JPS61105746A - Thermal magnetic recording and reproducing device - Google Patents

Thermal magnetic recording and reproducing device

Info

Publication number
JPS61105746A
JPS61105746A JP18710485A JP18710485A JPS61105746A JP S61105746 A JPS61105746 A JP S61105746A JP 18710485 A JP18710485 A JP 18710485A JP 18710485 A JP18710485 A JP 18710485A JP S61105746 A JPS61105746 A JP S61105746A
Authority
JP
Japan
Prior art keywords
magnetic
recording
magnetic field
medium
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18710485A
Other languages
Japanese (ja)
Inventor
Hisahiro Hanaoka
花岡 尚大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP18710485A priority Critical patent/JPS61105746A/en
Publication of JPS61105746A publication Critical patent/JPS61105746A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To largely increase the recording density by rotating a recording medium, moving it in the direction of the radius of the rotation and focusing magnetic flux given to the recording medium by an auxiliary magnetic pole. CONSTITUTION:The laser beam from a beam source 4 focuses on a magnetic thin film 2 of a recording medium through a light modulating equipment 5 and a lens 7, heats the medium partially and reduces its magnetic resistance. A magnetic field is generated by a coil 10 in response to a recording signal, and its magnetic flux magnetizes a thin film 2 in the heated spot to record certain information. A magnetic field generating equipment 11 consists of a nonmagnetic material 121 and a ferromagnetic material 13 joined together, and the surfaces are formed into a ferromagnetic material 14 of 1mu thickness. As the magnetized area is limited to a very small area of the ferromagnetic material 14 of the magnetic field generating equipment 11 although the heated area is rather large, the recording density of a spiral-type magnetic track formed by the rotation of a base 1 with a motor 3 can be largely increased.

Description

【発明の詳細な説明】 この発明は垂直異方性を有する磁性媒体にレーザスポッ
ト等による加熱で情報を記録再生する熱磁気記録再生装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermomagnetic recording and reproducing apparatus for recording and reproducing information on a magnetic medium having perpendicular anisotropy by heating with a laser spot or the like.

従来、この種の熱磁気記録再生手段として例えばMn 
B + を記録媒体とし、これの薄膜の抗磁力の温度依
存性を利用し光ビーム例えばレーザ光を照射しこれのス
ポットによる熱で磁化反転をさせ情報を記録し、また再
生は磁化反転を起さない程度のレーザ光のスポットを上
記記録部分に照射しカー(Kerr)効果により情報を
読み出すようにしたものがある。
Conventionally, as this type of thermomagnetic recording/reproducing means, for example, Mn
Using B + as a recording medium, the temperature dependence of the coercive force of the thin film is used to irradiate a light beam, such as a laser beam, and the heat generated by the spot causes magnetization reversal to record information, and to reproduce information, which causes magnetization reversal. There is a device in which the recorded area is irradiated with a spot of laser light that is small enough to cause the recording area to read out information using the Kerr effect.

すなわち、かかる手段ないま少し具体的に述べるとMn
B1や希土類−鉄非晶質合金等の磁性薄膜を蒸着又はス
パッタリング等によりベース上に形成し、この薄膜の膜
面と垂直に一定方向に磁化するようにバイアス磁界をか
けた状態にしておく。そして、光源より発したレーザ光
を記録信号で変調し、これを対物レンズを介して上記記
録媒体にスポットとして照射しこの照射部分の温度を上
昇させ、これにより媒体の抗磁力を低下させ、バイアス
磁界より小さくなったときに磁気反転により情報を記録
させるようにしている。
In other words, to be more specific, such a method can be applied to Mn.
A magnetic thin film such as B1 or rare earth-iron amorphous alloy is formed on the base by vapor deposition or sputtering, and a bias magnetic field is applied so that the thin film is magnetized in a certain direction perpendicular to the film surface. Then, the laser beam emitted from the light source is modulated with a recording signal, and the laser beam is irradiated as a spot on the recording medium through an objective lens to increase the temperature of the irradiated area, thereby lowering the coercive force of the medium and biasing the recording medium. Information is recorded by magnetic reversal when the field becomes smaller than the magnetic field.

またレーザビームの焦点を媒体上に結ばせ局部的に媒体
を加熱して抗磁力を低下させておき。
In addition, the laser beam is focused on the medium to locally heat the medium and reduce the coercive force.

