JPS611057A - Nonvolatile ram - Google Patents

Nonvolatile ram

Info

Publication number
JPS611057A
JPS611057A JP59121252A JP12125284A JPS611057A JP S611057 A JPS611057 A JP S611057A JP 59121252 A JP59121252 A JP 59121252A JP 12125284 A JP12125284 A JP 12125284A JP S611057 A JPS611057 A JP S611057A
Authority
JP
Japan
Prior art keywords
terminal
rise
information
written
rom101
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59121252A
Other languages
Japanese (ja)
Inventor
Masami Noguchi
正美 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP59121252A priority Critical patent/JPS611057A/en
Publication of JPS611057A publication Critical patent/JPS611057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To inexpensively obtain an IC having large memory capacity in high integration by connecting 4-transistor type dynamic RAM with a nonvolatile ROM which can be written with a single power source. CONSTITUTION:When the terminal ERS of an electrically erasable P-ROM101 rises and the signals of a terminal PHIP and a word line WL rise, bit lines BL, -BL are precharged, and Q and Q of a dynamic RAM103 are precharged to ''0'' or ''1''. When the signals of the terminal QP and the line WL rise and the signals of a control gate terminal CG and a select gate terminal SG rise and information of the RAM103 is ''1'' at that time, the charge stored in a capacitor is flowed to a transistor Tr. Thus, the ROM101 becomes rewritable state. The information of the written ROM101 can be returned to the RAM103. According to the circuit configuration, the number of the Trs may be less, and since it is not necessary to provide isolating area, the area of the memory cell can be reduced.

Description

【発明の詳細な説明】 本発明は、4トランジスタ方式のダイナミックRAMセ
ルと5V単一電源で書き込める不揮発性EPROMを組
合せ几不揮発性RAMK関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nonvolatile RAMK that combines a four-transistor type dynamic RAM cell and a nonvolatile EPROM that can be written to with a single 5V power supply.

従来の不揮発性RAM (NVRAM )は、素子数が
多くてメモリーセルの面積が大きくなり、高集積化に適
さないばかりでなくチップコストも高くなるという欠点
があった。
Conventional non-volatile RAM (NVRAM) has the disadvantage that it has a large number of elements and a large memory cell area, making it unsuitable for high integration and increasing chip cost.

本発明は上記の欠点を除去し、高集積でメモリ容量の大
きな集積回路を得ることを目的としている。
The present invention aims to eliminate the above-mentioned drawbacks and to obtain an integrated circuit with high integration and large memory capacity.

第1図は本発明のNVRAMの実砲例であシ、タイミン
グ図である第2図とタイミング図である第5図と、I 
PROM101の断面構造図である第4図と、KPRO
Mlolの特性を示、す第5図とを用いて以下に本発明
の詳細な説明する。
FIG. 1 shows an actual example of the NVRAM of the present invention, FIG. 2 is a timing diagram, FIG. 5 is a timing diagram, and FIG.
FIG. 4, which is a cross-sectional structure diagram of PROM101, and KPRO
The present invention will be described in detail below with reference to FIG. 5, which shows the characteristics of Mlol.

1)第1図のトランジスタ3〜6の4つのトランジスタ
はダイナミックRA M (DRAM ) 1’Q3セ
ルを形成している。DRAM 1叛3の動作は、トラン
ジスタ3とトランジスタ4のゲートインピーダンスが高
いことを利用して、ゲートにそれぞれ%0#又は11N
を貯えることによって動作を保証している。ここに10
〃はグランドレベルで、気1〃はVDDレベルである。
1) Four transistors, transistors 3 to 6 in FIG. 1, form a dynamic RAM (DRAM) 1'Q3 cell. The operation of DRAM 1 and 3 takes advantage of the high gate impedance of transistor 3 and transistor 4, and applies %0# or 11N to the gate, respectively.
Operation is guaranteed by storing . here 10
〃 is the ground level, and Ki 1 is the VDD level.

