
反対面の電極で正となる電圧を印加することによ
り、固体電解質内を酸素イオンが移動して狭隙G
から汲み出され、被測定ガス環境との間に酸素濃
度の差が生じる。 この濃度差によつて電池5に起電力を生じ、こ
の起電力は、狭隙Gの3方の開口端から流入拡散
する酸素量と酸素ポンプ4により上記のように汲
み出される酸素量とが平衡に達したとき一定値に
収斂するのでこの平衡が維持される酸素ポンプ4
の電流調節にて、ほぼ一定温度下にその電流値は
被測定ガス環境の酸素濃度とほぼ比例することか
ら、その酸素濃度を求めることができる。 なお電池5の代わりに、たとえばその電極を省
略した形の断熱性耐火材料を狭隙Gの形成に用い
た酸素ポンプ4のみを素子に用いる酸素濃度の検
出は、たとえば酸素ポンプ4に十分高い一定の電
圧を印加しその時にポンプに流れる電流すなわち
狭隙を介して汲み出される酸素量が被測定ガス環
境中の酸素濃度に依存することを利用して、酸素
濃度を測定するようにすればよい。 何れにしてもプロテクタ3の導入穴13を通し
て流入する被測定ガスの気流が激しいと、それに
よる抜熱作用にて一定温度の前提が崩れるわけで
あるが、この導入穴13の上述配置と、偏向片の
適切な配置をもつてプロテクタ3内に旋回流動を
生じさせることにより、被測定ガスの勘だしい気
流による、センサ本体1に不所望な抜熱作用が有
効に回避されしかも応答性の向上に著しい寄与を
呈する。 (実施例) 第1図に従い内径10mm、肉厚0.3mmの薄肉をな
すキヤツプ状のプロテクタ3に配列α,βとも4
こ宛、何れも半径2mmの半円形をなして開口する
導入穴13を円周上等間隔配置にて、配列αの偏
向片14の切曲げ角度θを25゜配列βの偏向片1
4の切曲げ角度θを45゜として例(No.1)、配列β
の偏向片14のみθ:60゜に変えた例(No.2)、お
よび配列α,βはNo.2と同じにしてとくに配列γ
にてθ:10゜の偏向片14を加えた例(No.3)に
つき、配列α,βとも半径2mmの円形打抜き孔と
し、偏向片をもたない参考例(No.4)と、センサ
本体1をその狭隙Gの先側と対応する位置に至る
高さで取囲む偏向配列αvとこれを上下に挟む配列
βv,γvの導入穴13に、何れも切曲げ又は切起し
角度θ:25゜の偏向片14を設けた参考例(No.5)
およびNo.4の配列αを廃し、βのみとした参考例
(No.6)とを比較して、次の条件に従う性能を対
比した結果を表1にまとめて示した。なお上記各
例の導入穴配列を第2図a〜eに示した。 試験条件 温度計測:電池5の電極表面に0.32mmφのクロメ
ルアルメル熱電対を接着してそれによる熱起電
力により、電池5の表面温度を試験中測定し
た。 応答性:2000c.c.ガソリン噴射エンジンの排気管に
装着して排ガス平均温度450℃の運転中、ヒー
ター出力14V、15Wで一定とし、吸入混合気の
空燃比につき、空気過剰率λを1.1から1.3に変
更したときにおける応答時間を調べた。 なおガス流速に由来した指示のばらつきについ
てはエンジン暖機状態の700〜1000rpm、約600
/min低流速時のセンサ出力をベースとし、排
ガス流量が約3000/minとなる3000〜4000rpm
相当の高流速時のセンサ出力との差を比較し、調
べた。
(Industrial Application Field) Gas sensors, especially oxygen sensors, are increasingly being used in exhaust gas atmospheres of internal combustion engines to detect air-fuel ratios. The purpose is to propose the results of research and development aimed at improving responsiveness without the disadvantages associated with cooling the sensor body, and in a non-limiting sense, it refers to technologies related to the combustion of liquid or gaseous fuels in general, and to fuel supply for automobiles in particular. It is positioned in an industrial field that includes (Prior art) JP-A-58-153155 discloses a pair of elements each having an electrode layer formed on both sides of the tip side of an oxygen ion-conductive solid electrolyte plate, and a pair of elements arranged between the electrodes facing each other. An oxygen sensor has been developed in which an oxygen pump element and an oxygen concentration battery element are installed parallel to each other with a narrow space between them. There is no mention of protective measures for areas that are strongly affected by this. (Problem to be Solved by the Invention) Regarding the influence of airflow depending on the environment of the gas to be measured, generally speaking, even if a multi-hole cylindrical protector with many introduction holes is used, the gas may enter through the introduction holes. It is difficult to prevent the element from being cooled by heat loss due to the gas flow, and there is a problem in that, in particular, when trying to improve responsiveness, the heat removal effect is undesirably enhanced. (Means for solving the problem) For the purpose of improving the response without the disadvantage of cooling the sensor body, (a) the above element, that is, the sensor body, should be arranged so that the gas flow does not directly hit it; (b) opening an inlet hole in the protector in the direction in which the gas flow circulates around the sensor body; (c) widening the opening of the inlet hole at a position that does not face the sensor body; It has been found that (a) is particularly advantageous in that it suppresses the heat removal effect caused by the gas flow, (b) improves responsiveness while preventing heat removal, and (c) helps improve responsiveness. Served. FIG. 1 shows an air-fuel ratio detection sensor according to the present invention, in which 1 is a sensor body, 2 is a mounting bracket, and 3 is a protector. The sensor body 1 consists of a pair of elements each having electrodes formed on both sides of an oxygen ion conductive solid electrolyte plate (hereinafter simply referred to as an ion conductor). In order to make contact with the gas atmosphere to be measured within the narrow G
It is assumed that a solid electrolyte oxygen pump 4 and an oxygen concentration battery 5 whose diffusion is restricted by G are used. Furthermore, it is preferable to include a heater 6 disposed along the back of the solid electrolyte oxygen pump 4 as shown in the figure. The sensor body 1 has a filling layer 8 made of a heat-resistant inorganic adhesive such as aluminum phosphate cement, and glass inside a mounting bracket 2 provided with a fastening screw 7 on the base side opposite to the tip side of the narrow G. It is fixed by a seal 9. The oxygen pump 4 and the battery 5 are both made of, for example, a porous metal membrane containing a metal oxide having oxygen diffusion resistance on both sides of stabilized zirconia porcelain, or a porous refractory material having oxygen diffusion resistance. The electrode is coated with On the base side of the sensor body 1 opposite to the tip side of the narrow gap G, there is a glass seal 9 along with a connecting conductor 10 as shown in the figure.
Joint pipe 11 embedded in and fixed to mounting bracket 2
The connecting wire 10 is led out under a waterproof seal made of a sealing plug 12 made of heat-resistant rubber, for example, silicone rubber, which is caulked inside. The end of the fastening screw 7 of the mounting fitting 7 is covered with a cap-shaped protector 3 that communicates with the gas environment to be measured through the gas introduction hole 13 and surrounds the sensor body 1. The introduction hole 13 is provided with a deflection piece 14 near the front end of the narrow gap G, which guides a swirling flow into the protector 3 in which the amount of introduced gas increases as the distance from the front end to the sensor main body 1 increases. The deflecting piece 14 is formed by cutting, bending or cutting by so-called punching in a press process so as to protrude inward in the connection direction from the inner periphery of the normally cylindrical protector 3. Here, the tip side of the sensor body 1 is in contact with or close to the plane perpendicular to the axis of the protector 3, including the tip side of the sensor body 1. It is important to make that of the deflection pieces 14 of the arrangement β larger, which are farther away from the edge of the protector 3 (as in FIG. 2b)
