JPS61106405A - Preparation of titanium carbonitride powder - Google Patents
Preparation of titanium carbonitride powderInfo
- Publication number
- JPS61106405A JPS61106405A JP22729684A JP22729684A JPS61106405A JP S61106405 A JPS61106405 A JP S61106405A JP 22729684 A JP22729684 A JP 22729684A JP 22729684 A JP22729684 A JP 22729684A JP S61106405 A JPS61106405 A JP S61106405A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- partial pressure
- titanium
- titanium carbonitride
- nitrogen partial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は、超硬合金やサーメット等の切削工具の原料と
なる炭窒化チタンを製造するに際し、所望の組成からの
ずれの少ない、均粒微細な炭窒化チタンを製造する方法
に関する。Detailed Description of the Invention Technical Field The present invention is aimed at producing titanium carbonitride with uniform grains and fine grains that have little deviation from the desired composition when producing titanium carbonitride, which is a raw material for cutting tools such as cemented carbide and cermet. Relating to a method of manufacturing.
従来技術とその問題点
炭窒化チタンの製造法としては次の3つの方法に大別す
ることができる。炭化チタン粉末と窒化チタン粉末の混
合物を高温で加熱処理する方法(方法Aと称する)、金
属チタン粉末と炭素粉末の混合物を窒素雰囲気下で加熱
処理する方法(方法Bと称する)及び酸化チタン粉末と
炭素粉末の混合物を窒素雰囲気下で加熱処理する方法(
方法Cと称する)である。Prior art and its problems Methods for producing titanium carbonitride can be roughly divided into the following three methods. A method of heat-treating a mixture of titanium carbide powder and titanium nitride powder at high temperatures (referred to as method A), a method of heat-treating a mixture of titanium metal powder and carbon powder under a nitrogen atmosphere (referred to as method B), and titanium oxide powder A method of heat-treating a mixture of carbon powder and carbon powder in a nitrogen atmosphere (
(referred to as method C).
まず方法Aについては、炭窒化チタン中の炭素と窒素の
比率のコントロールがやり易いという利点があるが、炭
化チタンと窒化チタンの固溶を十分に行わせしめるシζ
は、逃常2000℃以上の高温を必要とし、このような
高温下では粒子が粗大化すると同時に、粒子間で焼結が
進行し、固結化するため、後行程としての粉砕が困難t
ζなるという問題がある。これを回避するため低温で処
理しようとすると固溶が完了するために長時間を必要と
し実用的でない。First, method A has the advantage that it is easy to control the ratio of carbon to nitrogen in titanium carbonitride, but it requires a method that allows sufficient solid solution of titanium carbide and titanium nitride.
requires a high temperature of 2000°C or higher, and at such high temperatures, the particles become coarse and at the same time, sintering progresses between the particles and solidifies, making it difficult to grind as a post-process.
There is a problem that ζ. If an attempt is made to process at a low temperature to avoid this, it will take a long time to complete the solid solution, which is impractical.
また、一旦炭化および窒化した炭化チタン、窒化チタン
を原料として用いることはエネルギー的にも無駄があり
、コストの上昇を招く結果となる。Furthermore, using titanium carbide or titanium nitride that has been carbonized and nitrided as a raw material is wasteful in terms of energy, resulting in an increase in cost.
次に方法Bについては、微粒の粉末を得ようとすると、
出発原料の金属チタン粉末も微粒のものを使わざるを得
す、表面積が大きくなるため粉末中の残存酸素量が大き
くなるという問題がある。Next, regarding method B, when trying to obtain fine powder,
Fine particles of titanium metal powder as a starting material must be used, which has a problem of increasing the amount of oxygen remaining in the powder due to the increased surface area.
また一般に金属チタン粉末は角ばっに形状をしており、
得られる粉末もこの形を残しているため、使用に際して
粉砕を必要とする。In addition, metal titanium powder generally has a square shape,
The resulting powder also retains this shape and requires pulverization before use.
