JPS61106772A - Pressure sensitive element - Google Patents

Pressure sensitive element

Info

Publication number
JPS61106772A
JPS61106772A JP22693884A JP22693884A JPS61106772A JP S61106772 A JPS61106772 A JP S61106772A JP 22693884 A JP22693884 A JP 22693884A JP 22693884 A JP22693884 A JP 22693884A JP S61106772 A JPS61106772 A JP S61106772A
Authority
JP
Japan
Prior art keywords
pressure
sensitive element
cylindrical body
thin film
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22693884A
Other languages
Japanese (ja)
Other versions
JPH0544802B2 (en
Inventor
Kazuyuki Ozaki
和行 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP22693884A priority Critical patent/JPS61106772A/en
Publication of JPS61106772A publication Critical patent/JPS61106772A/en
Publication of JPH0544802B2 publication Critical patent/JPH0544802B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Chemical Vapour Deposition (AREA)
  • Adjustable Resistors (AREA)

Abstract

PURPOSE:To obtain a pressure sensitive element which can be used even at the time of a high temperature and also is excellent in both stability and sensitivity by forming an Si3N4 thin film on a conductive substrate which contacts tightly the end face of a cylindrical body leg part, and forming a Ge pressure sensitive film and a corrosion- resistant fetching electrode on the upper face of its central part. CONSTITUTION:On the back of a conductive substrate 1 consisting of Ti a cylindrical body leg part 3 whose end face 4 has been brought into tight contact is provided as one boy or so as to be separable. Also, an Si3N4 thin film 2 is formed to about 1mum on said substrate 1 by a plasma chemical vapor-depositing method. Subsequently, on the surface side of a part contacting a space in the cylindrical leg part 3 in the center part on said Si3N4 thin film 2 and a part of a position corresponding to between said center part and the leg part end face 4, Ge pressure-sensitive films 6, 7 of about 1mum thick, and fetching electrodes 8, 8' and 9, 9' made of a corrosion resistance metal such as Ti, stainless steel, etc., or an alloy, which are connected to the films are provided. In this way, a pressure sensitive element which can measure electrically the deformation quantity of said pressure sensitive film 6, 7 parts caused by a pressure from the space 5, as the variation quantity of a resistance value is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感圧素子に関する。更に詳しくは、苛酷な環
境条件下でも高精度および高信頼性を与え得る感圧素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure sensitive element. More specifically, the present invention relates to a pressure sensitive element that can provide high precision and high reliability even under harsh environmental conditions.

〔従来の技術〕[Conventional technology]

近年、化学、鉄鋼、上下水道などの各種プラントで高度
な制御が要求され、検出端の精度や信頼性の向上が計装
上の大きな課題となっている。こうした要求は、上記各
種プラントで最も多く使用されている圧力変換器の分野
にも高まってきているO 現在、一般的に使用されている圧力変換器の感圧素子は
、Siダイヤフラム式圧力センサーであるが、これは受
圧部の厚さが数10μm程度であるため、真空用や低圧
用に専ら使用されており、高圧用には殆んど使用されて
いないのが現状である。
In recent years, various plants in the chemical, steel, water and sewage industries, etc. require sophisticated control, and improving the accuracy and reliability of detection ends has become a major issue in instrumentation. These demands are also increasing in the field of pressure transducers, which are most commonly used in the various plants mentioned above. Currently, the pressure-sensitive elements of pressure transducers commonly used are Si diaphragm pressure sensors. However, since the thickness of the pressure-receiving part is approximately several tens of micrometers, this type is used exclusively for vacuum or low pressure applications, and is currently hardly used for high pressure applications.