Furthermore, when the deflecting pieces are provided in the array γ surrounding the sensor main body 1, the angle of cutting and bending is rather smaller. This angle is defined as the intersection angle θ of the surface of the deflection piece 14 facing the introduction hole 13 with the tangent to the inner circumferential surface of the protector 3 at the intersection point (see the sectional view taken along the line A-A in FIG. 1). , 5 to 45 degrees for the array α and 30 to 90 degrees for the array β, so that the relationship α<β is established. The deflection piece 14 has a semicircular introduction hole 13 with a radius of about 2 mm for the protector 3 with an inner diameter of about 10 mm, for example.
Assuming that the chord is limited in the direction along the generatrix direction of the protector 3, about 4 strings are set for the array α, and about 4 to 8 strings are set for the array β at equal intervals along the circumference of the protector 3. It is preferable to arrange the opening edges of the introduction holes 13 in the arrays α and β so that they do not overlap. Incidentally, in this case, the total length of the protector 3 is approximately 2 times the protrusion height on the mounting bracket 2 of the sensor body 1, which has a width of approximately 4 mm.
In the illustrated example, it is preferably about 20 mm. (Function) When installed in the gas environment to be measured with the above configuration,
For example, if the electrode facing the narrow gap of the oxygen pump 4 has a negative
By applying a positive voltage to the electrode on the opposite side, oxygen ions move within the solid electrolyte and close the narrow gap G.
There is a difference in oxygen concentration between the gas and the measured gas environment. This concentration difference generates an electromotive force in the battery 5, and this electromotive force is caused by the difference between the amount of oxygen flowing in and diffusing from the three open ends of the narrow gap G and the amount of oxygen being pumped out as described above by the oxygen pump 4. Oxygen pump 4 that maintains this equilibrium because it converges to a constant value when equilibrium is reached.
By adjusting the current, the current value is approximately proportional to the oxygen concentration in the gas environment to be measured at a substantially constant temperature, so the oxygen concentration can be determined. Note that detection of the oxygen concentration using only the oxygen pump 4 as an element in which a heat-insulating refractory material with its electrodes omitted is used to form the narrow gap G instead of the battery 5 is, for example, a sufficiently high constant value for the oxygen pump 4. The oxygen concentration can be measured by applying a voltage of . In any case, if there is a strong airflow of the gas to be measured flowing in through the introduction hole 13 of the protector 3, the assumption of a constant temperature will collapse due to the heat removal effect. By appropriately arranging the pieces to generate swirling flow within the protector 3, undesirable heat removal effects on the sensor body 1 due to the unreliable airflow of the gas to be measured can be effectively avoided, and responsiveness is improved. makes a significant contribution to (Example) According to Fig. 1, a thin cap-shaped protector 3 with an inner diameter of 10 mm and a wall thickness of 0.3 mm has four arrays for both α and β.
To this end, the introduction holes 13 each having a semicircular shape with a radius of 2 mm are arranged at equal intervals on the circumference, and the bending angle θ of the deflection pieces 14 of the arrangement α is 25°.
Example (No. 1) where the cutting angle θ of 4 is 45°, the arrangement β
An example (No. 2) in which only the deflection piece 14 is changed to θ: 60°, and the arrangement α and β are the same as No. 2, but the arrangement γ is
For the example (No. 3) in which a deflection piece 14 with θ: 10° is added, the arrangement α and β are circular punched holes with a radius of 2 mm, and the reference example (No. 4) without a deflection piece and the sensor The introduction holes 13 of the deflection array α v that surrounds the main body 1 at a height corresponding to the front side of the narrow gap G and the arrays β v and γ v that sandwich this above and below are both bent or cut. Reference example (No. 5) with deflection piece 14 with angle θ: 25°
Table 1 summarizes the results of comparison with Reference Example (No. 6) in which the sequence α and No. 4 were omitted and only β was used, and the performance according to the following conditions was compared. The introduction hole arrangement of each of the above examples is shown in FIGS. 2a to 2e. Test conditions Temperature measurement: A chromel-alumel thermocouple with a diameter of 0.32 mm was adhered to the electrode surface of the battery 5, and the resulting thermoelectromotive force was used to measure the surface temperature of the battery 5 during the test. Responsiveness: Attached to the exhaust pipe of a 2000c.c. gasoline injection engine, during operation at an average exhaust gas temperature of 450°C, the heater output is constant at 14V and 15W, and the excess air ratio λ is from 1.1 to the air-fuel ratio of the intake mixture. We investigated the response time when changing to 1.3. Regarding the dispersion of the indication due to the gas flow rate, the engine is warmed up from 700 to 1000 rpm, approximately 600 rpm.
/min Based on the sensor output at low flow rate, 3000 to 4000 rpm, where the exhaust gas flow rate is approximately 3000/min.
We compared and investigated the difference with the sensor output at a considerably high flow rate.

