JPS61106993A - Screw vacuum pump - Google Patents

Screw vacuum pump

Info

Publication number
JPS61106993A
JPS61106993A JP22774184A JP22774184A JPS61106993A JP S61106993 A JPS61106993 A JP S61106993A JP 22774184 A JP22774184 A JP 22774184A JP 22774184 A JP22774184 A JP 22774184A JP S61106993 A JPS61106993 A JP S61106993A
Authority
JP
Japan
Prior art keywords
vacuum pump
rotor
pressure
working chamber
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22774184A
Other languages
Japanese (ja)
Inventor
Katsumi Matsubara
松原 克躬
Riichi Uchida
利一 内田
Seiji Tsuru
誠司 鶴
Kotaro Naya
納谷 孝太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22774184A priority Critical patent/JPS61106993A/en
Publication of JPS61106993A publication Critical patent/JPS61106993A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the driving torque of a screw vacuum pump by reversing the rotation of its rotor in accordance with an inlet pressure. CONSTITUTION:A screw vacuum pump is connected with a vacuum tank 29 by inlet and exhaust pipes 40-46 through solenoid valves 31-34. The rotation of a high-frequency motor 26 is reversed by switching electromagnetic switches 35 and 36 in the power circuit of the motor 26 by means of a pressure switch 30 provided in the vacuum tank 29. On starting the vacuum pump, the solenoid valves 31, 32 and 33, 34 are held closed and opened, respectively; the electromagnetic switches 35 and 36 are held ON and OFF, respectively. When the vacuum tank pressure decreases below a set pressure, the pressure switch 30 is actuated to open and close the electromagnetic switches 35 and 36, respectively, changing over the motor 26 to a normal direction of rotation. This reduces the starting torque of the vacuum pump.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、スクリュー式真空ポンプに係り、特に真空ポ
ンプの起動トルク低減法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a screw type vacuum pump, and particularly to a method for reducing the starting torque of a vacuum pump.

〔発明の背景〕[Background of the invention]

スクリュー形流体機械は、弁機構がなく固定した吐出ボ
ートより圧縮気体を吐出する構造になっている。したが
って、気体の圧縮比は一定であり吸入圧力が変化すると
作動室内の内部圧力も変化し、最終圧力が吐出圧力より
も高くなることがある。
A screw type fluid machine has a structure in which compressed gas is discharged from a fixed discharge boat without a valve mechanism. Therefore, the compression ratio of the gas is constant, and when the suction pressure changes, the internal pressure within the working chamber also changes, and the final pressure may become higher than the discharge pressure.

スクリュー真空ポンプは、通常吸入圧力が10Torr
以下、吐出圧力は760Torr (大気圧)で運転さ
れるので、圧縮機の場合と比較すると圧力比が高く、吐
出ボートは小さくなっている。このような真空ポンプの
起動時には、吸入圧力は大気圧であるため作動室内では
異常に大きな内部圧縮が生じ、このような場合には真空
ポンプの通常運転トルクに比べてはるかに大きな駆動ト
ルクを必要とする。
Screw vacuum pumps usually have a suction pressure of 10 Torr.
Since the discharge pressure is operated at 760 Torr (atmospheric pressure), the pressure ratio is higher and the discharge boat is smaller than in the case of a compressor. When starting a vacuum pump like this, the suction pressure is atmospheric pressure, so an abnormally large internal compression occurs in the working chamber, and in such cases, a much larger drive torque is required than the vacuum pump's normal operating torque. shall be.

スクリュー流体機械が設計圧力比以上に内部圧縮する場
合に、この過圧縮気体を補助吐出弁からバイパスさせて
内部圧縮を小さくし、駆動トルクを小さくする方式は特
開昭51−2013 、実開昭51−34006.実開
昭53−116810などで知られている。しかし、こ
れらの方式はいずれも複雑な補助吐出弁機構を必要とし
、高価になる欠点を有している。
When a screw fluid machine internally compresses more than the design pressure ratio, a method for bypassing this overcompressed gas from an auxiliary discharge valve to reduce the internal compression and drive torque is disclosed in Japanese Patent Application Laid-Open No. 51-2013 and Utility Model Application No. 51-2013. 51-34006. It is known as Utility Model Publication No. 53-116810. However, all of these systems require a complicated auxiliary discharge valve mechanism and have the disadvantage of being expensive.

