JP4185598B2 - Oil-cooled screw compressor - Google Patents

Oil-cooled screw compressor Download PDF

Info

Publication number
JP4185598B2
JP4185598B2 JP28067398A JP28067398A JP4185598B2 JP 4185598 B2 JP4185598 B2 JP 4185598B2 JP 28067398 A JP28067398 A JP 28067398A JP 28067398 A JP28067398 A JP 28067398A JP 4185598 B2 JP4185598 B2 JP 4185598B2
Authority
JP
Japan
Prior art keywords
pressure stage
oil
low
rotor
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28067398A
Other languages
Japanese (ja)
Other versions
JP2000110766A (en
Inventor
優和 青木
英晴 田中
正彦 高野
利一 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP28067398A priority Critical patent/JP4185598B2/en
Publication of JP2000110766A publication Critical patent/JP2000110766A/en
Application granted granted Critical
Publication of JP4185598B2 publication Critical patent/JP4185598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、作動ガスの冷却に油を使用する油冷式のスクリュー圧縮機に係り、特に2段に構成された油冷式のスクリュー圧縮機に関する。
【0002】
【従来の技術】
油冷式スクリュー圧縮機では、ロード運転中には雄ロータの回転に対し雌ロータが負荷となり、負荷トルクが作用する。そして、雌ロータが吸収するトルクは、雄ロータに与えられたトルクの5%程度と非常に小さい。一方、アンロード運転時には、雌ロータを回転方向に進めようとする負のトルクが発生する。そのため、雌ロータが本来の被駆動側歯面から離れる歯面分離現象が生じる。この歯面分離現象は一旦生じると、ロータの回転方向のギャップを限度として繰り返し生じやすい。この場合、周期的な回転速度変動となり、耳障りな騒音が発生する。そして、最悪の事態では、ロータの歯面損傷を引き起こす。
【0003】
圧縮機をアンロード運転する方法には、吸込み絞り弁を閉止する方法と吸込絞り弁を閉止すると同時に吐出圧力を減圧する方法がある。このいずれの方法を用いても、アンロード運転時には雌ロータに働く負荷トルクが大幅に低下する。そのため、ロータの全回転角において負荷トルクをプラスに保つことが困難になり、歯面分離現象を生じ易くなる。
【0004】
そこで、ロータの歯形を変えて歯面分離を起こりにくくしたスクリュー圧縮機が考えられている。また、スクリュー真空ポンプにおいて雌ロータに作用するトルクを常時負にし、これによりポンプの振動や騒音の発生を低減することが特開平2-252991号公報に記載されている。さらに、スクリュー圧縮機の雌ロータの軸端にダイナミックダンパーや減衰機構を取り付け、歯面分離の発生を防止することが特開昭55−57688号公報や特開昭55−96391号公報に開示されている。
【0005】
【発明が解決しようとする課題】
大型の油冷式スクリュー圧縮機は消費電力が大きいので、高効率が得られる2段圧縮機が使用される。この2段の油冷式スクリュー圧縮機において、アンロード運転のために吸込側の弁を閉止すると、低圧段の吸込圧力は絶対圧力で0.01MPa以下の真空圧まで低下する(以下本明細書中においては、圧力の表記は全て絶対圧力で行う)。それとともに、低圧段の吐出圧力も0.03MPa程度となり、大気圧以下の圧力となる。一方、高圧段においては、吸込圧力が約0.03MPaであり、吸込絞り方式を用いると吐出圧力は8MPa程度の圧力となる。したがって高圧段側は、単段機のアンロード運転条件に類似している。この場合、負のトルクが発生し、吸込圧力を極端に真空圧に近づけると、歯面分離により振動や騒音が発生しやすくなる。一方、低圧段側は圧縮機の吸込側および吐出側ともに大気圧より低い圧力となり、吐出側で雌ロータを被駆動歯面に押し付けるためのトルクがますます発生しにくい。そのため、高圧段よりさらに雌ロータが被駆動歯面から離れがちであり、歯面分離現象により騒音や振動が発生しやすい。
【0006】
この歯面分離現象を抑制するために提案された上記種々の方法の中で、前記のロータの歯形を修正する方法では、吸込側および吐出側の圧力条件によっては、必ずしも雌ロータに負のトルクが発生するのを抑制できず、運転条件が限られるという不具合がある。また、特開平2−252991号公報に記載の方法は、圧縮機のアンロード運転に相当する状態のみが実行される真空ポンプでのみ成立するものであり、ロード運転とアンロード運転が繰返されるスクリュー圧縮機には不適である。
【0007】
さらに、圧縮機の雌ロータ軸端にダイナミックダンパーや減衰機構を取り付けて歯面分離を防止する特開昭55−57688号公報および特開昭55−96391号公報に記載の方法では、トーションバーのチューニングや強度評価が困難であること、所望の減衰力および耐久性を得ることが困難であること等の不具合がある。
【0008】