【表】 この結果から明らかなように参考例No.4、No.5
では、応答性につき参考例No.6に比べてすぐれて
いて実用可能範囲であるが、センサ本体1の温度
低下が800℃以下ではげしく、空燃比(A/F)
の指示のばらつきも大きくて不具合であるに反
し、実施例のNo.1〜3では、センサ本体1の抜熱
が少なく、しかも応答性の改善がみられる。 第3図には酸素濃度の測定に適合する被測定ガ
ス温度に対するセンサ本体1の温度の関係を、第
1図の例(No.1)における場合と、第2図dの
(No.5)の例の場合を曲線イとロにて比較したが、
図に破線で示した直線で示される安定測定領域を
曲線ロは下まわつているので、被測定ガス温度が
ほぼ400℃以下のとき、安定な測定が困難となり、
測定可能範囲が狭く実用に適合し難い。 なお上記したところのほか第4図a,bおよび
cに示すように、配列α,βにまたがる長スリツ
ト状の導入穴13を、センサ本体1から離れる程
切曲げによる穴の幅が大きくなる偏向片14でプ
ロテクタ3内に周回流を導く場合、また、配列β
についてのみ単純な円形孔とする変形の場合、さ
らに配列βについて半円形偏向片付の導入穴の数
を8こに増した変形のばあいも、実施例1〜3に
おけると同等の機能が発揮され得た。 (発明の効果) 被測定ガス雰囲気の激しいガス流動の下にセン
サ本体の不所望な抜熱冷却を免れつつ応答性の改
善を導くことができる。
[Table] As is clear from this result, Reference Examples No. 4 and No. 5
In this case, the response is superior to Reference Example No. 6 and is within the practical range, but the temperature of the sensor body 1 drops significantly below 800℃, and the air-fuel ratio (A/F)
However, in Examples Nos. 1 to 3, there is less heat dissipated from the sensor body 1, and the response is improved. Figure 3 shows the relationship between the temperature of the sensor body 1 and the temperature of the gas to be measured, which is suitable for oxygen concentration measurement, in the example (No. 1) in Figure 1 and in the case (No. 5) in Figure 2 d. In the case of the example, curves A and B were compared,
Since curve B is below the stable measurement area shown by the straight line shown in the figure with a broken line, stable measurement becomes difficult when the gas temperature to be measured is approximately 400℃ or less.
The measurable range is narrow and it is difficult to put it into practical use. In addition to the above, as shown in FIGS. 4a, b, and c, the long slit-shaped introduction holes 13 spanning the arrays α and β are deflected so that the width of the holes increases as the distance from the sensor body 1 increases. When guiding the circular flow into the protector 3 with the piece 14, the arrangement β
In the case of a modification in which only a simple circular hole is used for the arrangement β, and in the case of a modification in which the number of introduction holes with semicircular deflection ends is increased to 8 for the arrangement β, the same function as in Examples 1 to 3 is exhibited. could have been done. (Effects of the Invention) It is possible to improve responsiveness while avoiding undesired cooling of the sensor body under intense gas flow in the gas atmosphere to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は断面図、第2図は要部の外観正面図、
第3図は被測定ガス温度に対するセンサ本体温度
の関係グラフ、第4図は変形実施例の外観正面図
である。 G……挾隙、1……センサ本体、2……取付け
金具、3……プロテクタ、13……導入穴、14
……偏向片。
Figure 1 is a sectional view, Figure 2 is a front view of the main parts,
FIG. 3 is a graph showing the relationship between the temperature of the sensor body and the temperature of the gas to be measured, and FIG. 4 is an external front view of a modified example. G...Gap, 1...Sensor body, 2...Mounting bracket, 3...Protector, 13...Introduction hole, 14
...Deflection piece.