最後に方法Cは、出発原料の酸化チタン、炭素粉末とも
1μm以下の微粒の粉末を用いることができ、得られる
粉末も、これに準する細かさのものが得られるのみなら
ず、省エネルギー低コストという利点がある。それにも
拘らず、この方法が実用化されていないのは出発原料と
して酸化物を使うため、得られる粉末中に酸素が残存し
やすくまた、加えた炭素粉末が完全に固溶せず遊離炭素
として残ることに大きな原因がある。これを解決する方
法も提案されているが(特開昭58−213617号)
、残留酸素を除くために1700〜2000℃に加熱し
ており、ある程度の粒成長は避けられず、また窒素の割
合の高い炭窒化物は、原理的に作り得ない(後述)問題
がある。Finally, method C can use fine particles of 1 μm or less for both titanium oxide and carbon powders as starting materials, and the resulting powder not only has similar fineness, but also saves energy and costs. There is an advantage. Despite this, the reason why this method has not been put to practical use is because it uses oxides as starting materials, oxygen tends to remain in the resulting powder, and the added carbon powder does not completely dissolve in solid solution, leaving it as free carbon. There is a big reason why they remain. A method to solve this problem has also been proposed (Japanese Patent Application Laid-Open No. 58-213617).
The process is heated to 1,700 to 2,000° C. to remove residual oxygen, so grain growth is unavoidable to some extent, and carbonitrides with a high nitrogen content cannot be produced in principle (described later).
また出来る炭窒化物の炭素と窒素の割合もコントロール
し難いという問題があった。Another problem is that it is difficult to control the ratio of carbon and nitrogen in the carbonitrides produced.
問題点を解決するための手段
本発明者は上記問題点を解決し、所望の組成からのずれ
の少ない均粒微細の炭窒化チタンを得るためには温度の
みでなく、窒素分圧のコントロールが必要ではないかと
考えた。Means for Solving the Problems In order to solve the above problems and obtain titanium carbonitride with uniform grains and fine particles with little deviation from the desired composition, it is necessary to control not only the temperature but also the nitrogen partial pressure. I thought it might be necessary.
炭窒化チタンを製造する場合、炭化チタンは高温で安定
であるが窒化チタンは高温で金属チタンと窒素に分解す
るため、製造中に加熱処理すると窒素が分離し、所望の
炭素と窒素の比率からずれたり、チタンに対する非金属
元素の割合(2値)が低い粉末となり易い。When producing titanium carbonitride, titanium carbide is stable at high temperatures, but titanium nitride decomposes into metallic titanium and nitrogen at high temperatures, so nitrogen separates during heat treatment during production, resulting in a change in the desired carbon to nitrogen ratio. It tends to shift, and the powder tends to have a low ratio (binary value) of nonmetallic elements to titanium.
この分解が生じる圧力(平衡窒素分圧)は炭窒化物の組
成と温度が決まると一義的に決めることができる。The pressure at which this decomposition occurs (equilibrium nitrogen partial pressure) can be uniquely determined by determining the composition and temperature of the carbonitride.
第1図は、炭窒化チタン各組成に対する平衡窒素分圧を
温度をパラメータとして示した図で、本発明の適用領域
も合わせて示しである。FIG. 1 is a diagram showing the equilibrium nitrogen partial pressure for each composition of titanium carbonitride using temperature as a parameter, and also shows the application area of the present invention.
例えばTiC:TiN=1 : 1 の組成の場合、
2000 Kという温度では8atm、 以上の圧力
で安定であり、それ以下では分解が進むことを示してい
る。For example, in the case of a composition of TiC:TiN=1:1,
At a temperature of 2000 K, it is stable at a pressure of 8 atm or higher, and decomposition progresses below that.
即ち、2000にでTiC:TiN=1 :1の粉末を
作るシζは、B atm以上の窒素分圧をかけておくこ
とが必要である。That is, in order to make a powder of TiC:TiN=1:1 at 2,000 yen, it is necessary to apply a nitrogen partial pressure of at least Batm.
本発明者らは、この事実シζ基づき、酸化チタン粉末と
炭素粉末を所定の割合に混合し、温度と窒i分圧をコン
トロールすることにより、所望の炭素と窒素の割合で、
2質が1に近い、炭窒化チタン粉末を得られることを見
出した。Based on this fact, the present inventors mixed titanium oxide powder and carbon powder at a predetermined ratio and controlled the temperature and nitrogen partial pressure to achieve a desired ratio of carbon and nitrogen.