この状態で記録信号に応じて変化される磁界により媒体
を磁化して記録を行な5手段もある。
In this state, the medium is magnetized by a magnetic field that changes according to the recording signal to perform recording. There are five methods.

このようにかかる手段はいずれもレーザビームのエネル
ギーにより媒体を局部的に熱してスポット部分の抗磁力
を下げ、そこに作用する磁界により熱磁気書き込みを行
な5ようにしている。
In all of these means, the medium is locally heated by the energy of the laser beam to lower the coercive force at the spot, and the magnetic field acting thereon performs thermomagnetic writing.

ところが、実際にレーザ光を媒体に照射すると媒体の温
度分布かに1図に示すようにレーザ光のスポットのセン
タ0を中心に広がりのあるものになっている。このこと
はスポットのセンタ0を中心に比較的広い範囲で磁化が
生じる可能性があることであり、それだげ磁化領域が広
がり記録密度が著して低下してしまう。
However, when a medium is actually irradiated with a laser beam, the temperature distribution of the medium is spread out around the center 0 of the laser beam spot, as shown in FIG. This means that magnetization may occur in a relatively wide range centered on the center 0 of the spot, and the magnetized region will expand accordingly and the recording density will drop significantly.

そこで、従来例えばレーザ光の照射による磁化反転を防
げるよう外部磁界を与え磁化反転の範囲を限定して磁化
領域の拡大を防止するようにしたものが考えられている
が、実際の問題として外部磁界を磁化反転の微妙な範囲
で制御することは極めて難しい。
Therefore, in order to prevent magnetization reversal caused by laser beam irradiation, for example, it has been considered to apply an external magnetic field to limit the range of magnetization reversal and prevent the enlargement of the magnetized region. It is extremely difficult to control magnetization reversal within a delicate range.

この発明は上記の問題点を解決するためなされたもので
、補助磁極を記は記録媒体に与えられる磁束を収束する
ことにより記録密度を飛開的に高めることができる熱磁
気記録再生装置を提供することを目的とする。
This invention was made to solve the above problems, and provides a thermomagnetic recording and reproducing device that can dramatically increase recording density by converging magnetic flux applied to a recording medium using an auxiliary magnetic pole. The purpose is to

以下、この発明の一実施例を図面に従い説明する。第2
図はこの発明の熱磁気記録の原理図を示したもので記録
信号に応じて変化される磁界により媒体を磁化して記録
を行なうものに適用した例を示している。図において1
は円板状のベースで、このベース1上にはMnB1等の
磁性薄膜2を蒸治又はスパッタリング罠より付着し記録
体としている。また、このベース1は水平に保持されモ
ータ3により所定速度で回転するようにしている。
An embodiment of the present invention will be described below with reference to the drawings. Second
The figure shows the principle of thermomagnetic recording according to the present invention, and shows an example of application to a device in which recording is performed by magnetizing a medium using a magnetic field that changes according to a recording signal. In the figure 1
1 is a disk-shaped base, and a magnetic thin film 2 of MnB1 or the like is deposited on this base 1 by vaporization or sputtering to form a recording medium. Further, the base 1 is held horizontally and rotated by a motor 3 at a predetermined speed.

一方、4はレーザ光を発生する光源で、この光源4かも
のレーデ光を光変調装置5及び偏光子51を介して−・
−7ミラー6に与え−ここで反射すせレンズ7を介して
上記磁性薄膜2面上に与えるようにしている。この場合
レーザ光は薄膜2面で焦点を結ぶようにする。また、上
記レンズ7を通る光軸の上記・−〜7ミラーを介した延
長線上に検光子8、光電変換素子9を配設している。こ
れら検光子8および光電変換素子9は再生時日性薄膜2
面より反射されて(るレーザ光をカー効果を利用して検
出するものである。
On the other hand, 4 is a light source that generates a laser beam, and the laser beam from this light source 4 is transmitted through a light modulator 5 and a polarizer 51.
-7 Mirror 6-Here, the light is applied to the surface of the magnetic thin film 2 via the reflecting lens 7. In this case, the laser beam is focused on two surfaces of the thin film. Further, an analyzer 8 and a photoelectric conversion element 9 are arranged on an extension line of the optical axis passing through the lens 7 through the mirrors . These analyzer 8 and photoelectric conversion element 9 are connected to the reproduction time sensitive thin film 2.
Laser light reflected from a surface is detected using the Kerr effect.