また実開昭59−41691に示されているようにイン
バータにより真空ポンプの回転数を制御し、駆動用電導
機が過負荷になるのを防ぐ方式もあるが、インバータが
非常に高価であり、また真空ポンプの駆動動力は回転数
が低い分だけ小さくなるが、駆動トルクはあまり変らな
いのでモータは小形にできない欠点があった。
Furthermore, as shown in Japanese Utility Model Application No. 59-41691, there is a method in which the rotation speed of the vacuum pump is controlled using an inverter to prevent the drive motor from becoming overloaded, but the inverter is very expensive. In addition, although the driving power of the vacuum pump is reduced by the lower rotational speed, the driving torque does not change much, so there is a drawback that the motor cannot be made smaller.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、簡単な機構でスクリュー真空ポンプの
駆動トルクを減少させること、特に起動時の起動トルク
を低減させ、モータを小形にし、もって安価なスクリュ
ー真空ポンプを供与することにある。
An object of the present invention is to reduce the driving torque of a screw vacuum pump with a simple mechanism, particularly to reduce the starting torque at startup, to make the motor smaller, and to provide an inexpensive screw vacuum pump.

+4       (発明の概要〕 第1図は、スクリュー流体機械のモデルを示したもので
あり1本図を用いて本発明の詳細な説明する。雄ロータ
1と雌ロータ2はケーシング3の中で互いに噛み合いな
がら回転し、両ロータとケーシングにより作動室を形成
する。これらの作動室の中で、作動室4はロータが回転
するとその容積が変化し、作動室内の気体を圧縮あるい
は膨張させるが、作動室5は容積一定であり作動室内の
気体を移送するだけである。
+4 (Summary of the invention) Figure 1 shows a model of a screw fluid machine, and the present invention will be explained in detail using this figure.A male rotor 1 and a female rotor 2 are connected to each other in a casing 3. The two rotors and the casing rotate while meshing, and a working chamber is formed by the two rotors and the casing.Among these working chambers, the volume of the working chamber 4 changes as the rotor rotates, compressing or expanding the gas in the working chamber, but the The chamber 5 has a constant volume and only transports the gas within the working chamber.

ここで圧縮機の如くロータの回転とともに作動室4の容
積が減少する回転方向8を正回転、膨張機の如くロータ
の回転とともに作動室4の容積が増大する回転方向9を
逆回転とする。
Here, the direction of rotation 8 in which the volume of the working chamber 4 decreases with the rotation of the rotor, as in a compressor, is defined as normal rotation, and the direction of rotation 9, in which the volume of the working chamber 4 increases as the rotor rotates, as in an expander, is defined as reverse rotation.

ケーシングには開口面積の大きなボート6と小さなボー
ト7が設けられており、正回転の場合にはボート6が気
体の吸入ボート、ボート7が吐出ホー1−となり、逆回
転の場合にはボート7が吸入ポート、ボート6が吐出ボ
ートとなる。
The casing is provided with a boat 6 with a large opening area and a small boat 7. In the case of forward rotation, the boat 6 becomes the gas suction boat and the boat 7 becomes the discharge hoe 1-, and in the case of reverse rotation, the boat 7 becomes the gas suction boat. is the suction port, and boat 6 is the discharge boat.