It has been found that titanium carbonitride powder having a quality of 2 close to 1 can be obtained.
本発明は上記知見に基づきなされたもので、炭窒化チタ
ン粉末を製造するにあたり、酸化チタン粉末と該酸化チ
タンを還元するとともに所望の組成の炭窒化チタンにま
で炭化するのに必要となる量の炭素粉末を加え、十分に
混合した後1600に−2000°にの温度でlogP
N2 =−4x−1j5X104・1/r +(10〜
11) を満足する窒素分圧の範囲の窒素を流しなが
ら加熱し還元および炭窒化を行うことにより、所望の組
成からのずれの少ない、均粒微細な炭化チタン粉末を得
ることに特徴を有するものである。The present invention has been made based on the above findings, and in producing titanium carbonitride powder, titanium oxide powder and the amount necessary to reduce the titanium oxide and carbonize it to titanium carbonitride with a desired composition. After adding carbon powder and mixing thoroughly logP at a temperature of 1600 to -2000°
N2 =-4x-1j5X104・1/r +(10~
11) By heating, reducing and carbonitriding while flowing nitrogen with a nitrogen partial pressure that satisfies the following, titanium carbide powder with uniform grains and fine particles with little deviation from the desired composition is obtained. It is.
なお第1図でわかる様をζ、低温で処理すれば同じ窒素
分圧でも高窒素含有の粉末を得ることができる。しかし
、これは平衡論から導かれる帰結であや、工業的生産を
考える場合は、反応速度論をも考慮する必要がある。本
発明者らの実験によれば1600に以下の温度では、反
応を完了するのに100時間以上を要し、実際的でない
ことが判明した。As can be seen in FIG. 1, if the treatment is carried out at a low temperature, a powder with a high nitrogen content can be obtained with the same nitrogen partial pressure. However, this is a consequence of equilibrium theory; when considering industrial production, it is also necessary to consider reaction kinetics. According to experiments conducted by the present inventors, it has been found that at temperatures below 1600 ℃, it takes more than 100 hours to complete the reaction, which is not practical.
また、2000に以上では反応速度は、大きくなるもの
の特に有利になるほどでもなく、逆に粉末の焼結、粗大
化が起こり、後処理工程が複雑になる問題がある。On the other hand, when the molecular weight exceeds 2000, the reaction rate increases, but it is not particularly advantageous, and on the contrary, there is a problem that sintering and coarsening of the powder occur, which complicates the post-treatment process.
また省エネルギーの観点からも、2000に以上の高温
は不利となる。Moreover, from the viewpoint of energy saving, a high temperature of 2000 or higher is disadvantageous.
これらの点から、温度範囲を1600〜2000にと定
めた。次に、窒素分圧であるが、組成と温度が決まれば
、平衡窒素分圧は決定される。しかし、これは熱力学的
データより計算される場合が多く、真の分圧を計測した
例は少ない。第1図も、計算により、求められたもので
ある。From these points, the temperature range was set at 1600-2000. Next, regarding the nitrogen partial pressure, once the composition and temperature are determined, the equilibrium nitrogen partial pressure is determined. However, this is often calculated using thermodynamic data, and there are few examples of measuring the true partial pressure. Figure 1 was also obtained through calculation.
従って、本発明の実施にあたっては、求められた、平衡
窒素分圧を厳密をで適用することは必ずしも適確ではな
く、ある程度の許容幅をもった窒素分圧下で還元および
炭窒化を行うことが適当である。Therefore, in implementing the present invention, it is not necessarily appropriate to strictly apply the determined equilibrium nitrogen partial pressure, and reduction and carbonitriding may be carried out under a nitrogen partial pressure within a certain allowable range. Appropriate.
窒素分圧の設定にある程度の幅をもたせであるのはこの
理由により、第1図には、例として、2000にで行う
場合の窒素分圧の領域を示している。For this reason, it is necessary to have a certain range of nitrogen partial pressure settings, and FIG. 1 shows, as an example, the range of nitrogen partial pressures in the case of 2,000 degrees.