Claims (1)

【特許請求の範囲】 1 酸素イオン導伝性固体電解質板状体の両面に
それぞれ電極を形成した一対の素子からなり、両
素子の互いに向い合う電極間に狭〓を設け、この
狭〓内に浸入する被測定ガスと接触させる配置と
して該狭〓により拡散の制限をした固体電解質酸
素ポンプ及び酸素濃淡電池を用いるセンサ本体
を、上記狭〓の先側と反対のセンサ本体の元側を
保持固定する取付け金具に組合わせて成る、空燃
比検知センサであつて、 被測定ガス環境と該ガスの導入穴を介した連通
下にセンサ本体を包囲するキヤツプ状のプロテク
タを取付け金具にかぶせ、 このプロテクタには、上記狭〓の先側の近傍に
て該先側からセンサ本体に対し離れるほど導入ガ
ス量が多くなる上記導入穴からの旋回流をプロテ
クタ内に導く偏向片を設けた ことを特徴とする、空燃比検知センサ。 2 偏向片が切曲げ又は切起し加工によるもので
ある。特許請求の範囲第1項に記載のセンサ。 3 プロテクタの導入穴が、狭〓の先側を含む平
面と接し又は近接して開口する配列である、特許
請求の範囲第1項又は第2項に記載のセンサ。 4 導入穴の配列が、互い違いの複列である特許
請求の範囲第1項〜第3項の何れか一に記載のセ
ンサ。 5 偏向片が狭〓の先側を含む平面に接するもの
における切曲げ又は切り起し角度を最小にし、先
側からセンサ本体に対し離れるにつれより大きい
角度になるものとした、特許請求の範囲第4項に
記載のセンサ。
[Claims] 1. Consists of a pair of elements in which electrodes are formed on both sides of an oxygen ion-conducting solid electrolyte plate, a narrow space is provided between the mutually facing electrodes of both elements, and a narrow space is provided within this narrow space. The sensor body, which uses a solid electrolyte oxygen pump and oxygen concentration battery, whose diffusion is restricted by the constriction, is placed in contact with the invading gas to be measured, and the base side of the sensor body opposite to the tip of the constriction is held and fixed. The air-fuel ratio detection sensor is constructed by combining a mounting bracket with a cap-shaped protector that surrounds the sensor body in communication with the gas environment to be measured through an inlet hole for the gas, and covers the mounting bracket. is characterized in that a deflection piece is provided near the tip of the narrow hole to guide the swirling flow from the introduction hole into the protector, the amount of gas being introduced increases as the distance from the tip side to the sensor body increases. Air-fuel ratio detection sensor. 2 The deflection piece is cut and bent or cut and raised. A sensor according to claim 1. 3. The sensor according to claim 1 or 2, wherein the introduction holes of the protector are arranged to open in contact with or in close proximity to a plane including the narrow end side. 4. The sensor according to any one of claims 1 to 3, wherein the introduction holes are arranged in alternate double rows. 5. Claim No. 5, wherein the bending or cutting angle of the deflection piece in contact with a plane including the tip side of the narrow end is minimized, and the angle becomes larger as it moves away from the tip side to the sensor body. The sensor according to item 4.
JP59130145A 1984-06-26 1984-06-26 Air/fuel ratio detection sensor Granted JPS6110760A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59130145A JPS6110760A (en) 1984-06-26 1984-06-26 Air/fuel ratio detection sensor
US06/734,602 US4624770A (en) 1984-06-26 1985-05-16 Air-fuel ratio sensor
DE8518535U DE8518535U1 (en) 1984-06-26 1985-06-26 Sensor for determining the air / fuel ratio
DE19853522867 DE3522867A1 (en) 1984-06-26 1985-06-26 SENSOR FOR DETERMINING THE AIR / FUEL RATIO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59130145A JPS6110760A (en) 1984-06-26 1984-06-26 Air/fuel ratio detection sensor