本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は油冷式スクリュー圧縮機において、低圧段の雌ロータの歯面分離振動の発生を抑制することにある。本発明の他の目的は、信頼性の高い油冷式2段スクリュー圧縮機を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するための本発明の第1の特徴は、雄ロータ及び雌ロータを有し、作動ガスを圧縮する圧縮機本体と、駆動軸の軸受、駆動軸に取り付けられる駆動歯車及び前記雄ロータに取り付けられる被駆動歯車が収納されるギヤケースと、前記雌ロータ配設され、前記ギヤケースに溜められる油を吸引するオイルポンプと、を備えたものである。そして好ましくは、圧縮機本体は低圧段及び高圧段を有し、オイルポンプを低圧段に設けたものである。
【0010】
上記目的を達成するための本発明の第2の特徴は、低圧段の雄ロータ及び雌ロータと、高圧段の雄ロータ及び雌ロータと、駆動軸の軸受、駆動軸に取り付けられる駆動歯車、並びに、前記低圧段の雄ロータ及び前記高圧段の雄ロータに取り付けられる被駆動歯車と、前記軸受、前記駆動歯車及び前記被駆動歯車が収納されるギヤケースと、前記駆動軸の前記ギヤケースの外部に延在する部分に設けられる軸封機構と、この軸封機構と前記それぞれのロータとの間にたまる油を吸引するオイルポンプとを備え、前記オイルポンプを前記低圧段の雌ロータの軸端に配設したものである。そして好ましくは、オイルポンプの出口を、前記低圧段の吸込側、前記高圧段の吸込側、または高圧段の吐出側のいずれかに接続するものである。なお、上記何れの特徴においても、前記雄ロータに駆動軸をオーバーハング状に取り付け、この駆動軸の一方側にのみこの駆動軸を支承する軸受を配設することが望ましい。
【0011】
なお、オイルポンプを駆動する動力は常に低圧段の雌ロータの負荷として作用するから、負荷トルクが増大し負のトルクの発生を抑制できる。またこのオイルポンプにより生ずる負荷の大きさを、オイルポンプの出口を接続する位置を変えることにより変化させることができる。
【0012】
【発明の実施の形態】
以下、本発明の一実施例を図面を用いて説明する。図1は本発明に係る油冷式スクリュー圧縮機の一実施例の模式図であり、作動ガス及び潤滑油の流れを併せ示す図、図2は本発明に係る油冷式スクリュー圧縮機の一実施例の上面図を断面で示した図、図3は図2に示した油冷式スクリュー圧縮機の正面図を断面で示した図である。
【0013】
2段の油冷式スクリュー圧縮機は、低圧段45及び高圧段50を備えている。低圧段45を構成する低圧段雄ロータ2および低圧段雌ロータ3は、円筒ころ軸受15、16により吸込側軸部を回転可能に支持され、アンギュラ玉軸受13、14により吐出側軸部を回転可能に支持されている。そして、円筒ころ軸受15、16及びアンギュラ玉軸受13、14はケーシング1内に保持されている。
【0014】
作動ガスは吸込フィルタ6から吸込絞り弁7を経由して、低圧段雄ロータ2及び低圧段雌ロータ3に吸込まれる。吸込まれたガスに低圧段45の圧縮過程で油が注入される。低圧段45から吐出された作動ガスは、ケーシングの低圧段と高圧段に挟まれた空間である中間段通路32へ流入する。この中間段通路32中にも油が噴射され、圧縮ガスを冷却する。冷却された圧縮ガスは、高圧段雄ロータ4および高圧段雌ロータ5により形成される空間に吸込まれる。高圧段雄ロータ4および高圧段雌ロータ5は、円筒ころ軸受19,20により吸込側軸部を回転可能に支持され、アンギュラ玉軸受17、18により吐出側軸部を回転可能に支持される。低圧段の軸受と同様に、これらの軸受はケーシング1に保持される。高圧段雄ロータ4および高圧段雌ロータ5により、さらに所定の圧力まで昇圧された作動ガスは、高圧段吐出口31から吐出される。
【0015】
低圧段雄ロータ2と高圧段雄ロータ4には、それぞれ低圧段被駆動歯車10と高圧段被駆動歯車11が取り付けられている。さらに駆動軸37には駆動歯車12が取り付けられており、この駆動歯車を挟んで一方側を円錐ころ軸受22が、他方側を円筒ころ軸受21が回転可能に支持している。駆動軸37がギヤケース24の外部に延在している部分には軸封機構23が設けられており、ギヤケース24内の油が外部へ流出するのを防止している。低圧段および高圧段の吸込側の軸受15、16、19、20、駆動軸の軸受22、21、および歯車10、11、12は潤滑油で強制潤滑されている。そして、軸受及び歯車を潤滑した後の油は、ギヤケース24の下部に落下する。
【0016】
低圧段45の雌ロータ3の軸端にはオイルポンプ8が接続されている。このオイルポンプ8は雌ロータ3によって回転駆動される。ギヤケース24の下部とオイルポンプ8の吸込口25は配管27で接続されており、ギヤケース24の下部に溜まった潤滑油をオイルポンプ8が吸引する。オイルポンプ8の吐出口26には配管28が接続されており、ギヤケース下部から吸引した潤滑油は低圧段45の吸込側に回収される。
【0017】
オイルポンプ8が、ギヤケース24内に油が充満することを防止する。それとともに、ギヤケース24内は、オイルポンプ8の吸引作用により、ほぼ大気圧かそれより低い圧力に保持される。これにより、軸封装置23に作用する圧力を低く抑えることができる。
【0018】
油冷式2段スクリュー圧縮機は150kW以上の大型機が一般的であり、駆動軸37も大型化する。特に図3に示したように、駆動軸37にモータロータ35をオーバーハング状に接続した場合、強度を確保するために駆動軸37を太くしなければならない。その結果、軸封装置23の軸封部の周速は速くなるので、軸封部の信頼性を確保するために、ギヤケース24の内部の圧力を極力低く抑える必要がある。
【0019】
以下、一般的な空気圧縮機の場合を例として説明する。この一般的な空気圧縮機の吐出圧力は0.8Mpaである。圧縮機がアンロード運転状態になると、吸込絞り弁7を閉状態にする。このとき、低圧段ロータ2,3の吸込側は、0.01MPa前後の真空圧力に低下する。これとともに低圧段の吐出圧力も0.03MPa程度の真空圧力になる。上述したように、全負荷状態においても雌ロータに吸収されるトルクは、雄ロータの入力トルクの5%程度である。したがって、圧力レベルが低下したアンロード運転状態では、低圧段の雌ロータでは被駆動歯面に押し付けるトルクがほとんど発生しない。その結果、ロータの回転位置によっては負のトルクが発生し、雌ロータは歯面分離振動をおこしやすくなり、圧縮機の騒音増大の大きな原因となる。 高圧段50側においても同様な現象が発生しやすくなるが、アンロード運転時の高圧段の吐出圧力は低圧段の吐出圧力よりも必ず高いので、2段圧縮機の場合のアンロード時の騒音源は低圧段の雌ロータ3が主となる。そこで、本発明ではオイルポンプ8を低圧段雌ロータ3の回転軸に取付け、低圧段雌ロータ3に伝達されたトルクでオイルポンプ8を駆動している。