即ちDRAM1’lajの読み出しは、DRAM1′B
、、3に%Ol又は%1Nの情報が貯えられている時、
端子φpKよってビット線BLとBLを予めプリチャー
ジしておき、しかる後、ワード線WLを立上るとDRA
MIX3の情報に応じて、ビン) 腺B LとBLKは
電位差が生じるのでこれをセンスアンプ(図示せず)で
増幅して出力することによって行なわれる。
In other words, when reading DRAM1'laj, DRAM1'B
When %Ol or %1N information is stored in ,,3,
The bit lines BL and BL are precharged by the terminal φpK, and then, when the word line WL is turned on, the DRA
Since there is a potential difference between BLK and L depending on the information from MIX3, this is done by amplifying this with a sense amplifier (not shown) and outputting it.

次にDRAMIX3への書き込みは、書き込みデータに
応じてピント線BLとELt−%07y又は亀1〃にそ
れぞれ印加し、ワード線WLを立上げるとDRAM 1
 ’!11,3にはデータが書き込まれていく。
Next, for writing to DRAMIX3, voltage is applied to the focus line BL and ELt-%07y or Kame1 according to the write data, and when the word line WL is started, DRAM1
'! Data is written to 11 and 3.

2)次K DRAMIX3のデータをK PROM10
1に書き込む動作(以下ストア動作とする。)を第2図
のタイミング図と第4図K FROMIXl(7)Il
fr 面4−g造図と第5図のF、PROMlX1の特
性図を用いて説明する。
2) Transfer the data of next K DRAMIX3 to K PROM10
The operation of writing to 1 (hereinafter referred to as store operation) is shown in the timing diagram of Fig. 2 and in Fig. 4 K FROMIXl(7)Il.
This will be explained using the fr plane 4-g diagram and the characteristic diagram of F and PROM1X1 in FIG.

第1図の端子φp、ワード1腺iVL、端子]l!iR
8、コントロールゲート端子CG、セレクトゲート端子
SGの信号は第2図のように印加される。端子KR8の
信号は、第4図のローテイングゲー)F2O間に、薄い
絶縁膜tOXlを介してFOWler−1’lOr(i
heim電流を流すのに十分な高い電圧を有する。
Terminal φp, word 1 gland iVL, terminal]l! in FIG. iR
8. Signals to the control gate terminal CG and select gate terminal SG are applied as shown in FIG. The signal at terminal KR8 is transmitted between FOWler-1'lOr(i
It has a high enough voltage to carry the heim current.

端子KR8の信号が立上るとFowler−Nordh
eim電流によってフローテイングゲ−)FGの電子は
端子KR8K向って流れ、端子ER8の信号が、立下っ
た後、フローテイングゲー)FGは正に帯電する。この
ことは第5図のK DROMlolの特性図においてイ
ニシャルの曲線aから消去後の曲線CK%性が移ったこ
とを表わす。
When the signal at terminal KR8 rises, Fowler-Nord
The electrons of the floating game FG flow toward the terminal KR8K by the eim current, and after the signal at the terminal ER8 falls, the floating game FG becomes positively charged. This indicates that in the characteristic diagram of K DROMlol shown in FIG. 5, the CK% characteristic of the curve after erasing has shifted from the initial curve a.

次に端子φpとワード線WLの信号が立上ると、ビット
線BLと■1はプリチャージされ、ワード線WLの信号
が立上ることによってノードQとノード可はそれ以前に
貯えていた情報に応じてそれぞれ気0〃又は気11にプ
リチャージされる。端子φpとワード’IJWLの信号
が立下が9、コントロールゲート端子CGとセレクトゲ
ート端子8Gの信号が立上るとコントロールゲート端子
CGと70−テイングゲー)FGは強く容量結合されて
いるため、コントロールゲート端子CGの信号の立上り
によって、フローティングゲートF’Gは強く押し上げ
られ、結果的に第4図のK FROMIXlの構造図に
おいてy方間に強い電界を与えることになシ、かつセレ
クトゲート端子SGの信号が立上ることによってチャネ
ルt2が導通する。
Next, when the signal on the terminal φp and the word line WL rises, the bit lines BL and ■1 are precharged, and when the signal on the word line WL rises, the node Q and the node A are restored to the previously stored information. Depending on the situation, it will be precharged to 0 or 11 ki, respectively. When the signal at the terminal φp and the word 'IJWL falls, the signal at the control gate terminal CG and the select gate terminal 8G rises. Since the control gate terminal CG and FG are strongly capacitively coupled, the control gate The floating gate F'G is strongly pushed up by the rise of the signal at the terminal CG, and as a result, a strong electric field is not applied in the y direction in the structural diagram of KFROMIX1 in Fig. 4, and the floating gate F'G is pushed up strongly. When the signal rises, channel t2 becomes conductive.