上記磁性薄膜2の上方に信号磁界発生装置例えばコイル
10を設ゆている。このコイル10は記録信号例えばデ
ィジタル信号応じて変化される磁界を発生するもので、
これによる磁束をレーザ光により加熱される薄膜2部分
に与えるようにしている。
A signal magnetic field generator, for example a coil 10, is provided above the magnetic thin film 2. This coil 10 generates a magnetic field that changes according to a recording signal, for example, a digital signal.
The resulting magnetic flux is applied to the thin film 2 portion heated by the laser beam.

発生装置11は上記コイル10の磁束を収束するもので
上記レーザ光が焦点を結ぶ磁性薄膜2部分に近接するよ
うにベース1面に接して配置している。
The generator 11 converges the magnetic flux of the coil 10, and is disposed in contact with the base 1 so as to be close to the portion of the magnetic thin film 2 on which the laser beam is focused.

この場合磁界発生装置11は第3図に示すように→・ラ
ミック等の非磁性体12]にフェライト等の強磁性体1
3を接合し、こののち突合せ端面を光学研摩しこの面に
1μ程度の厚さでパーマ2イあるいはセンダスト等の比
較的飽和磁束密度の高い強磁性体14をスパッタリング
等で付着し、更に予め突合せ面を研摩した他の非磁性体
122を突合せ接合し、しかる後R端面を形成して得ら
れるもので、磁束の収束を良好にするため上記強磁性体
13をR端面の極く近くまでのばしてR端面の強磁性体
14から入ってくる磁束に対する磁気回路の抵抗を小さ
くするようにしている。
In this case, the magnetic field generating device 11 is configured as shown in FIG.
3 are joined, and then the abutted end surfaces are optically polished, and a ferromagnetic material 14 with a relatively high saturation magnetic flux density such as Perm 2 or Sendust is attached to this surface with a thickness of about 1 μm by sputtering, and the abutted end faces are further abutted in advance. It is obtained by butt-joining another non-magnetic material 122 whose surface has been polished, and then forming an R end surface.In order to improve the convergence of magnetic flux, the ferromagnetic material 13 is extended very close to the R end surface. Thus, the resistance of the magnetic circuit to the magnetic flux entering from the ferromagnetic material 14 on the R end face is reduced.

尚、このような構成ではべ〜ス10回転により第4図に
示すようにレーザ光の焦点位置Aおよび磁界発生製画1
1を図示B方向つまりベース1の半径方向に移動し磁性
薄膜2面上に渦巻き状の磁比トラックCを描くようにし
ている。
In addition, in such a configuration, by 10 rotations of the base, the focal position A of the laser beam and the magnetic field generation pattern 1 are changed as shown in FIG.
1 is moved in the direction B shown in the figure, that is, in the radial direction of the base 1, so that a spiral magnetic ratio track C is drawn on the surface of the magnetic thin film 2.

この場合磁界発生装置11はR端面の強磁性体14が上
記磁化トラックCと直交する方向に位置するようにする
In this case, the magnetic field generating device 11 is arranged so that the ferromagnetic material 14 on the R end face is located in a direction perpendicular to the magnetization track C.

矢にその作用を説明する。この場合、かかる実施例では
記録信号により磁界を変化し、この磁界により媒体を磁
化して記録を行なうものについて述べる。従ってここで
は光変調装置5での変調動作は行なわないものとする。
Explain the action of the arrow. In this case, such an embodiment will be described in which the magnetic field is changed in response to a recording signal, and the medium is magnetized by this magnetic field to perform recording. Therefore, it is assumed here that no modulation operation is performed in the optical modulation device 5.