【0020】
オイルポンプ8を低圧段雌ロータ3の回転軸に取付けることにより、ロード運転時でもアンロード運転時でも、一定のトルクが低圧段雌ロータ3部で消費される。オイルポンプ8は大形の圧縮機、特に図2及び図3に示した大径の駆動軸を有し、モータをオーバーハング状に取付けた圧縮機の軸封部の信頼性を向上させる上で不可欠である。したがって、この不可欠な部品の配置を変えるだけで、余分な動力を必要としないので、省エネルギの下に騒音の発生を低減できる。
【0021】
ロード運転時における雌ロータへの伝達トルクは5%程度と小さいが、この小さい伝達トルクで歯面分離を防止できることは知られている。一方、アンロード運転時に雌ロータに発生する負のトルクは、ロータ歯形を適切に選定すれば、それ程大きくはない。したがって、アンロード運転時の負トルクをカバーし、さらにロード運転時の雌ロータへの伝達トルクに相当する分をオイルポンプの吸収トルクで補償することは十分可能である。これにより、雌ロータの歯面分離振動と騒音の増加を防止することができる。
【0022】
図1において、オイルポンプ8の出口26を、配管28により圧縮機の吸込側に接続するか、あるいは配管29により低圧段吐出側に接続するか、または配管30を用いて高圧段吐出側に接続する。これにより、オイルポンプ8の吸収トルクを調整することが可能になる。つまり、ギヤケース24の底部から回収した油をどの位置に戻すかによって、オイルポンプ8の出口26の圧力が変化するので、吸収するトルクの調整が可能になる。オイルポンプ8の吸収トルクを調整する他の方法としては、オイルポンプ8の吸引能力を落とさない範囲内で、オイルポンプ出口26側に流動抵抗を付加する方法がある。
【0023】
以上述べたように本実施例によれば、圧縮機の吸込圧力が変化しても、吸込圧力の変化に応じた配管接続をすれば、低圧段雌ロータの負のトルク発生による歯面分離振動を防止でき、圧縮機の騒音の増大を防止できる。
【0024】
【発明の効果】
本発明によれば、2段の油冷式スクリュー圧縮機において、アンロード時に低圧段の雌ロータに発生する歯面分離振動とそれに伴う騒音の発生を抑制できる。また、軸封部の信頼性を高めることができる。
【図面の簡単な説明】
【図1】本発明に係る油冷式スクリュー圧縮機の一実施例の模式図。
【図2】本発明に係る油冷式圧縮機の一実施例の縦断面図であり、その上面図。
【図3】図2に示した実施例の縦断面図であり、その正面図。
【符号の説明】
1;ケーシング、2;低圧段雄ロータ、
3;低圧段雌ロータ、4;高圧段雄ロータ、
5;高圧段雌ロータ、6;吸込フィルタ、
7;吸込絞り弁、8;オイルポンプ、
10;低圧段被駆動歯車、
11;高圧段被駆動歯車、12;駆動歯車、
13〜22;軸受、23;軸封、
24;ギヤケース、25;オイルポンプ入口、
26;オイルポンプ出口、27;油吸込配管、
28〜30;油出口配管、31;高圧段吐出、
32;低圧段吐出、35;モータロータ、
36;モータステータ、37;駆動軸、
45;低圧段、50;高圧段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oil-cooled screw compressor that uses oil for cooling a working gas, and more particularly to an oil-cooled screw compressor configured in two stages.
[0002]
[Prior art]
In the oil-cooled screw compressor, during the load operation, the female rotor becomes a load with respect to the rotation of the male rotor, and a load torque acts. The torque absorbed by the female rotor is as small as about 5% of the torque applied to the male rotor. On the other hand, during the unloading operation, a negative torque is generated that tries to advance the female rotor in the rotational direction. Therefore, a tooth surface separation phenomenon occurs in which the female rotor is separated from the original driven tooth surface. Once this tooth surface separation phenomenon occurs, it tends to occur repeatedly with the gap in the rotational direction of the rotor as the limit. In this case, the rotational speed varies periodically, and annoying noise is generated. In the worst case, the tooth surface of the rotor is damaged.
[0003]