Publications (2)

Publication Number Publication Date
JPS6110760A JPS6110760A (en) 1986-01-18
JPH0473100B2 true JPH0473100B2 (en) 1992-11-19

Family

ID=15027044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59130145A Granted JPS6110760A (en) 1984-06-26 1984-06-26 Air/fuel ratio detection sensor

Country Status (1)

Country Link
JP (1) JPS6110760A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713621B2 (en) * 1986-12-12 1995-02-15 日本特殊陶業株式会社 Air-fuel ratio sensor
JPH01169350A (en) * 1987-12-25 1989-07-04 Ngk Insulators Ltd Oxygen sensor
JPH0754850Y2 (en) * 1989-05-31 1995-12-18 京セラ株式会社 Oxygen sensor with heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130146A (en) * 1983-01-10 1984-07-26 Kawaguchi:Kk Dissolution of protein, fatty acid, etc. of snapping turtle in honey

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130146A (en) * 1983-01-10 1984-07-26 Kawaguchi:Kk Dissolution of protein, fatty acid, etc. of snapping turtle in honey

Also Published As

Publication number Publication date
JPS6110760A (en) 1986-01-18

Similar Documents

Publication Publication Date Title
US4624770A (en) Air-fuel ratio sensor
EP0142993B1 (en) Electrochemical device
JP3531859B2 (en) Gas sensor
US6348141B1 (en) Gas sensor
US4824550A (en) Heated solid electrolyte oxygen sensor and securing element therefor
US4657659A (en) Electrochemical element
JPS634141B2 (en)
US4980044A (en) Oxygen sensor having a flat plate element and heater
US11946897B2 (en) Gas sensor
JPH029713B2 (en)
US4076608A (en) Oxygen sensor
US5804699A (en) Air-fuel ratio sensor unit
JPH06229982A (en) Sensor for measuring gas component and/or gas concentration in gas mixture
US4915815A (en) Sensor incorporating a heater
JPH0473100B2 (en)
JPH0447783B2 (en)
JP2005506548A (en) Gas measurement sensor
JP2653831B2 (en) Oxygen sensor
JPS6110761A (en) Air/fuel ratio detection sensor
JP2000105215A (en) Oxygen sensor
JPH0648258B2 (en) Oxygen concentration detector
Ueno et al. Wide-range air-fuel ratio sensor
JPH0130103B2 (en)
US20020167411A1 (en) Sensor element
JPH034930Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term