従来使用されている高圧用の圧力変換器の感圧素子は、
歪ゲージをダイヤプラムに接着して圧ヵを測定する方式
であるが、接着剤を使用することから、高温で使用でき
ないこと、安定性がないこと、歪ゲージが金属膜を使用
しているので感度が悪いなどの欠点を有している。
The pressure-sensitive element of the conventionally used high-pressure pressure transducer is
This method measures pressure by bonding a strain gauge to a diaphragm, but because it uses adhesive, it cannot be used at high temperatures, is unstable, and the strain gauge uses a metal film. It has drawbacks such as poor sensitivity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

かかる実情に鑑み、高温時においても使用でき、安定性
や感度の点においてもすぐれている高圧用の圧力変換器
に用いられる感圧素子を求めて種々検討の結果、本発明
者は次のような構成のものが上記課題全解決せしめるも
のであることを見出した。
In view of these circumstances, the inventor of the present invention has conducted various studies in search of a pressure-sensitive element for use in high-pressure pressure transducers that can be used even at high temperatures and has excellent stability and sensitivity. It has been found that a structure having the following structure can solve all of the above problems.

〔問題点全解決するだめの手段〕[Means to solve all problems]

従って、本発明は感圧素子に係り、この感圧素子は、裏
側に筒状体脚部の端面を密接せしめる導電性基板上に窒
化けい素薄膜を形成させ、該窒化けい素薄膜上の中心部
分およびそれと前記脚部端面との間に相当する位置の部
分に、耐食性金属または合金製の取出電極に接続された
ゲルマニウム感圧膜を形成させ、裏側筒状体脚部内空間
からの加圧による該感圧膜部分の変形量を抵抗値の変化
量として電気的に測定し得るようにしてなる。
Therefore, the present invention relates to a pressure-sensitive element, in which a silicon nitride thin film is formed on a conductive substrate with which the end face of the cylindrical body leg is brought into close contact with the back side, and a silicon nitride thin film is formed at the center of the silicon nitride thin film. A germanium pressure-sensitive film connected to an extraction electrode made of a corrosion-resistant metal or alloy is formed on the portion and the portion corresponding to the end surface of the leg, and pressure is applied from the space inside the leg of the back side cylindrical body. The amount of deformation of the pressure-sensitive membrane portion can be electrically measured as the amount of change in resistance value.

図面の第1〜2図は、本発明に係る感圧素子の一態様の
平面図および■−■線断面図であり、この態様にあって
は、筒状体脚部が基板裏側に基板材料と同一材料で一体
的に形成されている。
1 and 2 of the drawings are a plan view and a sectional view taken along the line ■-■ of one embodiment of the pressure-sensitive element according to the present invention, and in this embodiment, the cylindrical body leg is attached to the substrate material on the back side of the substrate. It is integrally formed from the same material.

導電性基板1 (4,5X 4.5 X O,05MI
X i以下寸法は一例である)は、弾性的変形を示し得
る厚さの金属板からなり、特にチタン薄板は軽量性、高
強度の点でステンレススチール板などよりすぐれている
。この導電性基板上には、絶縁体薄膜としての窒化けい
素薄膜2(厚さ1μm)t−1好ましくはプラズマ化学
的蒸着法により形成させる。絶縁体薄膜としては、他に
酸化けい素やポリイミド樹脂などが使用される場合が多
いが、前者は湿度に弱く、また後者は耐熱性に問題がみ
られる。これに対して、プラズマ化学的蒸着法による窒
化けい素薄膜は、耐湿性、耐熱性にすぐれているばかり
ではなく、耐酸性、耐アルカリ性などの耐食性も良好で
ある。更に、重要な因子である絶縁性についても、プラ
ズマ化学的蒸着窒化けい素の体積固有抵抗は1015Ω
・α以上であり、酸化けい素(10”〜・1014Ω・
C1n)やポリイミド樹脂(1014〜101sΩ・c
rn)よりもすぐれている。
Conductive substrate 1 (4,5X 4.5X O,05MI
(The dimensions below X i are an example) are made of a metal plate having a thickness that can exhibit elastic deformation, and titanium thin plates are particularly superior to stainless steel plates in terms of light weight and high strength. On this conductive substrate, a silicon nitride thin film 2 (thickness 1 μm) t-1 is formed as an insulating thin film, preferably by plasma chemical vapor deposition. Other materials such as silicon oxide and polyimide resin are often used as the insulating thin film, but the former is sensitive to humidity, and the latter has problems with heat resistance. On the other hand, silicon nitride thin films produced by plasma chemical vapor deposition not only have excellent moisture resistance and heat resistance, but also have good corrosion resistance such as acid resistance and alkali resistance. Furthermore, with regard to insulation, which is an important factor, the volume resistivity of plasma-enhanced chemical vapor deposited silicon nitride is 1015Ω.
・It is α or more, and silicon oxide (10”~・1014Ω・
C1n) or polyimide resin (1014~101sΩ・c
superior to rn).