There are two methods for unloading the compressor: a method of closing the suction throttle valve and a method of reducing the discharge pressure simultaneously with closing the suction throttle valve. Whichever method is used, the load torque acting on the female rotor during the unload operation is greatly reduced. Therefore, it becomes difficult to keep the load torque positive at all the rotation angles of the rotor, and the tooth surface separation phenomenon is likely to occur.
[0004]
Therefore, the screw compressor that less likely the tooth surfaces separated by changing the teeth of Russia over data is considered. Japanese Patent Laid-Open No. 2-252991 discloses that the torque acting on the female rotor in the screw vacuum pump is always negative, thereby reducing the vibration and noise of the pump. Further, JP-A-55-57688 and JP-A-55-96391 disclose that a dynamic damper or a damping mechanism is attached to the shaft end of the female rotor of the screw compressor to prevent occurrence of tooth surface separation. ing.
[0005]
[Problems to be solved by the invention]
Since a large oil-cooled screw compressor consumes a large amount of power, a two-stage compressor capable of obtaining high efficiency is used. In this two-stage oil-cooled screw compressor, when the valve on the suction side is closed for unloading operation, the suction pressure in the low-pressure stage decreases to a vacuum pressure of 0.01 MPa or less in absolute pressure (hereinafter referred to as the present specification). (All pressures are expressed in absolute pressure.) At the same time, the discharge pressure of the low-pressure stage is about 0.03 MPa, which is a pressure lower than the atmospheric pressure. On the other hand, in the high pressure stage, the suction pressure is about 0.03 MPa, and when the suction throttle method is used, the discharge pressure is about 8 MPa. Therefore, the high-pressure stage side is similar to the unloading operation conditions of a single stage machine. In this case, when negative torque is generated and the suction pressure is extremely close to the vacuum pressure, vibration and noise are likely to occur due to tooth surface separation. On the other hand, on the low pressure stage side, the pressure on the suction side and the discharge side of the compressor is lower than the atmospheric pressure, and torque for pressing the female rotor against the driven tooth surface is less likely to be generated on the discharge side. Therefore, the female rotor tends to be further away from the driven tooth surface than the high pressure stage, and noise and vibration are likely to occur due to the tooth surface separation phenomenon.