この窒素分圧より高い場合は、窒化が進み所望の組成か
らずれるとともに、遊離炭素が出やすくなり、この窒素
分圧より低い場合は、窒化が十分進まず酸素が残りやす
くなる傾向となり、好ましくない。If it is higher than this nitrogen partial pressure, nitriding progresses and the composition deviates from the desired composition, and free carbon tends to come out. If it is lower than this nitrogen partial pressure, nitriding does not progress sufficiently and oxygen tends to remain, which is undesirable. .
以下、実施例によって説明する。Examples will be explained below.
製造するため酸化チタン粉末76.096、炭素粉末2
4.096 の割合に乾式混合した後この粉末を直径1
、5 inm s長さlO〜15+uの円柱状に造粒し
、16.00に−1700にの温度で1時間、炭窒化を
行った。その際、窒素分圧を当該温度のTi(C(BN
(1,6)の平衡窒素分圧)ζ保持しなからN2を流す
本発明による方法と1気圧tζ保持するだけの従来法の
両者にて製造を行った。製造された粉末の分析結果と粒
度および計算された組成を、第1表に示す。For production, titanium oxide powder 76.096, carbon powder 2
After dry mixing to a ratio of 4.096 mm, the powder was
, 5 inm s, cylindrical shape with a length lO~15+u, and carbonitrided at a temperature of 16.00 to -1700 for 1 hour. At that time, the nitrogen partial pressure is changed to Ti(C(BN
Production was carried out using both the method according to the present invention in which N2 is flowed while maintaining the equilibrium nitrogen partial pressure ((1,6)) ζ and the conventional method in which the equilibrium nitrogen partial pressure tζ is maintained at 1 atm. The analytical results, particle size and calculated composition of the powder produced are shown in Table 1.
第 1 表
実施例2
TiCとTiNのモル比が3ニアの炭窒化チタンを製造
するため酸化チタン粉末74.3%;炭素粉末25.7
%の割合に乾式混合した後、この粉末を直径】、5韮長
さ10〜15+uの円柱状に造粒し1700〜1900
にの温度で1時間、炭窒化を行った。その際、窒素分圧
を当該温度のTi (C0,3NO,7)の平衡窒素分
圧tて保持しなからN2を流す本発明による方法と1気
圧のままN2を流す従来法の両者にて製造を行った。製
造されて粉末の分析結果と粒度および計算されて組成を
第2表に示す。Table 1 Example 2 To produce titanium carbonitride with a molar ratio of TiC and TiN of 3, titanium oxide powder was 74.3%; carbon powder was 25.7%.
After dry mixing at a ratio of 1,700 to 1,900 %, the powder was granulated into a cylinder with a diameter of 10 to 15 + u and a length of 1,700 to 1,900 yen.
Carbonitriding was carried out for 1 hour at a temperature of . At this time, both the method according to the present invention in which N2 is flowed while maintaining the nitrogen partial pressure at the equilibrium nitrogen partial pressure t of Ti (C0,3NO,7) at the relevant temperature, and the conventional method in which N2 is flowed at 1 atm. Manufactured. The analytical results and particle size of the powder produced and the calculated composition are shown in Table 2.
第 2 表
実施例3
TiCとTiNのモル比が5:5の炭窒化チタンを製造
するため、酸化チタン粉末72.’1% 炭素粉末2
7.396 の割合に乾式混合した後この粉末を直径
1、5 lit長さlO〜15龍の円柱状に造粒し、1
800〜200.OK の温度で1時間炭窒化を行った
。その際、窒素分圧を当該温度のTi (CG、5N0
.5 )の平衡窒素分圧に保持しなからN2を流す本発
明による方法と第 3 表
実施例4
TiCとTiNのモル比が8:2の炭窒化チタンを製造
するため酸fヒチタン粉末70.49/;、炭素粉末2
9.696の割合に乾式混合した後、この粉末を直径1
.5 yix 、長さ10〜151mの円柱状に造粒し
1800〜2000 Kの温度で1時間炭窒化を行った
。Table 2 Example 3 In order to produce titanium carbonitride with a molar ratio of TiC and TiN of 5:5, titanium oxide powder 72. '1% carbon powder 2
After dry mixing at a ratio of 7.396%, this powder was granulated into a cylindrical shape with a diameter of 1.5 liters and a length of 10 to 15 mm.