このようにすると、いま光源4よりレーザ光が発生する
とレーザ光は光変調装置5(変調動作を行なわない。)
、偏光子51を介してハーフミラ−6に与えられ、ここ
で反射されレンズ7を介して磁性薄膜2面に与えられる
。そして薄膜2上にレーザ光の焦点が結ばれると、この
スポット部分が局部的に加熱され抗磁力が低下する。こ
の状態でコイル10より記録信号に応じた磁界が発生す
ると−これによる磁束が上記スポットにより加熱された
#膜2部分を磁化し、これにより所定の情報が記録され
る。この場合上記コイル10の発生磁束は磁界発生装置
11の極めて狭い(1μ程度)強磁性体14部分子収束
されて薄膜2の加熱部分に垂直方向から与えられる。従
って一薄膜2上に焦点が結ばれるレーザ光スポットの加
熱部分に広がりがあっても出仕領域が磁界発生装置】1
の強磁性体14の極めて狭い部分に制限されるので記録
密度を飛躍的に高めることができることになる。
In this way, when a laser beam is generated from the light source 4, the laser beam is transmitted to the optical modulator 5 (which does not perform a modulation operation).
, is applied to the half mirror 6 via the polarizer 51, reflected there, and applied to the magnetic thin film 2 via the lens 7. When the laser beam is focused on the thin film 2, this spot is locally heated and the coercive force is reduced. In this state, when a magnetic field is generated from the coil 10 in accordance with the recording signal, the resulting magnetic flux magnetizes the # film 2 portion heated by the spot, thereby recording predetermined information. In this case, the magnetic flux generated by the coil 10 is molecularly focused on the extremely narrow (approximately 1 μm) ferromagnetic material 14 of the magnetic field generating device 11 and is applied to the heated portion of the thin film 2 from the perpendicular direction. Therefore, even if the heated part of the laser beam spot focused on one thin film 2 spreads, the delivery area is the magnetic field generator】1
Since the recording density is limited to an extremely narrow portion of the ferromagnetic material 14, the recording density can be dramatically increased.

これにより以下同様にしてモータ3によるベース〕の回
転により第4図に示すように磁化トラックCIC沿って
情報が高密度で記録されていく。
Thereby, information is recorded at high density along the magnetized track CIC as shown in FIG. 4 by rotating the base by the motor 3 in the same manner.

従って、このような構成によれば記録媒体への記録密度
を飛開的に冒めることができるので、極めて効率のよい
情報記録ができ−また磁束を収束して効率よく使用する
のでコイルでの磁束発生のためのエネルギーを小さくす
ることもできる。
Therefore, with this configuration, the recording density on the recording medium can be dramatically increased, so information can be recorded extremely efficiently.In addition, since the magnetic flux is converged and used efficiently, it is possible to dramatically increase the recording density on the recording medium. It is also possible to reduce the energy required to generate magnetic flux.

この発明の実施例を第5図に従い説明すると、モータ1
2を設けこれにより記録媒体全体をモータ3を含め移動
しレーサスポットや磁界発生装置11の移動を不用にし
たものである。その他は第2図と同様であり同一部分に
は同符号を付している。
An embodiment of this invention will be described with reference to FIG.
2 is provided, thereby moving the entire recording medium including the motor 3, making it unnecessary to move the laser spot or the magnetic field generator 11. The rest is the same as in FIG. 2, and the same parts are given the same reference numerals.

尚、この発明は上記実施例にのみ限定されず要旨を変更
しない範囲で適宜変形して笑施できる。例えば上述では
記録信号忙応じて変形される磁界により媒体を砒化して
記録を行なうものについて述べたが一磁界発生装置つま
りコイル10より一定の磁界をバイアス磁界として発生
しておき、レーザ光を変調装置5にて記録信号で変調し
て記録再生を行なう方式においても磁界発生装置により
バイアス磁界による磁束を極めて狭い領域に収束し記録
領域の広がりを制限することにより高密度の記録ができ
る。また上述では円板状の媒体を用いたが、ドラム状の
ものでもよい。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be modified and applied as appropriate without changing the gist. For example, in the above description, a method was described in which recording is performed by arsenizing the medium using a magnetic field that changes depending on the recording signal intensity. However, a magnetic field generator, that is, a coil 10, generates a constant magnetic field as a bias magnetic field and modulates the laser beam. Even in the system in which the device 5 performs recording and reproduction by modulating the recording signal, high-density recording is possible by converging the magnetic flux generated by the bias magnetic field into an extremely narrow area using the magnetic field generator and limiting the spread of the recording area. Furthermore, although a disk-shaped medium is used in the above description, a drum-shaped medium may also be used.