[0006]
Among the various methods proposed to suppress the tooth surface separation phenomenon, in the method of correcting the tooth profile of the rotor, a negative torque is not necessarily applied to the female rotor depending on the pressure conditions on the suction side and the discharge side. Cannot be suppressed, and there is a problem that the operating conditions are limited. Further, the method described in Japanese Patent Laid-Open No. 2-252991 is effective only in a vacuum pump in which only a state corresponding to the unload operation of the compressor is executed, and a screw in which the load operation and the unload operation are repeated. Not suitable for compressors.
[0007]
Further, in the method described in Japanese Patent Laid-Open Nos. 55-57688 and 55-96391 in which a dynamic damper or a damping mechanism is attached to the end of the female rotor shaft of the compressor to prevent tooth surface separation, There are problems such as difficulty in tuning and strength evaluation and difficulty in obtaining desired damping force and durability.
[0008]
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to suppress generation of tooth surface separation vibration of a low-pressure female rotor in an oil-cooled screw compressor. Another object of the present invention is to provide a highly reliable oil-cooled two-stage screw compressor.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the first feature of the present invention is that it has a male rotor and a female rotor, compresses the working gas, a bearing of the drive shaft, a drive gear attached to the drive shaft, and the male A gear case that houses a driven gear attached to the rotor, and an oil pump that is disposed in the female rotor and sucks oil stored in the gear case . Preferably, the compressor body has a low pressure stage and a high pressure stage, and an oil pump is provided in the low pressure stage.
[0010]
In order to achieve the above object, the second feature of the present invention includes: a low-pressure stage male rotor and a female rotor; a high-pressure stage male rotor and a female rotor; a drive shaft bearing; a drive gear attached to the drive shaft; The low-pressure stage male rotor and the driven gear attached to the high-pressure stage male rotor, the bearing, the drive gear and the gear case in which the driven gear is housed, and the drive shaft extending outside the gear case. A shaft sealing mechanism provided in the existing portion, and an oil pump for sucking oil accumulated between the shaft sealing mechanism and each of the rotors, and the oil pump is arranged at the shaft end of the female rotor of the low-pressure stage. It is set. Preferably, the outlet of the oil pump is connected to any one of the suction side of the low pressure stage, the suction side of the high pressure stage, or the discharge side of the high pressure stage. The above in any of the features, mounting the drive shaft overhang on the male rotor, it is desirable to dispose a bearing for supporting one of this only the side drive shaft of the drive shaft.
[0011]
Since the power for driving the oil pump always acts as a load for the female rotor in the low pressure stage, the load torque is increased and the generation of negative torque can be suppressed. Also the magnitude of the load caused by the oil pump, can be changed by the Turkish changing the position connecting the outlet of the oil pump.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of an embodiment of an oil-cooled screw compressor according to the present invention, and is a diagram showing the flow of working gas and lubricating oil, and FIG. 2 is a diagram of an oil-cooled screw compressor according to the present invention. FIG. 3 is a cross-sectional view of the oil-cooled screw compressor shown in FIG. 2.
[0013]
The two-stage oil-cooled screw compressor includes a low pressure stage 45 and a high pressure stage 50. The low-pressure stage male rotor 2 and the low-pressure stage female rotor 3 constituting the low-pressure stage 45 are supported by cylindrical roller bearings 15 and 16 so that the suction-side shaft part can rotate, and angular ball bearings 13 and 14 rotate the discharge-side shaft part. Supported as possible. The cylindrical roller bearings 15 and 16 and the angular ball bearings 13 and 14 are held in the casing 1.
[0014]
The working gas is sucked into the low pressure stage male rotor 2 and the low pressure stage female rotor 3 from the suction filter 6 via the suction throttle valve 7. Oil is injected into the sucked gas in the compression process of the low pressure stage 45. The working gas discharged from the low pressure stage 45 flows into the intermediate stage passage 32 which is a space sandwiched between the low pressure stage and the high pressure stage of the casing. Oil is also injected into the intermediate stage passage 32 to cool the compressed gas. The cooled compressed gas is sucked into a space formed by the high-pressure stage male rotor 4 and the high-pressure stage female rotor 5. The high-pressure stage male rotor 4 and the high-pressure stage female rotor 5 are supported by cylindrical roller bearings 19 and 20 so that the suction side shaft portion is rotatable, and angular ball bearings 17 and 18 are rotatably supported by the discharge side shaft portion. Like the low-pressure stage bearings, these bearings are held in the casing 1. The working gas that has been further pressurized to a predetermined pressure by the high-pressure stage male rotor 4 and the high-pressure stage female rotor 5 is discharged from the high-pressure stage discharge port 31.