この窒化けい素薄膜上には、その中心部分およびそれと
筒状体3の脚部端面4との間に相当する位置の部分、換
言すれば導電性基板の裏側に基板材料と同一材料からな
る厚手の板材の化学的エツチングにより形成される円筒
状空間(直径3mm)5と接している部分の表側の位置
の部分に、ゲルマニウム感圧膜(厚さ1μm)5および
7全形成させる。このゲルマニウム感圧膜は、ゲージ率
(G)が30で金属膜のそれよりも一桁以上大きな値全
示し、温度抵抗係数(TOR)は200 ppm/℃と
小さい値を示している。このため、TCR/Gの値も7
程度と金属膜のそれの10程度よりもすぐれている。
On this silicon nitride thin film, there is a thick film made of the same material as the substrate material on the central part and the part corresponding to the position between it and the leg end surface 4 of the cylindrical body 3, in other words, on the back side of the conductive substrate. A germanium pressure-sensitive film (thickness: 1 μm) 5 and 7 is entirely formed on the front side of the portion in contact with the cylindrical space (diameter: 3 mm) 5 formed by chemical etching of the plate material. This germanium pressure-sensitive film has a gauge factor (G) of 30, which is more than an order of magnitude larger than that of a metal film, and a temperature coefficient of resistance (TOR) as small as 200 ppm/°C. Therefore, the value of TCR/G is also 7.
It is better than that of metal film by about 10%.

これらのゲルマニウム感圧膜には、耐食性がよく、信頼
性の向上がみられるチタン、ステンレススチール、ハス
テロイCなどの耐食性金属または合金製の取出電極(厚
さ1 ltm) 8 ! 8’および9゜9′がそれぞ
れ接続されている。
These germanium pressure-sensitive membranes have an extraction electrode (1 ltm thick) made of a corrosion-resistant metal or alloy such as titanium, stainless steel, or Hastelloy C, which has good corrosion resistance and improves reliability. 8' and 9°9' are connected, respectively.

〔作用〕[Effect]

かかる感圧素子を用いての測定は、第3〜4図に示され
るように、導電性基板裏側の筒状体脚部内空間からの加
圧によるゲルマニウム感圧膜部分の菱形量全抵抗値の変
化量として電気的に測定することにより行われる。
As shown in Figures 3 and 4, measurement using such a pressure-sensitive element is carried out by measuring the total resistance value of the rhombus-shaped portion of the germanium pressure-sensitive film by applying pressure from the space inside the leg of the cylindrical body on the back side of the conductive substrate. This is done by electrically measuring the amount of change.

筒状体脚部の底面部は、筒状の空間10を有する台11
上に接着、溶接などで固定12され、この空間側から加
圧すると、ゲルマニウム感圧膜はそれぞれ引張側または
圧縮側に変形し、このときの各感圧膜の抵抗′1fr:
R,およびR2とし、第4図に示されるように、標準抵
抗R6と共に回路全組むと、出力は次式で表わされるも
のとなる。
The bottom part of the cylindrical body leg has a base 11 having a cylindrical space 10.
The germanium pressure-sensitive film is fixed 12 on the top by adhesive, welding, etc., and when pressure is applied from this space side, each germanium pressure-sensitive film is deformed to the tension side or compression side, and the resistance of each pressure-sensitive film at this time is '1fr:
R, and R2, and as shown in FIG. 4, when the entire circuit is assembled with a standard resistor R6, the output is expressed by the following equation.