ロータを正回転させると、作動室10は吸入ボート6の
中を飛び回る低圧の気体分子を捕捉し、大気圧まで昇圧
して吐出ポート7より吐出し、第2図の実線で示す如く
大きな排気速度と低い吸入圧力を達成することができる
。ロータを逆回転させた場合には作動室には気体の圧縮
作用はないが、ボート7から作動室11へ入った気体分
子は強制的なボート6へ運ばれるので、ボート7からボ
ート6へ向う排気作用が生ずる。この場合、ボート7や
これと通ずる気体流路(図示せず)はボート6と比べて
小さく、コンダクタンスも小さいので、真空ポンプとし
ての排気特性は正回転の場合に比べて劣るが、吸入圧力
が大気圧から数十Torrの粘性流域では逆回転でも十
分な排気作用をなし、その特性は第2図の破線で示す如
くになる。
When the rotor rotates in the forward direction, the working chamber 10 captures the low-pressure gas molecules flying around in the suction boat 6, increases the pressure to atmospheric pressure, and discharges it from the discharge port 7, resulting in a large exhaust speed as shown by the solid line in FIG. and lower suction pressure can be achieved. When the rotor is rotated in the opposite direction, there is no compression of gas in the working chamber, but the gas molecules that entered the working chamber 11 from the boat 7 are forced to be carried to the boat 6, so they move from the boat 7 to the boat 6. Exhaust action occurs. In this case, the boat 7 and the gas flow path (not shown) communicating with it are smaller than the boat 6, and the conductance is also lower, so the exhaust characteristics as a vacuum pump are inferior to those in the case of forward rotation, but the suction pressure is In a viscous region ranging from atmospheric pressure to several tens of Torr, even reverse rotation provides a sufficient exhaust effect, and its characteristics are as shown by the broken line in FIG.

第3図は、スクリュー真空ポンプの吸入圧力と駆動トル
クの関係を示したもので、実線はロータが正回転の場合
、破線は逆回転のときの特性である。ロータを正回転さ
せると、起動時の駆動トルクは非常に大きいが、吸入圧
力が降下するに従い駆動トルクも小さくなり、吸入圧力
が100〜200 Torr以下になると駆動トルクは
吸入圧力に関係なく一定の値を示す。これは、正回転の
場合には、気体を吸込む作動室10の容積が大きく、ま
た吸入圧力が高くときには内部圧縮により作動室が吐出
ポート7と連通ずる直前では過圧縮になっているためで
ある。
FIG. 3 shows the relationship between suction pressure and drive torque of a screw vacuum pump, where the solid line shows the characteristic when the rotor is rotating in the forward direction, and the broken line shows the characteristic when the rotor is rotating in the reverse direction. When the rotor rotates forward, the driving torque at startup is very large, but as the suction pressure decreases, the driving torque also decreases, and when the suction pressure falls below 100 to 200 Torr, the driving torque remains constant regardless of the suction pressure. Show value. This is because in the case of forward rotation, the volume of the working chamber 10 that sucks in gas is large, and when the suction pressure is high, internal compression causes overcompression just before the working chamber communicates with the discharge port 7. .

一方、ロータを逆回転させると、気体を吸込む作′動室
11の容積が小さく、かつ作動室内の気体は膨張するよ
うに作用するので過圧縮は生ぜず、第3図に破線で示す
如く駆動トルクは小さい。
On the other hand, when the rotor is rotated in the opposite direction, the volume of the working chamber 11 that sucks gas is small and the gas inside the working chamber acts to expand, so overcompression does not occur and the rotor is driven as shown by the broken line in Fig. 3. Torque is small.

そこで、真空ポンプの起動時にはロータを逆回転させ、
吸入圧力が低くなったところでロータを正回転に切り換
えることにより、駆動トルクの小さな小形モータでスク
リュー真空ポンプを運転することが可能になる。
Therefore, when starting the vacuum pump, the rotor is rotated in the opposite direction.
By switching the rotor to forward rotation when the suction pressure becomes low, it becomes possible to operate the screw vacuum pump with a small motor with low drive torque.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第4図、第5図、第6図、第
7図により説明する。ここで第4図は第5図のB−B断
面、第5図は第4図のA−A断面を示す。
An embodiment of the present invention will be described below with reference to FIGS. 4, 5, 6, and 7. Here, FIG. 4 shows a cross section taken along line BB in FIG. 5, and FIG. 5 shows a cross section taken along line AA in FIG.