[0015]
A low pressure stage driven gear 10 and a high pressure stage driven gear 11 are attached to the low pressure stage male rotor 2 and the high pressure stage male rotor 4, respectively. Further, a drive gear 12 is attached to the drive shaft 37, and the tapered roller bearing 22 is rotatably supported on one side and the cylindrical roller bearing 21 is rotatably supported on the other side across the drive gear. The portion the drive shaft 37 extends outside the Giyake scan 24 and a shaft seal mechanism 23 is provided, the oil in the gear case 24 is prevented from flowing out. The low-pressure stage and high-pressure stage suction-side bearings 15, 16, 19, and 20, the drive shaft bearings 22 and 21, and the gears 10, 11, and 12 are forcibly lubricated with lubricating oil. Then, the oil after lubricating the bearings and the gears falls to the lower part of the gear case 24 .
[0016]
An oil pump 8 is connected to the shaft end of the female rotor 3 of the low pressure stage 45. The oil pump 8 is rotationally driven by the female rotor 3. Inlet 25 of the lower and the oil pump 8 of Giyake scan 24 is connected by a pipe 27, the lubricating oil accumulated in the lower portion of the gear case 24 oil pump 8 sucks. A pipe 28 is connected to the discharge port 26 of the oil pump 8, and the lubricating oil sucked from the lower part of the gear case is collected on the suction side of the low pressure stage 45.
[0017]
The oil pump 8 prevents the gear case 24 from being filled with oil. At the same time, the inside of the gear case 24 is maintained at substantially the atmospheric pressure or lower pressure by the suction action of the oil pump 8. Thereby, the pressure which acts on the shaft seal device 23 can be suppressed low.
[0018]
The oil-cooled two-stage screw compressor is generally a large machine of 150 kW or more, and the drive shaft 37 is also enlarged. In particular, as shown in FIG. 3, when the motor rotor 35 is connected to the drive shaft 37 in an overhang shape, the drive shaft 37 must be thickened to ensure strength. As a result, the peripheral speed of the shaft seal portion of the shaft seal device 23 is increased. Therefore, in order to ensure the reliability of the shaft seal portion, it is necessary to keep the pressure inside the gear case 24 as low as possible.
[0019]
Hereinafter, a case of a general air compressor will be described as an example. The discharge pressure of this general air compressor is 0.8 Mpa. When the compressor enters the unload operation state, the suction throttle valve 7 is closed. At this time, the suction side of the low-pressure stage rotors 2 and 3 is reduced to a vacuum pressure of about 0.01 MPa. At the same time, the discharge pressure in the low-pressure stage also becomes a vacuum pressure of about 0.03 MPa. As described above, the torque absorbed by the female rotor even in the full load state is about 5% of the input torque of the male rotor. Therefore, in the unload operation state in which the pressure level is lowered, the low pressure stage female rotor hardly generates torque to be pressed against the driven tooth surface. As a result, depending on the rotational position of the rotor, a negative torque is generated, and the female rotor is liable to cause tooth surface separation vibration, which causes a large increase in noise of the compressor. The same phenomenon is likely to occur on the high-pressure stage 50 side, but since the discharge pressure of the high-pressure stage during unloading operation is always higher than the discharge pressure of the low-pressure stage, noise during unloading in the case of a two-stage compressor The source is mainly the female rotor 3 in the low pressure stage. Therefore, in the present invention, the oil pump 8 is attached to the rotating shaft of the low-pressure stage female rotor 3, and the oil pump 8 is driven by the torque transmitted to the low-pressure stage female rotor 3.
[0020]
By attaching the oil pump 8 to the rotating shaft of the low-pressure stage female rotor 3, a constant torque is consumed in the low-pressure stage female rotor 3 part during both the load operation and the unload operation. The oil pump 8 has a large-sized compressor, particularly the large-diameter drive shaft shown in FIGS. 2 and 3, and improves the reliability of the shaft seal portion of the compressor in which the motor is mounted in an overhang shape. It is essential. Therefore, only by changing the arrangement of these indispensable components, no extra power is required, and noise generation can be reduced while saving energy.
[0021]
Although the torque transmitted to the female rotor during the load operation is as small as about 5%, it is known that tooth surface separation can be prevented with this small torque. On the other hand, the negative torque generated in the female rotor during the unloading operation is not so great if the rotor tooth profile is appropriately selected. Therefore, it is sufficiently possible to cover the negative torque during the unload operation and to compensate the amount corresponding to the torque transmitted to the female rotor during the load operation with the absorption torque of the oil pump. Thereby, the tooth surface separation vibration and noise increase of the female rotor can be prevented.