即ち、圧縮歪(R2)は抵抗の増加となり、また引張歪
(R1)は抵抗の減少となり、そこに一本の正比例直線
が形成されるので、出力の変化は大きく増幅されること
になり、この出力と圧力との関係を予めとっておけば、
この出力の値からの圧力変換が可能となる。
In other words, compressive strain (R2) results in an increase in resistance, and tensile strain (R1) results in a decrease in resistance, and a single directly proportional straight line is formed there, so the change in output is greatly amplified. If we determine the relationship between this output and pressure in advance,
Pressure conversion is possible from this output value.

なお、この図示された態様では筒状体脚部が基板裏側に
一体的に形成されているが、高温時に用いないような場
合には、筒状体脚部を基板裏側に分画可能に形成させ、
筒状体脚部の端面と基板の裏面とを接着させて用いるこ
ともできる。
Note that in this illustrated embodiment, the cylindrical body legs are integrally formed on the back side of the substrate, but in cases where the cylindrical body legs are not used at high temperatures, the cylindrical body legs can be formed so as to be separable on the back side of the substrate. let me,
It can also be used by bonding the end face of the cylindrical body leg to the back surface of the substrate.

〔発明の効果〕〔Effect of the invention〕

本発明の感圧素子は、絶縁膜としてプラズマ化学的蒸着
窒化けい素薄膜を用いたことにより、耐電圧性、耐湿性
および安定性にすぐれ、また感圧膜としてゲルマニウム
薄膜を使用したことにより、温度の影響が少なく、高感
度のものが得られるようになり、更に受圧板にチタン薄
板を使用1−1絶縁膜を介して直接に感圧膜を形成させ
る構造をとった結果、(1)クリープがない、(2)高
温下での使用が可能、(3)安定性にすぐれている、(
4)高圧の測定)、(に使用できるなどの効果を奏する
The pressure-sensitive element of the present invention uses a plasma chemical vapor deposited silicon nitride thin film as an insulating film, so it has excellent voltage resistance, moisture resistance, and stability, and also uses a germanium thin film as a pressure-sensitive film. As a result of using a thin titanium plate for the pressure receiving plate and forming a pressure sensitive film directly through an insulating film, (1) No creep, (2) Can be used at high temperatures, (3) Excellent stability, (
4) Can be used for high pressure measurement).

【図面の簡単な説明】[Brief explanation of drawings]

第1〜2図は、本発明に係る感圧素子の一態様の平面図
およびH−H線断面図である。第3図は、この感圧素子
を用いての測定状況を示す概略図である。また、第4図
は、感圧膜部分の変形量全抵抗値の変化量として測定す
るための回路図である。 (符号の説明) 1・・・・・・導電性基板 2・・・・・・窒化けい素薄膜 3・・・・・・筒状体脚部 4・・・・・・脚部端面 5・・・・・・脚部内空間 6.7・・・・・・ゲルマニウム感圧膜8.9・・・・
・・取出電極
1 and 2 are a plan view and a sectional view taken along line H--H of one embodiment of a pressure-sensitive element according to the present invention. FIG. 3 is a schematic diagram showing a measurement situation using this pressure sensitive element. Further, FIG. 4 is a circuit diagram for measuring the amount of deformation of the pressure-sensitive membrane portion as the amount of change in the total resistance value. (Explanation of symbols) 1... Conductive substrate 2... Silicon nitride thin film 3... Cylindrical body leg 4... Leg end surface 5. ... Leg internal space 6.7 ... Germanium pressure sensitive membrane 8.9 ...
・・Takeout electrode

Claims (1)