800-200. Carbonitriding was carried out at a temperature of OK for 1 hour. At that time, the nitrogen partial pressure is changed to Ti (CG, 5N0
.. Table 3 Example 4 Acid f titanium powder 70.5) for producing titanium carbonitride with a molar ratio of TiC and TiN of 8:2. 49/;, carbon powder 2
After dry mixing to a ratio of 9.696, the powder was
.. 5 yix and cylindrical shape with a length of 10 to 151 m, and carbonitrided at a temperature of 1800 to 2000 K for 1 hour.
その際窒素分圧を当該温度のTi (CG、8N0.2
)の平衡窒素分圧に保持しなからN2を流す本発明に
よる方法と1気圧のままN2を流す従来法の両者にて製
造を行った。製造された粉末の分析結果と粒度、および
計算された組成を第4表に示す。At that time, the nitrogen partial pressure is changed to Ti (CG, 8N0.2
Production was carried out using both the method according to the present invention in which N2 is flowed while maintaining the equilibrium nitrogen partial pressure of 1 atm, and the conventional method in which N2 is flowed at 1 atm. Table 4 shows the analysis results and particle sizes of the powders produced, as well as the calculated compositions.
第4表
発明の効果
以上のように本発明の方法で所望の組成からなる、均粒
微細な炭窒化チタンを得ることが出来る。Table 4 Effects of the Invention As described above, titanium carbonitride having a desired composition and having a uniform grain size can be obtained by the method of the present invention.
第1図は炭窒化チタン各組成に対する平衡窒素分圧を、
温度をパラメータとして示した図である。Figure 1 shows the equilibrium nitrogen partial pressure for each titanium carbonitride composition.
FIG. 3 is a diagram showing temperature as a parameter.
Claims (1)
もに所望の組成の炭窒化チタンにまで炭化するのに必要
となる量の炭素粉末を加え、十分に混合した後1600
〜2000K(1327℃〜1727℃)の温度で logP_N_2=−4x−1.6×10^4・1/T
+(10〜11)(1600≦T≦2000) 〔P_N_2:窒素分圧^(^a^t^m^)x:Ti
CN中のC/C+N、T:温度(K)〕を満足する窒素
分圧の範囲の窒素を流しながら加熱し、還元および炭窒
化を行うことを特徴とする炭窒化チタン粉末の製造法。[Claims] 1) Add titanium oxide powder and carbon powder in an amount necessary to reduce the titanium oxide powder and carbonize it to titanium carbonitride of the desired composition, mix thoroughly, and then heat to 1600 ml.