[0022]
In FIG. 1, the outlet 26 of the oil pump 8 is connected to the compressor suction side by a pipe 28, connected to the low pressure stage discharge side by a pipe 29, or connected to the high pressure stage discharge side by using a pipe 30. To do. Thereby, the absorption torque of the oil pump 8 can be adjusted. That is, since the pressure of the outlet 26 of the oil pump 8 changes depending on the position where the oil recovered from the bottom of the gear case 24 is returned, the absorbed torque can be adjusted. As another method of adjusting the absorption torque of the oil pump 8, there is a method of adding a flow resistance to the oil pump outlet 26 side within a range where the suction capability of the oil pump 8 is not reduced.
[0023]
As described above, according to this embodiment, even if the suction pressure of the compressor changes, if the pipe connection is made according to the change of the suction pressure, the tooth surface separation vibration due to the negative torque generation of the low-pressure stage female rotor. Can be prevented, and an increase in noise of the compressor can be prevented.
[0024]
【The invention's effect】
According to the present invention, in a two-stage oil-cooled screw compressor, it is possible to suppress tooth surface separation vibration and associated noise generated in a low-pressure stage female rotor during unloading. Moreover, the reliability of a shaft seal part can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view of an embodiment of an oil-cooled screw compressor according to the present invention.
FIG. 2 is a longitudinal sectional view of an embodiment of the oil-cooled compressor according to the present invention, and a top view thereof.
FIG. 3 is a longitudinal sectional view of the embodiment shown in FIG. 2 and a front view thereof.
[Explanation of symbols]
1; casing, 2; low-pressure stage male rotor,
3; low-pressure stage female rotor, 4; high-pressure stage male rotor,
5; high-pressure stage female rotor, 6; suction filter,
7: Suction throttle valve, 8: Oil pump,
10; low-pressure stage driven gear,
11: high-pressure stage driven gear, 12: driving gear,
13-22; bearing, 23; shaft seal,
24; gear case, 25; oil pump inlet,
26; oil pump outlet, 27; oil suction pipe,
28 to 30; oil outlet pipe, 31; high-pressure stage discharge,
32; low-pressure stage discharge; 35; motor rotor;
36; motor stator, 37; drive shaft,
45; low pressure stage, 50; high pressure stage.

Claims (5)

雄ロータ及び雌ロータを有し、作動ガスを圧縮する圧縮機本体と、
駆動軸の軸受、駆動軸に取り付けられる駆動歯車及び前記雄ロータに取り付けられる被駆動歯車が収納されるギヤケースと、
前記雌ロータに配設され、前記ギヤケースに溜められる油を吸引するオイルポンプと、
を備えた油冷式スクリュー圧縮機。
A compressor body having a male rotor and a female rotor and compressing the working gas;
A gear case that houses a bearing of the drive shaft, a drive gear attached to the drive shaft, and a driven gear attached to the male rotor;
An oil pump that is disposed in the female rotor and sucks oil stored in the gear case;
Oil-cooled screw compressor equipped with
前記圧縮機本体は低圧段及び高圧段を有し、前記オイルポンプは低圧段に設けられたことを特徴とする請求項1に記載の油冷式スクリュー圧縮機。  The oil-cooled screw compressor according to claim 1, wherein the compressor body has a low-pressure stage and a high-pressure stage, and the oil pump is provided in the low-pressure stage. 低圧段の雄ロータ及び雌ロータと、
高圧段の雄ロータ及び雌ロータと、
駆動軸の軸受、駆動軸に取り付けられる駆動歯車、並びに、前記低圧段の雄ロータ及び前記高圧段の雄ロータに取り付けられる被駆動歯車と、
前記軸受、前記駆動歯車及び前記被駆動歯車が収納されるギヤケースと、
前記駆動軸の前記ギヤケースの外部に延在する部分に設けられる軸封機構と、
この軸封機構と前記それぞれのロータとの間にたまる油を吸引するオイルポンプとを備え、
前記オイルポンプが前記低圧段の雌ロータの軸端に配設された油冷式スクリュー圧縮機。
A low-pressure stage male and female rotor;
A high-pressure stage male and female rotor;
A bearing of the drive shaft, a drive gear attached to the drive shaft, and a driven gear attached to the low-pressure stage male rotor and the high-pressure stage male rotor;
A gear case in which the bearing, the driving gear, and the driven gear are stored;
A shaft sealing mechanism provided on a portion of the drive shaft that extends outside the gear case;
An oil pump for sucking oil accumulated between the shaft seal mechanism and each of the rotors;
An oil-cooled screw compressor in which the oil pump is disposed at a shaft end of the female rotor of the low-pressure stage.