このときDRAM1’9jの情報が気1〃(ストア気1
〃)のとき、ノードQは%1//レベルであるので、セ
レクトゲート端子SGが立上るとコンデンサ17に蓄え
られたチャージはトランジスタ7のドレインからンース
に向って流れる。
At this time, the information in DRAM1'9j is stored as
), the node Q is at the %1// level, so when the select gate terminal SG rises, the charge stored in the capacitor 17 flows from the drain of the transistor 7 to the source.

よって第4図のEPROMjolの断面構造図において
チャネルt1とチャネルL2の境界近傍で電子は急激に
加速され、又y方向に電界が加わっていることから、あ
る確率で電子はフローティングFGK飛び込んでいく。
Therefore, in the cross-sectional structure diagram of the EPROMjol shown in FIG. 4, electrons are rapidly accelerated near the boundary between channel t1 and channel L2, and since an electric field is applied in the y direction, electrons jump into the floating FGK with a certain probability.

フローテイングゲー)FGは負に帯電し第5図のK F
ROMlolの特性図の消去状態を示す曲線Cから書込
み状態を示す曲線すに特性が移る。
floating game) FG is negatively charged and K F in Figure 5
In the characteristic diagram of ROMlol, the characteristics shift from the curve C showing the erased state to the curve showing the written state.

一方、DRAM1’Ek3の情報が気O〃(ストアー0
〃)のとき、ノード(は%0〃レベルでありコンデンサ
17にはチャージはなく、セレクトゲート端子SGの信
号が立上がってもトランジスタ7には電流が流れない。
On the other hand, the information of DRAM1'Ek3 is 0 (store 0
), the node (is at the %0 level, there is no charge in the capacitor 17, and no current flows through the transistor 7 even if the signal at the select gate terminal SG rises).

よって電子はフローティングゲート7’には書き込まれ
ないので、第5図のE pROMIQlの特性図の消去
状態を示す曲線Cのままである。
Therefore, since electrons are not written into the floating gate 7', the curve C representing the erased state in the characteristic diagram of EpROMIQl in FIG. 5 remains as it is.

コントロールゲ−)端子CGとセレクトケート端子SG
の信号の立下りによってEli PROMlX1へのデ
ータの書き込みは完了する。
Control game) terminal CG and select gate terminal SG
The writing of data to Eli PROMlX1 is completed by the fall of the signal.

3) リコール動作、不揮発性K PROM101に書
き込まれfc情報をDRAM1\3に戻す動作をリコー
ル動作という。リコール動作をタイミング図第5図とB
m  PROM11]1の特注を示す窮5図を用いて説
明する。
3) Recall operation: The operation of returning the fc information written to the non-volatile K PROM 101 to the DRAM1\3 is called a recall operation. Recall operation timing diagram Figure 5 and B
This will be explained using Figure 5, which shows a custom-made PROM11.