雄ロータ1と雌ロータ2は主ケーシング3aと吐出ケー
シング3b内のころがり軸受12,13゜14.15に
より回転自在に支えられている。口−タの軸端にはタイ
ミングギヤ20,21を取り付け、雄・雌面ロータが互
に接触しないように両ロータ間の隙間を調整する。軸受
の潤滑油が作動室内に入ると、これらの油分子が被排気
系へ逆流して被排気系を汚染することがあるので、軸受
と作動室の間には軸封装置16,17,18,19が組
込まれている。
The male rotor 1 and the female rotor 2 are rotatably supported by rolling bearings 12 and 13 degrees 14.15 in the main casing 3a and the discharge casing 3b. Timing gears 20 and 21 are attached to the shaft ends of the rotors, and the gap between the male and female rotors is adjusted so that they do not come into contact with each other. If lubricating oil from the bearing enters the working chamber, these oil molecules may flow back into the exhaust system and contaminate the system, so shaft sealing devices 16, 17, 18 are installed between the bearing and the working chamber. , 19 are incorporated.

雄ロータ1と駆動用高周波モータ26は、スプライン継
手22を介して結合されている。
The male rotor 1 and the high-frequency drive motor 26 are coupled via a spline joint 22.

軸受12,13の潤滑は、油溜24内の油をスリンが2
3で跳ねかける飛沫給油によって行なわれ、軸受14,
15、タイミングギヤ20,21と高周波モータ26の
軸受の給油は、給油ポンプ(図示せず)からの潤滑油を
給油口25から高周波モータ回転子と雄ロータ1の軸心
に開けた給油口(いずれも図示せず)を介して給油する
。また水冷ジャケット27.28内に冷却水を通して真
空ポンプ本体と高周波モータを冷却する。
The bearings 12 and 13 are lubricated by surining the oil in the oil reservoir 24.
This is done by spraying lubrication at bearing 14,
15. The bearings of the timing gears 20, 21 and the high-frequency motor 26 are supplied with lubricating oil from the oil supply pump (not shown) through the oil supply port 25, which is opened at the axes of the high-frequency motor rotor and the male rotor 1 ( (both not shown). Cooling water is also passed through the water cooling jackets 27 and 28 to cool the vacuum pump body and the high frequency motor.

島      高周波モータを正回転させると、気体は
ポート6から吸込まれ、作動室内で圧縮昇圧されポート
7より吐出される。高周波モータを逆回転させたときは
ポート7から作動室内へ吸込まれた気体はポート6より
吐出される。
When the high-frequency motor rotates forward, gas is sucked in from port 6, compressed and pressurized within the working chamber, and then discharged from port 7. When the high frequency motor is rotated in reverse, the gas sucked into the working chamber from port 7 is discharged from port 6.

第6図で、スクリュー真空ポンプは真空槽29と電磁弁
31,32,33,34を介して吸・排気管40,41
,42,43,44,45,46で結ばれている。はた
真空槽29には圧力スイッチにより高周波モータ26の
電源回路の電磁開閉器35.36を切り換えてモータを
正逆回転させる。
In FIG. 6, the screw vacuum pump connects suction/exhaust pipes 40, 41 via a vacuum chamber 29 and solenoid valves 31, 32, 33, 34.
, 42, 43, 44, 45, 46. In addition, a pressure switch in the vacuum chamber 29 switches the electromagnetic switches 35 and 36 of the power supply circuit of the high frequency motor 26 to rotate the motor in forward and reverse directions.