以上述べたようにこの発明によれば磁界発生装置を設げ
記録媒体に与えられる磁束を収束すること忙より記録密
度を飛紹的に高めることができる熱磁気記録再生装置を
提供できる。
As described above, according to the present invention, it is possible to provide a thermomagnetic recording and reproducing apparatus that can dramatically increase the recording density by providing a magnetic field generating device and focusing the magnetic flux applied to the recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザ光スポットの温度分布を説明するための
図、第2図はこの発明の一実施例を示す概略構成図、第
3図は同実施例に用いる補助磁極の斜視図、第4図は同
実施例を説明する− 〇 − だめの図、第5り1は夫々この発明の異なる他突施例を
示す概略構成図である。 1・・ベース      2・・・薄膜3.12・・・
モータ    4・・・光源5・・・光変調装置   
 6・・・−・−7ミラー7−レンズ      8・
・検光子 9・・・光電変換素子  10・・・コイル11・・・
磁界発生装置
Fig. 1 is a diagram for explaining the temperature distribution of a laser beam spot, Fig. 2 is a schematic configuration diagram showing an embodiment of the present invention, Fig. 3 is a perspective view of an auxiliary magnetic pole used in the embodiment, and Fig. 4 is a diagram for explaining the temperature distribution of a laser beam spot. The figures are a partial diagram for explaining the same embodiment, and a fifth diagram is a schematic structural diagram showing a different embodiment of the present invention. 1...Base 2...Thin film 3.12...
Motor 4...Light source 5...Light modulation device
6...--7 Mirror 7-Lens 8.
・Analyzer 9...Photoelectric conversion element 10...Coil 11...
magnetic field generator

Claims (1)

【特許請求の範囲】[Claims] 記録媒体と、この媒体を局部的に加熱するレーザ光を発
生する手段と、上記媒体の少なくとも加熱部分で磁界を
発生するものであつて、前記記録媒体の表側又は/及び
裏側に配置された磁界発生手段とからなり、前記記録媒
体を回転させると共に前記記録媒体を回転半径方向へ移
動させる駆動手段とからなることを特徴とする熱磁気記
録再生装置。
A recording medium, a means for generating a laser beam that locally heats the medium, and a magnetic field that generates a magnetic field in at least a heated portion of the medium, the magnetic field being disposed on the front side and/or the back side of the recording medium. 1. A thermomagnetic recording and reproducing apparatus comprising: a generating means; and a driving means for rotating the recording medium and moving the recording medium in a radial direction of rotation.
JP18710485A 1985-08-26 1985-08-26 Thermal magnetic recording and reproducing device Pending JPS61105746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18710485A JPS61105746A (en) 1985-08-26 1985-08-26 Thermal magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18710485A JPS61105746A (en) 1985-08-26 1985-08-26 Thermal magnetic recording and reproducing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3029879A Division JPS55129908A (en) 1979-03-15 1979-03-15 Thermomagnetic recording and reproducing device

Publications (1)

Publication Number Publication Date
JPS61105746A true JPS61105746A (en) 1986-05-23

Family

ID=16200172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18710485A Pending JPS61105746A (en) 1985-08-26 1985-08-26 Thermal magnetic recording and reproducing device

Country Status (1)

Country Link
JP (1) JPS61105746A (en)

Similar Documents

Publication Publication Date Title
CA1230677A (en) Magneto-optical file memory
US4340914A (en) Thermomagnetic recording and reproducing apparatus
JPH0321961B2 (en)
JPH056590A (en) Magneto-optical recorder
JPS6217282B2 (en)
JPH0232692B2 (en)
JPS61214256A (en) Photomagnetic disc device
US4363052A (en) Thermomagnetic recording device
JPS61105746A (en) Thermal magnetic recording and reproducing device
JPH0325854B2 (en)
JPS61105747A (en) Thermal magnetic recording and reproducing device
JPH0568763B2 (en)
JPH0226281B2 (en)
JPS61105748A (en) Thermal magnetic recording and reproducing device
JP2604702B2 (en) Magneto-optical recording / reproduction / erasing method and apparatus
JPS6258441A (en) Photomagnetic recording and reproducing device
JPS6113461A (en) Photomagnetic disk device
JP2705598B2 (en) Magneto-optical storage method and apparatus
JPH0449551A (en) Magneto-optical display device
JPS63138546A (en) Magneto-optical recorder
JPH01171137A (en) Magneto-optical recording medium
JPS63144401A (en) Magnetic field impressing device for magneto-optical disk
JPH0453003A (en) Magneto-optical reproducing device
JPS59231704A (en) Bias magnetic field impressing device of opto-magnetic disk
JPH04212703A (en) Magneto-optical recording and reproducing device