【特許請求の範囲】 1、裏側に筒状体脚部の端面を密接せしめる導電性基板
上に窒化けい素薄膜を形成させ、該窒化けい素薄膜上の
中心部分およびそれと前記脚部端面との間に相当する位
置の部分に、耐食性金属または合金製の取出電極に接続
されたゲルマニウム感圧膜を形成させ、裏側筒状体脚部
内空間からの加圧による該感圧膜部分の変形量を抵抗値
の変化量として電気的に測定し得るようにした感圧素子
。 2、筒状体脚部が基板裏側に一体的に形成される特許請
求の範囲第1項記載の感圧素子。 3、筒状体脚部が基板裏側に分離可能に形成される特許
請求の範囲第1項記載の感圧素子。 4、導電性基板がチタン薄板である特許請求の範囲第1
項記載の感圧素子。 5、窒化けい素薄膜がプラズマ化学的蒸着法により形成
された特許請求の範囲第1項記載の感圧素子。
[Claims] 1. A silicon nitride thin film is formed on a conductive substrate that brings the end face of the cylindrical body leg into close contact with the back side, and a central portion on the silicon nitride thin film and the connection between it and the end face of the leg are formed. A germanium pressure-sensitive film connected to an extraction electrode made of a corrosion-resistant metal or alloy is formed at a position corresponding to the gap, and the amount of deformation of the pressure-sensitive film part due to pressure applied from the inner space of the leg of the back side cylindrical body is controlled. A pressure-sensitive element that can be electrically measured as the amount of change in resistance. 2. The pressure-sensitive element according to claim 1, wherein the cylindrical body leg is integrally formed on the back side of the substrate. 3. The pressure-sensitive element according to claim 1, wherein the cylindrical body leg portion is separably formed on the back side of the substrate. 4. Claim 1 in which the conductive substrate is a titanium thin plate
Pressure-sensitive element described in section. 5. The pressure sensitive element according to claim 1, wherein the silicon nitride thin film is formed by plasma chemical vapor deposition.
JP22693884A 1984-10-30 1984-10-30 Pressure sensitive element Granted JPS61106772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22693884A JPS61106772A (en) 1984-10-30 1984-10-30 Pressure sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22693884A JPS61106772A (en) 1984-10-30 1984-10-30 Pressure sensitive element

Publications (2)

Publication Number Publication Date
JPS61106772A true JPS61106772A (en) 1986-05-24
JPH0544802B2 JPH0544802B2 (en) 1993-07-07

Family

ID=16852958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22693884A Granted JPS61106772A (en) 1984-10-30 1984-10-30 Pressure sensitive element

Country Status (1)

Country Link
JP (1) JPS61106772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032603A (en) * 1989-05-31 1991-01-09 Honda Motor Co Ltd Heat resisting strain gage and strain measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032603A (en) * 1989-05-31 1991-01-09 Honda Motor Co Ltd Heat resisting strain gage and strain measuring method

Also Published As

Publication number Publication date
JPH0544802B2 (en) 1993-07-07

Similar Documents

Publication Publication Date Title
US6655216B1 (en) Load transducer-type metal diaphragm pressure sensor
EP0316343A1 (en) Media isolated pressure sensors.
JPH11211592A (en) High-pressure sensor and its manufacture
JPH09297043A (en) Composite sensor
WO2000039551A1 (en) Pressure sensor
EP0198018A1 (en) Capacitive sensing cell made of brittle material
CN117268600A (en) MEMS pressure sensor chip and preparation method thereof
CA1154502A (en) Semiconductor variable capacitance pressure transducer
CA1178083A (en) Measuring device using a strain gauge
JPS61106772A (en) Pressure sensitive element
JP4548994B2 (en) Surface pressure sensor
JP2004045140A (en) Load converting metal diaphragm pressure sensor
JP2514067Y2 (en) Ceramic transformer
CN112710405B (en) Temperature sensor
JP2813721B2 (en) Capacitive pressure sensor
US4134304A (en) Air pressure transducer of diffusion type
RU2293955C1 (en) Strain transformer of pressure
HU210503B (en) Method for mersuring pressure with pressure diaphragm transdilcer
JPS6222272B2 (en)
KR100240013B1 (en) Strain gauge
JPS63298128A (en) Pressure sensor
JPS59217374A (en) Semiconductor strain converter
JPS6155264B2 (en)
JP3120388B2 (en) Semiconductor pressure transducer
CN115265901A (en) Diaphragm structure of capacitance type vacuum gauge and capacitance type vacuum gauge

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees