JPS61105748A - Thermal magnetic recording and reproducing device - Google Patents

Thermal magnetic recording and reproducing device

Info

Publication number
JPS61105748A
JPS61105748A JP18710685A JP18710685A JPS61105748A JP S61105748 A JPS61105748 A JP S61105748A JP 18710685 A JP18710685 A JP 18710685A JP 18710685 A JP18710685 A JP 18710685A JP S61105748 A JPS61105748 A JP S61105748A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
medium
field generating
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18710685A
Other languages
Japanese (ja)
Inventor
Hisahiro Hanaoka
花岡 尚大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP18710685A priority Critical patent/JPS61105748A/en
Publication of JPS61105748A publication Critical patent/JPS61105748A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To provide a magnetic field necessary for magnetic field inversion without a driving device of a magnetic field generating equipment by extending the magnetic field generating equipment mounted opposite a laser beam irradiating device which heats a magnetic film partially, though the total length of a magnetizable area of a recording medium. CONSTITUTION:The laser beam of a beam source 4 focuses on a magnetic thin film of a recoding medium, heats the medium partially, reduces its magnetic resistance, and the magnetic flux of a coil 10 generated in response to a recoding signal magnetizes the heated area to record specified information. A magnetic field generating equipment 11 is extended through the total length of a magnetizable area of the recording medium, and the magnetic flux from a very thin ferromagnetic material 14 of 1mu thickness is superimposed perpendicularly to the flux from the coil 10. Hence the magnetic field generating equipment 11 does not necessitate a driving device to move over the medium although a magnetic field necessary for magnetic field inversion is securely imposed to the medium as a base 1 is rotated with a motor 3.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は垂直異方性を有する磁性媒体にレーザスポッ
ト等による加熱で情報を記録再生する熱磁気記録再生装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thermomagnetic recording and reproducing apparatus for recording and reproducing information on a magnetic medium having perpendicular anisotropy by heating with a laser spot or the like.

[従来の技術] 従来、この種の熱磁気記録再生手段として例えばMn3
iを記録媒体とし、これの薄膜の抗磁力の温度依存性を
利用し光ビーム例えばレーザ光を照射しこれのスポット
による熱で磁化反転をさせ情報を記録し、また再生は磁
化反転を起さない程度のレーザ光のスポットを上記記録
部分に照制しカー(l(err)効果により情報を読み
出すようにしたものがある。
[Prior Art] Conventionally, as this type of thermomagnetic recording/reproducing means, for example, Mn3
i is used as a recording medium, and by utilizing the temperature dependence of the coercive force of the thin film, a light beam such as a laser beam is irradiated, and the heat from the spot causes magnetization reversal to record information, and information is recorded without causing magnetization reversal during reproduction. There is a device in which a laser beam spot of a certain extent is illuminated on the recording area and information is read out by the Kerr (l(err) effect).

すなわち、かかる手段をいま少し具体的に)ボベると1
vjnBiや希土類非晶質合金等の磁性薄膜を蒸着又は
スパッタリング等によりベース上に形成し、この薄膜を
膜面と垂直に一定方向に磁化するようにバイアス磁界を
かけた状態にしておく。そして、光源より発したレーザ
光を記録信号で変調し、これを対物レンズを介して上記
記録媒体にスボッ・トとして照射しこの照射部分の温度
を上昇させ、これにより媒体の抗磁力を低下させ、バイ
アス磁界より小さくなったときに磁気反転により情報を
記録させるようにしている。
In other words, if we describe this method in more detail), it is 1.
A magnetic thin film such as vjnBi or rare earth amorphous alloy is formed on the base by vapor deposition or sputtering, and a bias magnetic field is applied to the thin film so as to magnetize it in a certain direction perpendicular to the film surface. Then, the laser beam emitted from the light source is modulated with a recording signal, and is irradiated onto the recording medium as a slit through an objective lens to increase the temperature of the irradiated area, thereby reducing the coercive force of the medium. When the magnetic field becomes smaller than the bias magnetic field, information is recorded by magnetic reversal.

またレーザビームの焦点を媒体上に結ばせ局部的に媒体
を加熱して抗磁力を低下させておき、この状態で記録信
号に応じて変化される磁界により媒体を磁化して記録を
行なう手段もある。
Another method is to focus a laser beam on the medium and locally heat the medium to lower the coercive force, and in this state magnetize the medium with a magnetic field that changes according to the recording signal to perform recording. be.

このようにかかる手段はいずれもレーザビームのエネル
ギーにより媒体を局部的に熱してスポット部分の抗磁力
を下げ、そこに作用する磁界により熱磁気書き込みを行
なうようにしている。
In all of these means, the medium is locally heated by the energy of the laser beam to lower the coercive force at the spot, and the magnetic field acting thereon performs thermomagnetic writing.

上記に説明した熱磁気記録再生装置を具体的に開示され
たものとして特開昭51−97413号がある。この先
行技術に開示されている技術は、記録媒体の磁化を反転
させる装置として、記録媒体を挟むように配置したコ字
状磁心に電流を流すことによって空隙に生じる磁界を記
録媒体に付与するものである。
JP-A-51-97413 specifically discloses the thermomagnetic recording and reproducing apparatus described above. The technology disclosed in this prior art is a device for reversing the magnetization of a recording medium, which applies a magnetic field generated in an air gap to the recording medium by passing current through U-shaped magnetic cores arranged to sandwich the recording medium. It is.

[発明が解決しようとする問題点] 上記従来の技術によると、磁界発生装置の磁心がコテ状
を成しているので重量が大となるとともに記録媒体の半
径方向に駆動する装置が複雑となりさらに駆動長が大と
なるという不具合があった。またコ字状磁心の空隙長は
記録媒体の撓み量を見込むと約5mm位必要となる。こ
の空隙長で磁心に電流を流しても磁界反転に必要な磁界
を記録媒体に付与することが出来ない。
[Problems to be Solved by the Invention] According to the above-mentioned conventional technology, the magnetic core of the magnetic field generating device is iron-shaped, which increases the weight and complicates the device for driving the recording medium in the radial direction. There was a problem that the drive length became long. Further, the air gap length of the U-shaped magnetic core is required to be about 5 mm, taking into account the amount of deflection of the recording medium. Even if current is passed through the magnetic core with this air gap length, the magnetic field required for magnetic field reversal cannot be applied to the recording medium.

この発明は上記不具合を解潤するために、記録媒体の一
方の面に記録媒体の半径方向にわたって固定された磁界
発生装置を設けることにより、磁界反転に必要な磁界を
確実に記録媒体に付与出来るようにするとともに磁界発
生装置の駆動装置を不要にしたことを目的とする。
In order to solve the above-mentioned problems, this invention provides a magnetic field generator fixed on one surface of the recording medium in the radial direction of the recording medium, thereby making it possible to reliably apply the magnetic field necessary for magnetic field reversal to the recording medium. The present invention aims to eliminate the need for a drive device for a magnetic field generating device.

[問題点を解決するための手段] この発明の装置は、記録媒体の一方の面に固定して設け
た磁界発生装置を記録媒体の磁化可能範囲の全長にわた
って延在するように設は加熱するレーザ光を照射する手
段の移動のみで記録再生可能にした。
[Means for Solving the Problems] The device of the present invention heats a magnetic field generating device fixedly provided on one surface of a recording medium so that it extends over the entire length of the magnetizable range of the recording medium. Recording and reproduction are now possible simply by moving the means for irradiating laser light.

[第1実施例] 以下、この発明の一実施例を図面に従い説明する。第2
図はこの発明を記録信号に応じて変化される磁界により
媒体を磁化して記録を行なうちのに適用した例を示して
いる。図において1は円板状のベースで、このベース1
上にはMn3i等の磁性112を蒸着又はスパッタリン
グにより付着し記録媒体としている。また、このベース
1は水平に保持されモータ3により所定速度で回転する
ようにしている。
[First Embodiment] An embodiment of the present invention will be described below with reference to the drawings. Second
The figure shows an example in which the present invention is applied to recording by magnetizing a medium using a magnetic field that changes according to a recording signal. In the figure, 1 is a disc-shaped base, and this base 1
A magnetic material 112 such as Mn3i is deposited thereon by vapor deposition or sputtering to form a recording medium. Further, the base 1 is held horizontally and rotated by a motor 3 at a predetermined speed.

一方、4はレーザ光を発生する光源で、この光源4から
のレーザ光を光変調装置5および偏光子51を介してハ
ーフミラ−6に与え、ここで反射させレンズ7を、介し
て上記磁性薄膜2面上に与えるようにしている。この場
合レーザ光は薄膜2面で焦点を結ぶようにする。また、
上記レンズ7を通る光軸の上記ハーフミラ−を介した延
長線上に検光子8、光電変換素子9を配設している。こ
れら検光子8および光電変換素子9は再生時磁性薄膜2
面より反射されて(るレーザ光をカー効果を利用して検
出するものである。
On the other hand, 4 is a light source that generates a laser beam. The laser beam from this light source 4 is applied to a half mirror 6 via a light modulator 5 and a polarizer 51, and reflected there. I try to give it on two sides. In this case, the laser beam is focused on two surfaces of the thin film. Also,
An analyzer 8 and a photoelectric conversion element 9 are disposed on an extension of the optical axis passing through the lens 7 via the half mirror. These analyzer 8 and photoelectric conversion element 9 are connected to magnetic thin film 2 during reproduction.
Laser light reflected from a surface is detected using the Kerr effect.

上記磁性薄膜2の上方に第1の信@磁界発生装置例えば
コイル10を設けている。このコイ5        
    7%/1 ル10は記録信号例えばディジタル信号に応じて変化さ
れる磁界を発生するもので、これによる磁束をレーザ光
により加熱される薄11SI2部分に与えるようにして
いる。
A first magnetic field generator, for example a coil 10, is provided above the magnetic thin film 2. This carp 5
7%/1 The magnetic field 10 generates a magnetic field that changes according to a recording signal, for example, a digital signal, and the magnetic flux generated by this is applied to the thin 11SI2 portion heated by the laser beam.

上記ベース1を挾んで上記コイル10に対向して第2の
磁界発生装置11を設けている。この磁界発生装置11
の磁束は上記コイル10の磁束に重畳され磁界を反転さ
せるもので上記レーザ光が焦点を結ぶ磁性薄膜2部分に
近接するように配置している。またこの第2の磁界発生
装置11をベース1の半径方向に長くし、この磁界発生
装@11の強磁性体部分を磁化可能範囲の全長にわたっ
て延在するようにしている。
A second magnetic field generator 11 is provided opposite the coil 10 with the base 1 in between. This magnetic field generator 11
The magnetic flux is superimposed on the magnetic flux of the coil 10 to invert the magnetic field, and is placed close to the portion of the magnetic thin film 2 where the laser beam is focused. Further, this second magnetic field generating device 11 is made long in the radial direction of the base 1, so that the ferromagnetic portion of this magnetic field generating device @11 extends over the entire length of the magnetizable range.

これにより磁界発生装置11の移動は不要である。This eliminates the need to move the magnetic field generator 11.

この場合第2の磁界発生装置11は第3図に示すように
セラミック等の非磁性体121にフェライト等の強磁性
体13を接合し、こののち突合せ端面を光学研磨しこの
面に1μ程度の厚さでパーマロルあるいはセンダスト等
の比較的飽和磁束密度の高い強磁性体14をスパッタリ
ング等で付着し、更に予め突合せ面を研摩した他の非磁
性体122を突合せ接合し、しかる後R端面を形成して
得られるものである。
In this case, the second magnetic field generating device 11 is made by bonding a ferromagnetic material 13 such as ferrite to a non-magnetic material 121 such as ceramic as shown in FIG. A ferromagnetic material 14 having a relatively high saturation magnetic flux density such as Permalol or Sendust is deposited by sputtering or the like, and another non-magnetic material 122 whose abutting surfaces have been polished in advance is butt-joined, and then an R end surface is formed. It is obtained by doing.

なお、このような構成ではベース1の回転により第4図
に示すようにレーザ光の焦点位置Aおよび第2の磁界発
生装置11を図示B方向つまりベース10半径方向に移
動し磁性薄膜2面上に渦巻き状の磁化トラックCを描く
ようにしている。
In this configuration, the rotation of the base 1 moves the focal position A of the laser beam and the second magnetic field generator 11 in the direction B shown in the figure, that is, in the radial direction of the base 10, as shown in FIG. A spiral magnetization track C is drawn on the surface.

次にその作用を説明する。この場合、かかる実施例では
記録信号により磁界を変化し、この磁界により媒体を磁
化して記録を行なうものについて述べる。従ってここで
は光変調装置5での変調動作は行なわないものとする。
Next, its effect will be explained. In this case, such an embodiment will be described in which the magnetic field is changed in response to a recording signal, and the medium is magnetized by this magnetic field to perform recording. Therefore, it is assumed here that no modulation operation is performed in the optical modulation device 5.

このようにすると、いま光源4よりレーザ光が発生する
とレーザ光は光変調装置5(変調動作は行なわない。)
、偏光子51を介してハーフミラ−6に与えられ、ここ
で反射されレンズ7を介して磁性薄膜2面に与えられる
。そして薄膜2上にレーザ光の焦点が結ばれると、ごの
スポラ1〜部分が局部的に加熱され抵抗力が低下する。
In this way, when a laser beam is generated from the light source 4, the laser beam is transmitted to the optical modulator 5 (no modulation operation is performed).
, is applied to the half mirror 6 via the polarizer 51, reflected there, and applied to the magnetic thin film 2 via the lens 7. When the laser beam is focused on the thin film 2, the spora 1 to 1 are locally heated and the resistance is reduced.

この状態でコイル10より記録信号に応じた磁界が発生
すると、これによる磁束が上記スポットにより加熱され
た薄膜2部分を磁化し、これにより所定の情報が記録さ
れる。この場合上記コイル10の発生磁束に第2の磁界
発生装置11の極めて狭い(1μ程度)強磁性体14部
分から磁束が重畳されて薄膜2の加熱部分に垂直方向か
ら与えられる。従って、第2の磁界発生装置11からの
磁束は、第1の信号磁界発生装置の磁束に重畳され磁界
反転に必要な磁界を容易に得ることが出来る。
When a magnetic field is generated from the coil 10 in accordance with the recording signal in this state, the resulting magnetic flux magnetizes the portion of the thin film 2 heated by the spot, thereby recording predetermined information. In this case, the magnetic flux generated by the coil 10 is superimposed on the magnetic flux from the extremely narrow (approximately 1 μm) ferromagnetic material 14 portion of the second magnetic field generating device 11, and is applied to the heated portion of the thin film 2 in the perpendicular direction. Therefore, the magnetic flux from the second magnetic field generating device 11 is superimposed on the magnetic flux of the first signal magnetic field generating device, and the magnetic field necessary for magnetic field reversal can be easily obtained.

尚、第2の磁界発生装置も第1の信号磁界発生装置と同
様に情報信号に基づいた磁束を発生させるようにしでも
良い。また、第1の磁界発生装置がな(とも所期の目的
である記録再生を行なうことは可能である。
Note that the second magnetic field generating device may also generate magnetic flux based on the information signal in the same manner as the first signal magnetic field generating device. Furthermore, it is possible for the first magnetic field generating device to perform the intended purpose of recording and reproducing.

これにより以下同様にしてモータ3によりベース1の回
転により第4図に示すように磁化トラックCに沿って情
報が高密度で記録されていく。
Thereby, information is recorded at high density along the magnetized track C as shown in FIG. 4 by rotating the base 1 by the motor 3 in the same manner.

従って、このような構成によれば記録媒体への記録密度
を飛躍的に高めることができるので、極めて効率のよい
情報記録ができる。
Therefore, with such a configuration, the recording density on the recording medium can be dramatically increased, so that information can be recorded extremely efficiently.

尚、この発明は上記実施例にのみ限定されず要旨を変更
しない範囲で適宜変形して実施できる。例えば、上述で
は記録信号に応じて変化させる磁界により媒体を磁化し
て記録を行なうものについて述べたが、磁界発生装置つ
まりコイル10により一定の磁界をバイアス磁界として
おき、レーザ光を光変調装置5にて記録信号で変調して
記録再生を行なう方式においても適用出来る。また上述
では円板状の媒体を用いたが、ドラム状、偏平状のもの
でもよい。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be implemented with appropriate modifications within the scope without changing the gist. For example, in the above description, recording is performed by magnetizing the medium using a magnetic field that changes according to a recording signal. However, a magnetic field generator, that is, a coil 10, is used to set a constant magnetic field as a bias magnetic field, and a laser beam is transmitted to an optical modulator 5. It can also be applied to a system in which recording and reproduction are performed by modulating a recording signal. Furthermore, although a disk-shaped medium is used in the above description, a drum-shaped or flat medium may also be used.

以上1本べたようにこの発明によれば第2の磁界発生装
置を記録媒体の磁化可能範囲の全長に渡って延在するよ
うに設けたので磁界発生装置をレーザ光の移動にともな
った駆動を必要としなくなることができる熱磁気記録再
生装置を提供できる。
As mentioned above, according to the present invention, the second magnetic field generating device is provided so as to extend over the entire length of the magnetizable range of the recording medium, so that the magnetic field generating device can be driven in accordance with the movement of the laser beam. It is possible to provide a thermomagnetic recording and reproducing device that can be omitted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレーザ光スポットの温度分布を説明するための
図、第2図はこの発明の一実施例を示す概略構成図、第
3図は同実施例に用いる補助磁極の斜視図、第4図は同
実施例を説明するための図である。 1・・・ベース  2・・・i膜  3,12・・・モ
ータ4−光源  5・・・光変調装置 6・・・ハーフミラ−7・・・レンズ 8・・・検光子  9・・・光変換素子10・・・コイ
ル(第1の信号磁界発生装置)11・・・第2の磁界発
生装置 第2図 第3図 第4図
Fig. 1 is a diagram for explaining the temperature distribution of a laser beam spot, Fig. 2 is a schematic configuration diagram showing an embodiment of the present invention, Fig. 3 is a perspective view of an auxiliary magnetic pole used in the embodiment, and Fig. 4 is a diagram for explaining the temperature distribution of a laser beam spot. The figure is a diagram for explaining the same embodiment. 1...Base 2...I film 3, 12...Motor 4-light source 5...Light modulator 6...Half mirror 7...Lens 8...Analyzer 9...Light Conversion element 10... Coil (first signal magnetic field generator) 11... Second magnetic field generator Fig. 2 Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 媒体の磁性膜に局部的に加熱するレーザ光照射手段と対
向して媒体を挟む位置に磁界発生装置が設けられた熱磁
気記録再生装置において、前記記録媒体の磁性膜に局部
的に加熱するレーザ光を照射する手段に対向して設けら
れた磁界発生装置を記録媒体の磁化可能範囲の全長にわ
たって延在するように設けたことを特徴とする熱磁気記
録再生装置
In a thermomagnetic recording and reproducing apparatus, a magnetic field generating device is provided at a position sandwiching the medium opposite to a laser beam irradiation means that locally heats the magnetic film of the recording medium, in which a laser beam that locally heats the magnetic film of the recording medium is provided. A thermomagnetic recording and reproducing device characterized in that a magnetic field generating device provided opposite to a means for irradiating light is provided so as to extend over the entire length of a magnetizable range of a recording medium.
JP18710685A 1985-08-26 1985-08-26 Thermal magnetic recording and reproducing device Pending JPS61105748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18710685A JPS61105748A (en) 1985-08-26 1985-08-26 Thermal magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18710685A JPS61105748A (en) 1985-08-26 1985-08-26 Thermal magnetic recording and reproducing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3029879A Division JPS55129908A (en) 1979-03-15 1979-03-15 Thermomagnetic recording and reproducing device

Publications (1)

Publication Number Publication Date
JPS61105748A true JPS61105748A (en) 1986-05-23

Family

ID=16200205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18710685A Pending JPS61105748A (en) 1985-08-26 1985-08-26 Thermal magnetic recording and reproducing device

Country Status (1)

Country Link
JP (1) JPS61105748A (en)

Similar Documents

Publication Publication Date Title
US4340914A (en) Thermomagnetic recording and reproducing apparatus
JPH065585B2 (en) Magneto-optical storage device
US4518657A (en) Recording medium and recording-reproduction system provided with the recording medium
JPH0775042B2 (en) Magneto-optical recording / reproducing device
JPH03125355A (en) Magnetic head for magnetooptical recording
JPH0232692B2 (en)
JPS6217282B2 (en)
JPH0341906B2 (en)
JPS61105748A (en) Thermal magnetic recording and reproducing device
JPH0325854B2 (en)
JPS61105747A (en) Thermal magnetic recording and reproducing device
JP2517559B2 (en) Magneto-optical information recording device
JPH0568763B2 (en)
JPH0226281B2 (en)
JP2559156B2 (en) Magneto-optical recording / reproducing device
JPS6265202A (en) Auxiliary magnetic field impressing device
JPS63302444A (en) Magneto-optical recording medium
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JP3146614B2 (en) Recording method and recording apparatus for magneto-optical recording medium
JP2808597B2 (en) Magnetic field applying electromagnet for magneto-optical disk
JPH01224902A (en) Magnetic field impressing electromagnet for magneto-optical disk
JPS6258441A (en) Photomagnetic recording and reproducing device
JPS61105746A (en) Thermal magnetic recording and reproducing device
JPS63179436A (en) Magneto-optical recording medium
JPS63138546A (en) Magneto-optical recorder