At a temperature of ~2000K (1327℃~1727℃) logP_N_2=-4x-1.6×10^4・1/T
+(10~11) (1600≦T≦2000) [P_N_2: Nitrogen partial pressure ^(^a^t^m^)x: Ti
A method for producing titanium carbonitride powder, which comprises heating while flowing nitrogen at a nitrogen partial pressure that satisfies the following: C/C+N in CN, T: temperature (K)] to perform reduction and carbonitriding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22729684A JPS61106405A (en) | 1984-10-29 | 1984-10-29 | Preparation of titanium carbonitride powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22729684A JPS61106405A (en) | 1984-10-29 | 1984-10-29 | Preparation of titanium carbonitride powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61106405A true JPS61106405A (en) | 1986-05-24 |
JPH0375485B2 JPH0375485B2 (en) | 1991-12-02 |
Family
ID=16858588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22729684A Granted JPS61106405A (en) | 1984-10-29 | 1984-10-29 | Preparation of titanium carbonitride powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61106405A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63277506A (en) * | 1987-05-08 | 1988-11-15 | Masahiro Yoshimura | Method for synthesizing titanium nitride, titanium carbide or solid solution of both |
JP2002506787A (en) * | 1998-03-16 | 2002-03-05 | エスウペ ビャンベニュ−ラコステ | Method for synthesizing powdery composite ceramic of heat-resistant metal |
CN100443443C (en) * | 2005-05-23 | 2008-12-17 | 哈尔滨工业大学 | Combustion synthesis method of sub-micron titanium carbide nitride powder |
CN109721368A (en) * | 2019-03-12 | 2019-05-07 | 厦门理工学院 | A kind of method that carbon titanium carbonitride powder and hydrolyzable titanium source prepare titanium carbonitride |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58213617A (en) * | 1982-06-07 | 1983-12-12 | Mitsubishi Metal Corp | Production of titanium carbonitride powder |
-
1984
- 1984-10-29 JP JP22729684A patent/JPS61106405A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58213617A (en) * | 1982-06-07 | 1983-12-12 | Mitsubishi Metal Corp | Production of titanium carbonitride powder |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63277506A (en) * | 1987-05-08 | 1988-11-15 | Masahiro Yoshimura | Method for synthesizing titanium nitride, titanium carbide or solid solution of both |
JP2002506787A (en) * | 1998-03-16 | 2002-03-05 | エスウペ ビャンベニュ−ラコステ | Method for synthesizing powdery composite ceramic of heat-resistant metal |
CN100443443C (en) * | 2005-05-23 | 2008-12-17 | 哈尔滨工业大学 | Combustion synthesis method of sub-micron titanium carbide nitride powder |
CN109721368A (en) * | 2019-03-12 | 2019-05-07 | 厦门理工学院 | A kind of method that carbon titanium carbonitride powder and hydrolyzable titanium source prepare titanium carbonitride |
CN109721368B (en) * | 2019-03-12 | 2021-06-25 | 厦门理工学院 | Titanium carbonitride powder and method for preparing titanium carbonitride from hydrolyzable titanium source |
Also Published As
Publication number | Publication date |
---|---|
JPH0375485B2 (en) | 1991-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103305739A (en) | High-nitrogen vanadium-nitrogen alloy VN18 and production method thereof | |
US5166103A (en) | Method of making monotunsten carbide and mixtures of monotungsten carbide-titanium carbide powders | |
CN109136709A (en) | The production method of vanadium carbide nitride magnesium-titanium solid solution and its hard alloy | |
JPS61151006A (en) | Production of aluminum nitride powder | |
JPS61106405A (en) | Preparation of titanium carbonitride powder | |
JPS61227910A (en) | Preparation of titanium-molybdenum compound carbonitride powder | |
JPS58213617A (en) | Production of titanium carbonitride powder | |
CN107937797A (en) | A kind of ferrovanadium nitride and preparation method thereof | |
CN108517450A (en) | A method of preparing vanadium nitride ferrosilicon | |
JPS62265107A (en) | Production of double carbonitride material | |
JPH021762B2 (en) | ||
CN112575239A (en) | Preparation method of high-quality low-cost nitrided ferrovanadium | |
CN112359259A (en) | Non-uniform bicrystal hard alloy containing grain inhibiting element and having carbon uniformly distributed and preparation method thereof | |
CN112322953A (en) | Nitrided ferrovanadium alloy and preparation method thereof | |
CN111172450A (en) | Method for producing high-nitrogen high-silicon ferrovanadium nitride | |
CN102465226B (en) | Method for utilizing carbon-nitrogen-oxygen vanadium to prepare vanadium-nitrogen alloy | |
JPS63190704A (en) | Production of titanium carbide nitride powder | |
JPH0327481B2 (en) | ||
JPH0242765B2 (en) | ||
JPS59445B2 (en) | Method for producing composite carbonitride solid solution containing Ti and W | |
JPS58213619A (en) | Production of powder of composite carbonitride solid solution | |
CN106276824B (en) | A method of high nitrogen vanadium nitride is prepared with coke | |
JPS61132511A (en) | Production of tib2 powder | |
JP4382113B2 (en) | Method for producing titanium carbonitride powder | |
JPS58213606A (en) | Preparation of titanium nitride powder |