今ストア%11Kよって書き込まれたPi FROM1
X1の情報をDRAM1’a、3に戻す場合、端子φp
とワード、%lWLの信号が立上るとDRAMIX5セ
ルのノード可とノードQはそれぞれ気1〃にプリチャー
ジされる。端子φpとワード線WLの信号が立下り、セ
レクトゲート端子8Gの信号が立上ればストア気1〃に
よってK FROMIXlの特性は第5図書込み状態す
の如く、コントロールゲート端子CGの信号がOvのと
トランジスタ7のドレインノース間には電流が流れない
。よってノードQは’1’f、維持しておシ、ノード互
も%11のままであるが、ノードQの方はコンデンサ1
7が接続されておシ、電荷量が多いので、結局ノードQ
のディスチャージが早くなり、ノードQは’11にノー
ド可は気0〃になる。
Pi FROM1 now written by store%11K
When returning the information of X1 to DRAM1'a, 3, the terminal φp
When the word and %lWL signals rise, the nodes A and Q of the DRAMIX5 cell are precharged to 1, respectively. When the signal on the terminal φp and the word line WL falls and the signal on the select gate terminal 8G rises, the characteristics of the K FROMIX1 are as shown in the write state in Figure 5, when the signal on the control gate terminal CG becomes Ov. No current flows between this and the drain north of transistor 7. Therefore, the node Q is kept at '1' f, and the node value remains %11, but the node Q has a capacitor of 1.
7 is connected and has a large amount of charge, so in the end the node Q
The discharge becomes faster, and node Q becomes '11' and node A becomes '0'.

一方、ストア%O#によって書き込まれたE FROM
IXlの特性は、特性図第5図の消去状態を示す曲線C
の如く、コントロールゲート端子CGの信号が0■のと
きでも電流は流れる。よってプリチャージで%1Nレベ
ルになったノードQとノードQのうち、ノードQの方は
セレクトゲート端子SGの信号が立上ると、トランジス
タ7のドレインからンースに向って電流が流れ、ノード
Qは%QIレベ′ルになる。このようにストア時のDR
AM1X3の情報はBli PROMIXI K貯えら
れ、リコール動作によって再びB FROMlolの情
報がDRAM1’aj[呼び戻され、ストア時のDRA
MIX3の情報が再現できる。
On the other hand, E FROM written by store %O#
The characteristics of IXl are shown by the curve C showing the erased state in the characteristic diagram 5.
As shown in the figure, even when the signal at the control gate terminal CG is 0■, the current flows. Therefore, when the signal at the select gate terminal SG rises in the node Q between the node Q and the node Q, which have reached the %1N level due to precharging, a current flows from the drain of the transistor 7 to the source, and the node Q becomes %QI level. In this way, DR when storing
The information of AM1X3 is stored in Bli PROMIXI K, and by the recall operation, the information of B FROMlol is recalled again to DRAM1'aj [DRA at the time of storage.
MIX3 information can be reproduced.

又、K PROMI箋1の情報は、不揮発性であるため
電源を切っても消えることはない。
Furthermore, since the information in the K PROMI note 1 is non-volatile, it will not disappear even if the power is turned off.

以上のように本発明は不揮発性RAMとして使える。ま
た従来の回路に比べてトランジスタ数が少なくてすみ、
かつ、CMOSスタティックRAMのように別ウェルの
ための分離領域を設ける必要もないので、メモリーセル
の面積は小さくて実現可能である。
As described above, the present invention can be used as a nonvolatile RAM. It also requires fewer transistors than conventional circuits,
Moreover, unlike CMOS static RAM, there is no need to provide an isolation region for separate wells, so the area of the memory cell can be small.

よって大容量化の場合とか、チップコストを安くする場
合に本発明を使用すれば大変効果がある。
Therefore, if the present invention is used to increase capacity or reduce chip cost, it will be very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の不揮発性RAMの実施例の回路図、 第2図は本発明のDRAMからE2PROΔ1へのスト
ア動作のタイミング図、 第3図は本発明のに2F ROMからDRAMへのリコ
ール動作のタイミング図、 第4図はE2F ROMセルの断面構造図、第5図はに
2F ROMセルの特性図である。 3・・・NチャネルM OS )ランジスタ4 ・・・
 N 5・・・N 6 ・・・ N 7・・・N 8・・・P 9 ・・・ P 10 ・・・ N 11・・・第1の多結晶シリコン 12・・・P基板 15・・・N 拡散層 14・・・N十拡散層 15・・・N 拡散層 16・・・第2の多結晶シリコン 17・・・コンデンサ 100−−− SRA M 2O3・・・E2PRM 102・・・メモリーセル 103・・・4TrダイナミックRAM以   上
Figure 1 is a circuit diagram of an embodiment of the non-volatile RAM of the present invention, Figure 2 is a timing diagram of a store operation from DRAM to E2PROΔ1 of the present invention, and Figure 3 is a recall operation from 2F ROM to DRAM of the present invention. FIG. 4 is a cross-sectional structural diagram of the E2F ROM cell, and FIG. 5 is a characteristic diagram of the 2F ROM cell. 3...N channel MOS) transistor 4...
N5...N6...N7...N8...P9...P10...N11...First polycrystalline silicon 12...P substrate 15...・N diffusion layer 14...N diffusion layer 15...N diffusion layer 16...Second polycrystalline silicon 17...Capacitor 100---SRA M2O3...E2PRM 102...Memory Cell 103...4Tr dynamic RAM or more