前記オイルポンプの出口を、前記低圧段の吸込側、前記高圧段の吸込側、または高圧段の吐出側のいずれかに接続したことを特徴とする請求項3に記載の油冷式スクリュー圧縮機。  The oil-cooled screw compressor according to claim 3, wherein an outlet of the oil pump is connected to any one of a suction side of the low-pressure stage, a suction side of the high-pressure stage, or a discharge side of the high-pressure stage. . 前記雄ロータに前記駆動軸をオーバーハング状に取り付け、この駆動軸の一方側にのみこの駆動軸を支承する軸受を配設したことを特徴とする請求項1ないし4の何れか1項に記載の油冷式スクリュー圧縮機。  The drive shaft is attached to the male rotor in an overhang shape, and a bearing for supporting the drive shaft is disposed only on one side of the drive shaft. Oil-cooled screw compressor.
JP28067398A 1998-10-02 1998-10-02 Oil-cooled screw compressor Expired - Lifetime JP4185598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28067398A JP4185598B2 (en) 1998-10-02 1998-10-02 Oil-cooled screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28067398A JP4185598B2 (en) 1998-10-02 1998-10-02 Oil-cooled screw compressor

Publications (2)

Publication Number Publication Date
JP2000110766A JP2000110766A (en) 2000-04-18
JP4185598B2 true JP4185598B2 (en) 2008-11-26

Family

ID=17628344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28067398A Expired - Lifetime JP4185598B2 (en) 1998-10-02 1998-10-02 Oil-cooled screw compressor

Country Status (1)

Country Link
JP (1) JP4185598B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512217C2 (en) * 1998-06-17 2000-02-14 Svenska Rotor Maskiner Ab Two stage compressor and method for cooling the same
FR2812040B1 (en) * 2000-07-18 2003-02-07 Cit Alcatel MONOBLOCK HOUSING FOR VACUUM PUMP
CN103423165B (en) * 2013-08-26 2015-08-12 天津商业大学 Vertical totally-enclosed two-stage screw bolt refrigerant compressor
CN104454545B (en) * 2014-11-27 2016-07-06 西安交通大学 A kind of compressor fuel injector with air suction function
CN107956686A (en) * 2017-12-07 2018-04-24 无锡锡压压缩机有限公司 A kind of dry screw compressor structure of integrated oil path
CN109578275A (en) * 2018-12-27 2019-04-05 珠海格力电器股份有限公司 Two-stage screw compressor and its twin-stage rotor set mounting structure used
CN111749896B (en) * 2020-07-07 2022-11-08 山东顺和新材料科技有限公司 Energy-saving air compressor capable of eliminating friction force by utilizing magnetic suspension
CN112879290B (en) * 2021-01-25 2022-06-14 马鞍山赛力文机械有限公司 Double-screw main machine structure driven by front end gear and rear end gear

Also Published As

Publication number Publication date
JP2000110766A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP2730625B2 (en) Scroll compressor
KR100315791B1 (en) Scroll Compressor
JP3838174B2 (en) Electric compressor
US7201568B2 (en) Scroll fluid machine
US7641455B2 (en) Scroll compressor with reduced oldham ring noise
JP4185598B2 (en) Oil-cooled screw compressor
KR100602470B1 (en) Vacuum pump
JP4145830B2 (en) Oil-cooled compressor
JP3045961B2 (en) Scroll gas compression
KR101474460B1 (en) Scoroll compressor and refrigsrator having the same
JP2003343454A (en) Slide bush and scroll type fluid machine
JP2002310079A (en) Water lubricated screw compressor
KR100951551B1 (en) Scroll type compressor
JPH0617674B2 (en) Scroll fluid machinery
JP6760804B2 (en) Compressor
JPH0417793A (en) Scroll type fluid machinery
CN1192166C (en) Vortex compressor
CN1289823C (en) Air exhaust structure of sealed rotary dual-cavity compressor
JPH03199688A (en) Scroll type compressor
JP3858580B2 (en) Hermetic electric compressor
JP2766045B2 (en) Rotary oilless compressor
JPH07217573A (en) Refrigerant pump
JP3564903B2 (en) Scroll compressor
JP2770630B2 (en) Scroll compressor
JP2002168185A (en) High pressure screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

EXPY Cancellation because of completion of term