真空ポンプ起動時には、電磁弁31,32は開、33.
34は閉となっており、また電磁開閉器35が閉、36
が開になっている。電磁開閉器35が閉のときモータは
逆転するように結線されているので、真空槽29内の気
体は配管40゜41.42を通リポート7より真空ポン
プに吸込まれ、ポート7より吐出されたのち配管43゜
44を経て排出される。
When the vacuum pump is started, the solenoid valves 31 and 32 are opened; 33.
34 is closed, electromagnetic switch 35 is closed, and 36 is closed.
is open. Since the motor is wired to rotate in reverse when the electromagnetic switch 35 is closed, the gas in the vacuum chamber 29 is sucked into the vacuum pump through the port 7 through the pipe 40°41.42, and is discharged from the port 7. It is then discharged through pipes 43 and 44.

真空槽内の圧力が設定圧以下に下がると、圧力    
 ′1スイッチ30が作動し、電磁開閉器35を開、3
6を閉にし、モータ26を正回転に切り換える。
When the pressure inside the vacuum chamber drops below the set pressure, the pressure
'1 switch 30 operates, opens electromagnetic switch 35,
6 is closed and the motor 26 is switched to forward rotation.

同時に電磁弁31,32が閉、33.34が開になるの
で、真空槽内の気体は配管45を経てポート6に吸込ま
れ、ポート7から吐出されて、配管42.46を経て排
出される。なお第6図で37は起動スイッチ、38は停
動スイッチ、39は補助リレーである。
At the same time, solenoid valves 31 and 32 are closed and valves 33 and 34 are opened, so the gas in the vacuum chamber is sucked into port 6 via piping 45, discharged from port 7, and exhausted via piping 42 and 46. . In FIG. 6, 37 is a start switch, 38 is a stop switch, and 39 is an auxiliary relay.

〔発明の効果〕 以上のように、本発明によれば、スクリュー真空ポンプ
の起動トルクを小さくでき、ポンプ駆動用モータを小形
にすることができる。
[Effects of the Invention] As described above, according to the present invention, the starting torque of the screw vacuum pump can be reduced, and the pump driving motor can be made smaller.

また補助吐出弁の如き複雑な機構を必要とせず、安価な
真空ポンプと排気系を構成することが可能になる。
Further, it is possible to construct an inexpensive vacuum pump and exhaust system without requiring a complicated mechanism such as an auxiliary discharge valve.

また真空ポンプ内で過圧縮が防止されることにより、ス
クリューロータに作用する圧縮荷重が小さくなり、ロー
タの撓みが小さくなるので真空ポンプの信頼性が向上す
る。さらに軸受の小形化が可能になり機械損失が低下し
、この点からもモータの小形化と省エネルギーが可能に
なる。
Furthermore, by preventing overcompression within the vacuum pump, the compressive load acting on the screw rotor is reduced, and the deflection of the rotor is reduced, thereby improving the reliability of the vacuum pump. Furthermore, it is possible to downsize the bearing and reduce mechanical loss, which also makes it possible to downsize the motor and save energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスクリュー流体機械の機構をモデル的にした図
、第2図はスクリュー真空ポンプの排気特性の線図、第
3図はスクリュー真空ポンプの吸入圧力と駆動トルクの
関係を示す線図、第4図。 第5図はスクリュー真空ポンプの横断面図、第6図は本
発明の一実施例の配管系統図、第7図は操作回路の一部
を示す回路図である。 1・・・雄ロータ、2・・・雌ロータ、3・・・ケーシ
ング、6・・・ポート、7・・・ポート、26・・・高
周波モータ、29・・・真空槽、30・・・圧力スイッ
チ、31,32゜第1目 1000      /DO,、/Q        
/口及入圧勾 (丁OYr)
Figure 1 is a model diagram of the mechanism of a screw fluid machine, Figure 2 is a diagram showing the exhaust characteristics of a screw vacuum pump, and Figure 3 is a diagram showing the relationship between suction pressure and driving torque of a screw vacuum pump. Figure 4. FIG. 5 is a cross-sectional view of the screw vacuum pump, FIG. 6 is a piping system diagram of an embodiment of the present invention, and FIG. 7 is a circuit diagram showing a part of the operating circuit. DESCRIPTION OF SYMBOLS 1...Male rotor, 2...Female rotor, 3...Casing, 6...Port, 7...Port, 26...High frequency motor, 29...Vacuum chamber, 30... Pressure switch, 31, 32° 1st 1000 /DO, /Q
/Entrance pressure gradient (Ding OYr)