Claims (2)

【特許請求の範囲】[Claims] (1)片チャネルのMOSトランジスタ4個からなる4
トランジスタ方式のダイナミックRAMと、5V単一電
源で書き込める不揮発性ROMを接続したことを特徴と
する不揮発性RAM。
(1) 4 consisting of 4 single-channel MOS transistors
A non-volatile RAM characterized by connecting a transistor-type dynamic RAM and a non-volatile ROM that can be written to with a single 5V power supply.
(2)前記RAMの出力と、前記ROMとの接続点に、
容量を接続したことを特徴とする特許請求の範囲第1項
記載の不揮発性RAM。
(2) At the connection point between the output of the RAM and the ROM,
The nonvolatile RAM according to claim 1, characterized in that a capacitor is connected.
JP59121252A 1984-06-13 1984-06-13 Nonvolatile ram Pending JPS611057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121252A JPS611057A (en) 1984-06-13 1984-06-13 Nonvolatile ram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121252A JPS611057A (en) 1984-06-13 1984-06-13 Nonvolatile ram

Publications (1)

Publication Number Publication Date
JPS611057A true JPS611057A (en) 1986-01-07

Family

ID=14806656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121252A Pending JPS611057A (en) 1984-06-13 1984-06-13 Nonvolatile ram

Country Status (1)

Country Link
JP (1) JPS611057A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106534A (en) * 1974-01-29 1975-08-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106534A (en) * 1974-01-29 1975-08-22

Similar Documents

Publication Publication Date Title
JP3039458B2 (en) Non-volatile semiconductor memory
US7280407B2 (en) Semiconductor memory device including floating gates and control gates, control method for the same, and memory card including the same
US4813018A (en) Nonvolatile semiconductor memory device
JP4427382B2 (en) Nonvolatile semiconductor memory device
JP4855773B2 (en) Semiconductor memory device and data read method thereof
JP4709525B2 (en) Nonvolatile semiconductor memory device
US6243292B1 (en) Nonvolatile semiconductor memory device capable of reducing memory array area
US6222774B1 (en) Data-erasable non-volatile semiconductor memory device
JP2007133927A (en) Semiconductor memory and its control method
US7099214B2 (en) Semiconductor memory device
JPWO2007000809A1 (en) Semiconductor device and control method thereof
EP3465686A1 (en) Asymmetrical sensing amplifier and related method for flash memory devices
JP2005004835A (en) Semiconductor storage
EP0373672A2 (en) Semiconductor memory circuit having an improved restoring control circuit
US7016216B2 (en) Ferroelectric memory device having ferroelectric capacitor and method of reading out data therefrom
JP3825596B2 (en) Semiconductor memory device and control method thereof
JP2991546B2 (en) Semiconductor integrated circuit
JP2005310314A (en) Nonvolatile semiconductor storage device
JP3162515B2 (en) Nonvolatile semiconductor memory device
JP5033479B2 (en) Reading device
JPS611057A (en) Nonvolatile ram
JP2002245786A (en) Semiconductor integrated circuit device and its control method
JP2918723B2 (en) Semiconductor storage device
JP3963420B2 (en) Semiconductor memory device
JP2001028193A (en) Semiconductor memory