Claims (1)

【特許請求の範囲】 1、螺線状の陸部と溝部を有し、平行な二軸の回りを互
いに噛み合いながら回転する一対の雄ロータ及び雌ロー
タと、両ロータを収納するケーシングにより作動室を形
成し、該ロータの回転に伴い該作動室の容積を変化させ
、該作動室に気体を吸入、吐出するスクリュー式真空ポ
ンプにおいて、 吸入圧力に応じて該ロータの回転方向を逆にすることを
特徴とするスクリュー式真空ポンプ。 2、吸入圧力が設定圧より高いときには前記作動室の容
積を減少させる方向に前記ロータを回転させることを特
徴とする、特許請求の範囲第1項記載のスクリュー式真
空ポンプ。
[Scope of Claims] 1. A working chamber is formed by a pair of male and female rotors that have spiral land portions and grooves and rotate around two parallel axes while meshing with each other, and a casing that houses both rotors. In a screw-type vacuum pump that forms a rotor, changes the volume of the working chamber as the rotor rotates, and sucks in and discharges gas into the working chamber, the direction of rotation of the rotor is reversed according to suction pressure. A screw type vacuum pump featuring: 2. The screw vacuum pump according to claim 1, wherein the rotor is rotated in a direction that reduces the volume of the working chamber when the suction pressure is higher than the set pressure.
JP22774184A 1984-10-31 1984-10-31 Screw vacuum pump Pending JPS61106993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22774184A JPS61106993A (en) 1984-10-31 1984-10-31 Screw vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22774184A JPS61106993A (en) 1984-10-31 1984-10-31 Screw vacuum pump

Publications (1)

Publication Number Publication Date
JPS61106993A true JPS61106993A (en) 1986-05-24

Family

ID=16865640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22774184A Pending JPS61106993A (en) 1984-10-31 1984-10-31 Screw vacuum pump

Country Status (1)

Country Link
JP (1) JPS61106993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203458A (en) * 2010-06-25 2010-09-16 Hitachi Industrial Equipment Systems Co Ltd Oil-free screw compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203458A (en) * 2010-06-25 2010-09-16 Hitachi Industrial Equipment Systems Co Ltd Oil-free screw compressor

Similar Documents

Publication Publication Date Title
US3848422A (en) Refrigeration plants
CN101688536B (en) Rotary compressor and refrigeration cycle device
US7563080B2 (en) Rotary compressor
JP3399797B2 (en) Scroll compressor
US6644045B1 (en) Oil free screw expander-compressor
US3260444A (en) Compressor control system
JP2001207984A (en) Evacuation device
JP3026819B2 (en) Rotary compressor with oil discharge device
JPH079239B2 (en) Screw vacuum pump
JPH02275089A (en) Screw type vacuum pump
JP2959457B2 (en) Scroll gas compressor
US5201648A (en) Screw compressor mechanical oil shutoff arrangement
JP2002310079A (en) Water lubricated screw compressor
JPS61106993A (en) Screw vacuum pump
JP7025227B2 (en) Refrigeration equipment
US5261802A (en) Screw vacuum pump
JP4185598B2 (en) Oil-cooled screw compressor
KR100221674B1 (en) Screw vacuum pump
JPS62284994A (en) Method for starting multistage screw vacuum pump
JPH06100188B2 (en) Oil-free screw vacuum pump
JPS61152990A (en) Screw vacuum pump
US20220074410A1 (en) Screw compressor with a shunt-enhanced compression and pulsation trap (secapt)
JPH09291891A (en) Screw compressor
JP2002174174A (en) Evacuator
JP2007263122A (en) Evacuating apparatus